用户名: 密码: 验证码:
金属氧化物及固体酸催化剂在缩合反应中催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缩合反应在化学工业中是一类非常重要的反应,通过缩合反应获得的产物在日常生活及工业生产等领域中也都有非常广泛的应用,例如:乙酸乙酯和异戊二烯。乙酸乙酯是目前工业中重要的有机溶剂和化工原料,常应用于香料工业、食品工业、纺织工业中。异戊二烯是合成橡胶(SR)的重要单体,主要用于合成异戊橡胶(IR)、丁基橡胶(IIR)和苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)等。
     在缩合反应的工业生产中,主要选用液体酸作为催化剂,但是液体酸催化剂存在诸多缺陷,如:腐蚀设备,污染环境,分离和循环使用困难等。为了解决这些问题,人们尝试选用无腐蚀性、环境友好、可重复利用的金属氧化物及固体酸催化剂来取代液体酸催化剂。但是对于缩合反应在金属氧化物及固体酸催化剂上的催化性能、反应活性中心及机理以等方面还有待进一步改善和研究。
     基于上述情况,本论文主要开展了金属氧化物和固体酸催化剂的制备及表征等研究工作,并尝试将催化剂分别用于乙醇一步法合成乙酸乙酯反应以及异丁烯和甲醛气相缩合制备异戊二烯反应当中。同时通过各种表征手段研究了催化剂的结构及性质,并结合催化测试结果对反应活性中心及机理进行了研究和探讨。论文的主要研究内容和结果如下:一.Cu/SiO2催化剂在乙醇一步法合成乙酸乙酯反应中的研究
     采用氨蒸发法制备了一系列含有页硅酸铜物种的Cu/SiO2催化剂。表征结果发现,页硅酸铜物种的存在不仅可以提高铜物种的分散度、减小铜粒径,而且在还原过程中还可以还原为Cu+,为催化剂表面提供一定的L酸中心。在乙醇一步法合成乙酸乙酯反应中,乙醇转化率以及乙酸乙酯选择性都随着铜含量的增加呈现先增加后减小的趋势,当铜含量为23.7wt%时,乙醇的转化率和乙酸乙酯的选择性达到最大值,分别为65.3%,48.9%。
     将氨蒸发法与传统的浸渍法做对比,催化反应结果发现在氨蒸发法制备的Cu/SiO2催化剂上催化性能要高于传统的浸渍法。实验结果表明氨蒸发法制备的催化剂上Cu0的分散度以及Cu+物种的数目都要高于浸渍法制备的催化剂。结合文献和实验结果,我们认为Cu0和L酸中心之间的协同作用在反应中起到关键作用。
     二.Zr改性的Cu基催化剂在乙醇一步法合成乙酸乙酯反应中的研究
     采用浸渍法将Zr以助剂的形式加入到Cu/SiO2催化剂中,考察锆助剂对乙醇一步法合成乙酸乙酯反应催化性能的影响。实验结果发现,加入助剂Zr后,乙醇的转化率和乙酸乙酯的选择性都显著提高。当Zr含量达到15.3wt%时,乙醇的转化率和乙酸乙酯的选择性都达到最大值。表征结果表明,Zr的加入不仅能够提高CuO的分散度,限制Cu粒径的增长,还能为催化剂表面提供一定量的L酸和B酸中心(L: Zr4+, B: Zr-OH)。结合实验结果,我们对L酸和B酸中心上乙醇一步法合成乙酸乙酯的反应机理做了推测,认为Cu0和适量的酸性位相互配合有利于反应的进行。
     以ZrO2为载体,制备了Cu/ZrO2催化剂。并向Cu/ZrO2催化剂中加入碱金属Na、K以及碱土金属Mg,实验发现Mg助剂的加入可以提高乙酸乙酯选择性。但是Na、K对乙醇一步法合成乙酸乙酯反应并没有促进作用。NH3-TPD结果表明,碱金属和碱土金属的加入,会导致催化剂表面中心的酸强度有所降低,酸量也有所减少。我们认为Mg助剂可以中和催化剂表面一部分中等强度酸中心,减少副反应发生,进而提高乙酸乙酯的选择性。而Na、K的加入不仅中和了副反应所需的活性中心同时也减少了酯化中心,因此导致乙酸乙酯的选择性下降。
     三.改性的HZSM-5分子筛在异丁烯和甲醛气相缩合制备异戊二烯反应中的研究
     将高硅铝比的HZSM-5分子筛应用到异丁烯和甲醛气相缩合反应中。实验结果发现分子筛的硅铝比对催化剂的性能有一定的影响。随着硅铝比的提高,强酸中心逐渐减少,异戊二烯的选择性逐渐提高。我们认为催化剂表面上的强酸中心不利于异戊二烯的生成。
     经过P改性后,HZSM-5表面上的强酸中心消失,弱酸中心增加,异丁烯的转化率和异戊二烯的选择性显著提高。但是,过量的酸中心并不利于缩合反应的进行。选用其他金属对HZSM-5分子筛进行改性,发现催化剂表面的弱酸中心和强酸中心数目都有所提高,但是催化剂的催化性能并没有明显改善。我们认为催化剂表面酸量和酸强度与异丁烯的转化率和异戊二烯的选择性有关。适量的弱酸中心有利于异丁烯和甲醛缩合反应的进行。
     实验还将H-Y、H-beta、TS-1分子筛应用到异丁烯和甲醛反应当中。实验结果进一步说明适量的弱酸中心有利于异丁烯和甲醛缩合反应的进行,同时还证明,催化剂表面的酸类型与催化剂的催化性能没有直接关联。四.负载型杂多酸催化剂在异丁烯和甲醛气相缩合制备异戊二烯反应中的研究
     采用浸渍法制备了一系列负载型杂多酸催化剂,并将它们应用到了异丁烯和甲醛气相缩合制备异戊二烯反应中。通过对杂多酸种类和载体种类的考察,发现硅钨酸和SiO2分别为性能最佳的活性组分和最优的载体。实验还考察了硅钨酸/SiO2催化剂中硅钨酸负载量对催化性能的影响。结果得出,当硅钨酸负载量达到5wt%时,异丁烯的转化率和异戊二烯的选择性达到了最大值,分别为10.1%和89.8%。异丁烯的转化率和异戊二烯的选择性随着硅钨酸负载量的增加而增加,但当硅钨酸负载量达到一定值之后,异戊二烯的选择性反而有所下降,我们认为,催化异丁烯和甲醛缩合制备异戊二烯反应所需的酸量存在一个范围的定值,当高于这个范围的定值时,过多的酸量不一定有利于反应的进行。
     又以HSiW-10催化剂为例,考察了反应时间与催化剂表面酸量、酸强度变化及催化剂积碳变化情况之间的关系,实验结果发现,随着反应时间的延长,催化剂表面上的中强酸中心的数目逐渐减少,同时,催化剂的表面上伴有积碳形成。在反应1h内,催化剂的失重量最大,并随反应时间的延长失重量逐渐减小。我们认为,在反应初期,由于催化剂表面大量的中强酸中心存在,会导致一些副反应的发生,同时在催化剂表面形成积碳。而随着时间的延长,积碳又会覆盖中强酸中心,从而减少了副反应的发生,提高了主产物的选择性。
The reactions for condensation are very important, and their products of ethylacetate and isoprene have a wide range of applications in various fields. Ethylacetate is an important chemical materials and a useful solvent that is widely used inperfume industry, food industry, textile industry, etc. Isoprene is the importantmonomer for synthetic rubber (SR), and it is mainly used for synthesis isoprenerubber (IR), butyl rubber (IIR) and styrene-isoprene-styrene block copolymer (SIS)etc.
     The liquid acid catalysts have many defects in reactions for condensation, suchas: corrosion of equipment, pollution of the environment, separation and recyclingdifficulties. A lot of research works have been carried out to solve these problems.The the metal oxides and solid acid catalysts have been used to replace liguid acidcatalysts, due to their advantages of non-corrosive, environmentally friendly,reusable. However, for the condensation reaction, the catalytic properties, activecenter, reaction mechanism over the solid acid catalysts still need furtherimprovement and research.
     The reaction of ethanol one-step synthesis to ethyl acetate and the vapor phasecondensation of isobutene and formaldehyde reactions have been investigated overmetal oxides and solid acid catalysis. The structure and surface texture of thecatalysts were studied with different characterization means. The active sites on thecatalysts and the reaction mechanism were also discussed combining with thecatalytic performance of catalysts. The main experimental results and conclusionsare as follows:
     1. Cu/SiO2catalysts for ethanol one-step synthesis to ethyl acetate
     Cu/SiO2catalysts, which contain copper phyllosilicate, were successfullyprepared using the ammonia-evaporation method. The formation of the copperphyllosilicate species significantly affected the structural properties and caused theCuO nanoparticles to become highly dispersed, and they would also provide accessto the Lewis acidic Cu+species. The Cu/SiO2catalyst with a23.7wt%copperloading exhibited the best ethanol conversion and ethyl acetate selectivity.
     Compared to the IM catalyst, the AE catalysts exhibited a much higherdispersion, a smaller copper particle size and a larger surface area, in addition to theformation of copper phyllosilicate, which could be reduced to Cu+. The AE catalystsexhibited superior ethanol conversion and selectivity for ethyl acetate formation inthe reaction of ethanol one-step synthesis to ethyl acetate. We proposed that thesynergistic effect of Cu0and appropriate amount of Lewis acidic sites generatedfrom Cu+cause this effect.
     2. The one-step synthesis of ethanol to ethyl acetate over Cu-based catalystsmodified by Zr
     A series of Cu/Zr/SiO2catalysts have been prepared through impregnationmethod. The introduction of Zr could not only improve the dispersion of CuO andrestrict the growth of Cu particle, but also provide a certain amount of acid L and Bacid sites for the surface of catalysts. We suggested that the synergistic effect of Cu0and amount of acidic sites was beneficial for the reaction.
     The Cu/ZrO2catalysts were modified by alkali metal and alkaline earth metal,the introduction of Mg could neutralize the medium strength acid sites, and inhibitthe occurrence of side reactions, enhance the selectivity of ethyl acetate. But, theaddition of Na, K decreased the selectivity of ethyl acetate, which may be due to thestrong basicity of Na and K, and reduced esterification center.
     3. Modified HZSM-5molecular sieves for the condensation of isobutene andformaldehyde
     The high silica of HZSM-5zeolite applied in the vapor phase condensation reaction isobutylene and formaldehyde. Experimental results showed that Si/Al ratiohave a certain impact on the catalytic performance the catalysts. The selectivity ofisoprene increased gradually with the silica to alumina ratio increasing. We proposedthat the strong acid sites were not conducive to the generation of isoprene.
     The HZSM-5molecular sieves modified with transition metal and nonmetalwere prepared and successfully applied to the condensation of isobutene andformaldehyde. We found that the sample with P content of5wt%showed the bestcatalytic performance. The results suggested that appropriate amount of the weakacid sites could improve the condensation of isobutene with formaldehyde.
     Other acidic zeolites such as HY, H-beta, TS-1were also applied in the vaporphase condensation reaction isobutylene and formaldehyde. The results furtherillustrated that a appropriate amount of weak acids were in favor of the condensationreaction, and confirmed that the acid type was not related with the catalyticperformance directly.
     4. Supported heteropoly acid catalysts for the condensation of isobutene andformaldehyde
     The type of heteropoly acids and supports had been filtered, and it was foundthe SiO2supported heteropoly acid catalysts showed high catalytic performance. Theconversion and selectivity were related with the concentration and strength of acidsites. Appropriate amount of the weak Lewis acid sites could improve thecondensation of isobutene with formaldehyde.
     The relationship between acidity of the surface catalyst and the coke depositshas been investigated. The side effects and coke deposits were caused by themedium-strong acid sites. The coke deposits could cover the moderately strong acidsites as the reaction continued which inhibited the side reactions and enhanced theselectivity to isoprene.
引文
[1] DEUTSCH J., MARTIN A., LIESKE H. Investigations on heterogeneouslycatalysed condensations of glycerol to cyclic acetals[J]. Journal of Catalysis,2007,245(2):428-435.
    [2] MA YAN-RAN, JIN TONG-SHOU, SHI SHENG-XUN, et al. A highly efficientand chemoselective method for acetalization of carbonyl compounds catalyzedby solid superacid[J]. Synthetic Communications,2003,33(12):2103-2108.
    [3]龚菁王云翔.稀土固体超强酸SO42--La3+/TiO2催化合成苯乙酮环乙二缩酮[J].石油化工,2004,33(2):149-151.
    [4]杨水金,白爱民,孙聚堂. SO42--/TiO2-Mo3催化剂催化合成缩醛(酮)[J].石油化工,2003,32(11):944-948.
    [5] HABIB F. Nasser l, Abbas AJ, et al. Tungstophosphoric acid supported on silicagel (H3PW12O40/SiO2) as an eco-friendly, reusable and heterogeneous catalystfor hemoselective oxathioacetalization of carbonyl compounds in solution orunder solvent-free conditions[J]. Journal of Molecular Catalysis A: Chemical,2006,247:14-18.
    [6]吕宝兰,杨水金.硅钨酸掺杂聚苯胺催化剂催化合成环己酮乙二醇缩酮[J].日用化学品科学,2004,27(6):19-22.
    [7] AJAIKUMAR S., PANDURANGAN A. Reaction of benzaldehyde with variousaliphatic glycols in the presence of hydrophobic Al-MCM-41: A convenientsynthesis of cyclic acetals[J]. Journal of Molecular Catalysis A: Chemical,2008,290(1–2):35-43.
    [8]梁学正,刘彩华,高珊,杨建国,何鸣元. HMCM-22沸石分子筛催化合成缩醛(酮)[J].化工进展2005,24(12):1383-1385.
    [9]龙金星赵应伟,刘建华,李臻,陈静.功能化离子液体在缩醛(酮)反应中催化性能的研究[J].分子催化,2008,22(3):199-204.
    [10]余善信.一种新的高分子Lewis酸催化剂的制备及其催化活性的研究[J].离子交换与吸附,1991,7(2):122-126.
    [11]李树国,贾丽华,郭祥峰.酸化铝锌复合交联蒙脱土催化合成缩酮和缩醛[J].化学研究与应用,2009,21(11):1563-1565.
    [12] ARUNDALE E MIKELSKA L A. The olefin Aldehyde Condensation-the PrinsReaction[J]. Chemieal Reviews,1952,51(3):505-555.
    [13] YANG N C YANG D H, ROSS C B. The Mechanism of the Prins Reaction[J]. JAm Chem Soc,1959,81(1):133-136.
    [14] CZIBULA L SZL, NEMES ANDR S, SEB K FERENC, et al. A ConvenientSynthesis of ()-Paroxetine[J]. European Journal of Organic Chemistry,2004,2004(15):3336-3339.
    [15] FITZKYW. Cyclic acetals of formaldehyde and a process of preparing them:US,2325760[P].1943-8-13.
    [16] RITTER. J J. Cyclic diethers: US,2362307[P].1944-11-7.
    [17]宋河远,唐中华,陈静.功能化酸性离子液体催化甲醛与烯烃的Prins缩合反应[J].分子催化2008,22(5):403-407.
    [18] SELVARAJ M., KAWI S. Highly selective synthesis of nopol over mesoporousand microporous solid acid catalysts[J]. Journal of Molecular Catalysis A:Chemical,2006,246(1–2):218-222.
    [19] SREEVARDHAN REDDY S., DAVID RAJU B., SIVA KUMAR V., et al.Sulfonic acid functionalized mesoporous SBA-15for selective synthesis of4-phenyl-1,3-dioxane[J]. Catalysis Communications,2007,8(3):261-266.
    [20] SELVARAJ M., SINHA P. K. Highly selective and clean synthesis of nopolover well-ordered mesoporous tin silicate catalysts[J]. New Journal ofChemistry,2010,34(9):1921-1929.
    [21]吴庆银,林桐枫.钨锗酸催化苯乙烯与福尔马林的Prins反应研究[J].沈阳化工,1996(3):2-3.
    [22]吴庆银,华宏伟.杂多酸催化Prins反应研究[J].化学与粘合,1997(2):69-70.
    [23] LI GUIXIAN, GU YANLONG, DING YONG, et al. Wells–Dawson typemolybdovanadophosphoric heteropolyacids catalyzed Prins cyclization ofalkenes with paraformaldehyde under mild conditions-a facile and efficientmethod to1,3-dioxane derivatives[J]. Journal of Molecular Catalysis A:Chemical,2004,218(2):147-152.
    [24] JADHAV SUMIT V., JINKA KRISHNA MOHAN, BAJAJ HARI C. Synthesisof nopol via Prins condensation of β-pinene and paraformaldehyde catalyzedby sulfated zirconia[J]. Applied Catalysis A: General,2010,390(1–2):158-165.
    [25] JADHAV SUMIT V., JINKA KRISHNA MOHAN, BAJAJ HARI C. Nanosizedsulfated zinc ferrite as catalyst for the synthesis of nopol and other finechemicals[J]. Catalysis Today,2012,198(1):98-105.
    [26] JI MIN, LI XUEFENG, WANG JUNHU, et al. Grafting SnCl4catalyst as anovel solid acid for the synthesis of3-methylbut-3-en-1-ol[J]. Catalysis Today,2011,173(1):28-31.
    [27]刘冲.石油化工手册(三)[M].北京:化学工业出版社,1987:259.
    [28]刑其毅.有机化学(上册)[M].北京:高等教育出版社,1957:149.
    [29]徐寿昌.有机化学(第二版)[M].北京:高等教育出版社,1983:336.
    [30]江体乾.化工工艺手册[M].上海:上海科学技术出版社,1992:454.
    [31]程能林,胡声闻.溶剂手册(下册)[M].北京:化学工业出版社,1987:14-15.
    [32]刘文彬,钱徐萍.乙酸乙酯生产技术对比[J].化学与粘合,2003,4:184-185.
    [33]崔能伟.乙醇在MoS2/C催化剂上一步法制备乙酸乙酯的研究[D].天津:天津大学化工学院,2005.
    [34]林翔云.调香术[M].北京:化学工业出版社,2001:264-266.
    [35]李玉芳,李明,伍小明.乙酸乙酯的生产技术及市场分析[J].精细化工原料及中间体,2010(7).
    [36]金栋,肖明.乙酸乙酯的生产技术进展及市场分析[J].精细石油化工进展,2010,11(6):15-22.
    [37]韦毅,黄科林,王桂英,彭小玉.乙酸乙酯合成的研究进展[J].大众科技,2013,15(166):104-106.
    [38]王军刘文彬,谭淑媛.乙酸乙酯生产工艺现状及发展趋势[J].应用科技,2003,30(3):51-53.
    [39]田志新,李菊仁,龚键.铌酸催化液相合成乙酸乙酯[J].合成化学,2000,8(3):260-263.
    [40]叶健于淑萍. AlCl3/D72树脂低温催化合成乙酸乙酯[J].天津化工,1999(5):29-30.
    [41]邹欣平,吴宇,梁永光,杨水金. TiSiW12O40/TiO2催化合成乙酸乙酯[J].青岛大学学报,2011,14(4):82-84.
    [42] KUO-CHING WU YU-WEN CHEN. An efficient two-phase reaction of ethylacetate production in modified ZSM-5zeolites[J]. Applied Catalysis A:General,2004,257:33-42.
    [43]天津大学.基本有机合成工艺学(下)[M].北京:中国工业出版社,1961.
    [44] COATES A.C., LEONARD S., Manufacture of aluminum alkoxides: US,2579251[P].1951-12-18.
    [45] YAMAMOTO YOSHIMI, HATANAKA SHIGERU, TSUJI KATSUYUKI, et al.Direct addition of acetic acid to ethylene to form ethyl acetate in the presenceof H4SiW12O40/SiO2[J]. Applied Catalysis A: General,2008,344(1–2):55-60.
    [46] LIN TZONG-BIN, CHUNG DONG-LIN, CHANG JEN-RAY. Ethyl AcetateProduction from Water-Containing Ethanol Catalyzed by Supported PdCatalysts: Advantages and Disadvantages of Hydrophobic Supports[J].Industrial&Engineering Chemistry Research,1999,38(4):1271-1276.
    [47] LEE J. F., ZHENG F. S., CHANG J. R. Structural Investigation ofSolid-Acid-Promoted Pd/SDB Catalysts for Ethyl Acetate Production fromEthanol[J]. The Journal of Physical Chemistry B,2001,105(17):3400-3404.
    [48]伏再辉,奚红霞,龚健.乙醇在双功能Pd-Cu/分子筛催化剂上气相氧化酯化一步合成乙酸乙酯[J].催化学报,1994,15(4):262-267.
    [49] GASPAR A. B., ESTEVES A. M. L., MENDES F. M. T., et al. Chemicals fromethanol-The ethyl acetate one-pot synthesis[J]. Applied Catalysis A: General,2009,363(1–2):109-114.
    [50]马宇春石峰,邓友全.担载纳米金催化乙醇选择氧化制乙酸乙酯[J].分子催化,2003,17(6):524-924.
    [51] WEINSTEIN RANDY D., FERENS ANDREW R., ORANGE ROBERT J., etal. Oxidative dehydrogenation of ethanol to acetaldehyde and ethyl acetate bygraphite nanofibers[J]. Carbon,2011,49(2):701-707.
    [52]王连驰,津田政之,江口浩一,荒井弘通. Sb-MO复合氧化物单一相催化剂上的醇类氧化醋化[J].石油化工,1991,20(7):450-453.
    [53] ZHANG MINHUA, LI GUIMING, JIANG HAOXI, et al. Investigation onProcess Mechanism on Cu–Cr Catalysts for Ethanol Dehydrogenation to EthylAcetate[J]. Catalysis Letters,2011,141(8):1104-1110.
    [54] SANTACESARIA E., CAROTENUTO G., TESSER R., et al. Ethanoldehydrogenation to ethyl acetate by using copper and copper chromitecatalysts[J]. Chemical Engineering Journal,2012,179:209-220.
    [55] CAROTENUTO G., TESSER R., DI SERIO M., et al. Kinetic study of ethanoldehydrogenation to ethyl acetate promoted by a copper/copper-chromite basedcatalyst[J]. Catalysis Today,2013,203:202-210.
    [56]张广信,房维洁,姜浩锡.焙烧温度对乙醇脱氢制备乙酸乙酯Cu-Cr催化剂性能的影响[J].开发与研究,2010(9):31-33.
    [57]周钢骨王晓东,罗鸿举,郁根富,李卫东. CNY-101型乙醇脱氢制取乙酸乙酯催化剂研究[J].天然气化工,1996,21(3):16-20.
    [58]周钢骨王晓东,罗鸿举,郁根富,李卫东. CNY-102型乙醇脱氢制取乙酸乙酯[J].天然气化工,1998,23(2):34-38.
    [59]肖永红.铜基催化剂用于乙醇脱氢合成乙酸乙酯[J].化学工程与装备,2012(7):23-26.
    [60]杨树武,周卓华. Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯Ⅰ.催化反应性能及机理[J].催化学报,1996,17(1):5-9.
    [61]杨树武,周卓华. Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯Ⅱ.催化剂的表征[J].催化学报,1996,17(1):10-15.
    [62] INUI KANICHIRO, KURABAYASHI TORU, SATO SATOSHI, et al. Effectiveformation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J].Journal of Molecular Catalysis A: Chemical,2004,216(1):147-156.
    [63] ZONETTI PRISCILA C., CELNIK JOHNATAN, LETICHEVSKY SONIA, etal. Chemicals from ethanol-The dehydrogenative route of the ethyl acetateone-pot synthesis[J]. Journal of Molecular Catalysis A: Chemical,2011,334(1–2):29-34.
    [64]潘伟雄.乙醇脱氢歧化醋化一步合成乙酸乙醋[J].石油化工,1991,20(5):330-337.
    [65]曾金龙,傅锦坤,郑荣辉,万惠霖.钛的添加对Cu-Co-Zn/Al2O3乙醇一步合成乙酸乙酯催化剂性能的影响[J].工业催化,1998(3):52-55.
    [66]曾金龙,傅锦坤,郑荣辉,许金来.稀土氧化物对乙醇一步合成乙酸乙酯混合氧化物催化剂性能的影响[J].稀土,1998,19(3):22-25.
    [67]汤清虎,魏志伟,王京,赵卉茹,赵培正. Cu-Zr-Co-O催化剂催化乙醇直接合成乙酸乙酯[J].石油化工,2013,42(7):780-786.
    [68] WANG LI XIA, ZHU WAN CHUN, ZHENG DA FANG, et al. Directtransformation of ethanol to ethyl acetate on Cu/ZrO2catalyst[J]. ReactionKinetics, Mechanisms and Catalysis,2010,101(2):365-375.
    [69] FREITAS I. C., DAMYANOVA S., OLIVEIRA D. C., et al. Effect of Cucontent on the surface and catalytic properties of Cu/ZrO2catalyst for ethanoldehydrogenation[J]. Journal of Molecular Catalysis A: Chemical,2014,381(0):26-37.
    [70]尹艳春,滕灼光,张飞跃. CuO-CexZr1-xO2上催化乙醇脱氢合成乙酸乙酯的研究[J].稀土,2012,33(4):68-72.
    [71]崔能伟,刘成,姜浩锡,张敏华.乙醇一步法制备乙酸乙酯的MoS2/C催化剂[J].化学工业与工程,2006,23(5):400-402.
    [72] WANG LIXIA, ZHENG DAFANG, MA CHUNXIANG, et al. Directtransformation of ethanol to ethyl acetate over MoSx/C catalyst[J]. PolishJournal of Chemistry,2009,83:1993-2000.
    [73] S NCHEZ ADRIANA BONILLA, HOMS NARC S, FIERRO J. L. G., et al.New supported Pd catalysts for the direct transformation of ethanol to ethylacetate under medium pressure conditions[J]. Catalysis Today,2005,107–108:431-435.
    [74] SHEN JIAN-PING, SONG CHUNSHAN. Influence of preparation method onperformance of Cu/Zn-based catalysts for low-temperature steam reformingand oxidative steam reforming of methanol for H2production for fuel cells[J].Catalysis Today,2002,77(1–2):89-98.
    [75] HUANG GANG, BIING-JYE LIAW, CHENG-JYUN JHANG, et al. Steamreforming of methanol over CuO/ZnO/CeO/ZrO/AlO catalysts[J]. AppliedCatalysis A: General,2009,358(1):7-12.
    [76] LINDSTR M B RD, PETTERSSON LARS J. Hydrogen generation by steamreforming of methanol over copper-based catalysts for fuel cell applications[J].International Journal of Hydrogen Energy,2001,26(9):923-933.
    [77] LIU YANYONG, HAYAKAWA TAKASHI, TSUNODA TATSUO, et al. SteamReforming of Methanol Over Cu/CeO2Catalysts Studied in Comparison withCu/ZnO and Cu/Zn(Al)O Catalysts[J]. Topics in Catalysis,2003,22(3-4):205-213.
    [78] NAGARAJA B. M., SIVA KUMAR V., SHASHIKALA V., et al. Effect ofmethod of preparation of copper-magnesium oxide catalyst on thedehydrogenation of cyclohexanol[J]. Journal of Molecular Catalysis A:Chemical,2004,223(1–2):339-345.
    [79]王锋,杨运泉,段正康.一种用于环己醇脱氢的新型催化剂Cu/ZrO2的制备[J].河北化工,2005(2):28-34.
    [80] PEPE FRANCO, POLINI RICCARDO. Catalytic behavior and surfacechemistry of Copper/ZnO/Al2O3catalysts for the decomposition of2-propanol[J]. Journal of Catalysis,1992,136(1):86-95.
    [81] WANG ZHENL, LIU QINGSHENG, YU JIANFENG, et al. Surface structureand catalytic behavior of silica-supported copper catalysts prepared byimpregnation and sol–gel methods[J]. Applied Catalysis A: General,2003,239(1–2):87-94.
    [82] WANG ZHENL, MA HONGCHAO, ZHU WANCHUN, et al. Characterizationof Cu-ZnO-Cr2O3/SiO2catalysts and application to dehydrogenation of2-butanol to2-butanone[J]. Reaction Kinetics and Catalysis Letters,2002,76(2):271-279.
    [83] BRANDS DANNY S., POELS EDUARD K., BLIEK ALFRED. Esterhydrogenolysis over promoted Cu/SiO2catalysts[J]. Applied Catalysis A:General,1999,184:279-289.
    [84] RAO RAJEEVS, BAKER R. TERRYK, VANNICE M. ALBERT. Furfuralhydrogenation over carbon-supported copper[J]. Catalysis Letters,1999,60(1-2):51-57.
    [85] SAADI A., RASSOUL Z., BETTAHAR M. M. Gas phase hydrogenation ofbenzaldehyde over supported copper catalysts[J]. Journal of MolecularCatalysis A: Chemical,2000,164(1–2):205-216.
    [86] OSSIPOFF N. J., CANT N. W. The Hydrogenation and Oligomerization ofPropyne over an Ion-Exchanged Copper on Silica Catalyst[J]. Journal ofCatalysis,1994,148(1):125-133.
    [87]崔小明.异戊二烯的分离技术及其开发利用前景[J].化学工业,2011,29(12):38-45.
    [88]吴红飞.异戊二烯的生产方法[J].精细石油化工,2012,29(5):77-82.
    [89] HAMAMOTO YOSHITO, MITSUTANI AKIO. Method of producingconjugated diolefins: US,3221075[P].1965-11-30.
    [90] Mitsutani Akio. Process for the manufacture of isoprene and isobutene: US,3284533[P],1966-11-8.
    [91] SUSHKEVICH V. L., ORDOMSKY V. V., IVANOVA I. I. Synthesis of isoprenefrom formaldehyde and isobutene over phosphate catalysts[J]. AppliedCatalysis A: General,2012,441–442:21-29.
    [92] KRZYWICKI A., WILANOWICZ T., MALINOWSKI ST. Catalytic andphysico-chemical properties of the Al2O3-H3PO4system, I. vapor phasecondensation of isobutylene and formaldehyde-the prins reaction[J]. ReactionKinetics, Mechanisms and Catalysis,1979,11:399-403.
    [93] DANG ZHONGYUAN, DING SHIXIN. Investigation of the surfacecharacteristics and catalystic activity of SbxOy/SiO2catalysts for vapor-phasesynthesis of isoprene from isobutylene and formaldehyde[J]. Journal ofmolecular Catalysis, in chinese,1987,3(1):146-152.
    [94] DANG ZHONGYUAN, GU JINGFANG, YU LING, et al. Vapor-phasesynthesis of isoprene from formaldehyde and isobutylene over CuSO4-MOx/SiO2catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis,1991,43:495-500.
    [95]于庚涛.烯醛一步法合成异戊二烯-铬-磷催化剂上积碳规律的研究[J].石油化工,1984,13(8):509-513.
    [96]安立敦,蒋致诚,尹元报.异丁烯-甲醛一步缩合制异戊二烯AgxSbyOz/SiO2催化剂活性相的研究[J].分子催化,1987,1(2):79-86.
    [97]徐贤伦,丁时鑫.化工论文集[J].甘肃化工学会,1980:87-93.
    [98]李达刚,徐贤伦,马德润,王咸华,王宗说.烯醛一步法气相合成异戊二烯的研究[J].石油化工,1983,12:474-478.
    [99] DUMITRIU E., GONGESCU D., HULEA V. Contribution to the study ofisobutene condensation with formaldehyde catalyzed by zeolites[J]. Studies inSurface Science and Catalysis,1993,78:669-676.
    [100] DUMITRIU E., HULEA V., CHELARU C., et al. Selective synthesis ofisoprene by prins condensation using molecular sieves[J]. Zeolites and RelatedMicroporous Materials,1994,84:1997-2004.
    [101] DUMITRIU E., ON D. TRONG, KALIAGUINE S. Isoprene by PrinsCondensation over Acidic Molecular Sieves[J]. Journal of catalysis,1997,170(1):150-160.
    [102] DUMITRIU EMIL, HULEA VASILE, FECHETE IOANA, et al. Prinscondensation of isobutylene and formaldehyde over Fe-silicates of MFIstructure[J]. Applied Catalysis A: General1999,181(1):15-28.
    [103]许琳,胡长文,王恩波.杂多酸型催化剂的研究进展[J].石油化工,1997,2(9):632-638.
    [104] JIN HAO, YI XIAODONG, SUN XIAODAN, et al. Influence of H4SiW12O40loading on hydrocracking activity of non-sulfide Ni–H4SiW12O40/SiO2catalysts[J]. Fuel,2010,89(8):1953-1960.
    [105] KRALEVA E., SALADINO M. L., SPINELLA A., et al. H3PW12O40supportedon mesoporous MCM-41and Al–MCM-41materials: preparation andcharacterisation[J]. Journal of Materials Science,2011,46(22):7114-7120.
    [106] Kim Y. T., Jung K. D., Park E. D., Gas-phase Dehydration of Glycerol overSupported Silicotungstic Acids Catalysts[J].2010,31(11):3283-3290.
    [107] SRILATHA K., ISSARIYAKUL T., LINGAIAH N., et al. Efficientesterification and transesterification of used cooking oil using12-Tungstophosphoric acid (TPA)/Nb2O5catalyst[J]. Energy&Fuels,2010,24(9):4748-4755.
    [108] ALSALME ALI M., WIPER PAUL V., KHIMYAK YAROSLAV Z., et al.Solid acid catalysts based on H3PW12O40heteropoly acid: Acid and catalyticproperties at a gas–solid interface[J]. Journal of Catalysis,2010,276(1):181-189.
    [109] JIN DINGFENG, HOU ZHAOYIN, LUO YONGMING, et al. Synthesis ofdimethyldiphenylmethane over supported12-tungstophosphoric acid(H3PW12O40)[J]. Journal of Molecular Catalysis A: Chemical,2006,243(2):233-238.
    [110] CORMA AVELINO, MENGUAL JES S, MIGUEL PABLO J. Stabilization ofZSM-5zeolite catalysts for steam catalytic cracking of naphtha for productionof propene and ethene[J]. Applied Catalysis A: General,2012,421–422:121-134.
    [111] TANG QIANG, XU HANG, ZHENG YANYAN, et al. Catalytic dehydration ofmethanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41composite molecular sieves[J]. Applied Catalysis A: General,2012,413–414:36-42.
    [112] JIA CHUN-JIANG, LIU YONG, SCHMIDT WOLFGANG, et al. Small-sizedHZSM-5zeolite as highly active catalyst for gas phase dehydration of glycerolto acrolein[J]. Journal of Catalysis,2010,269(1):71-79.
    [113] LU JIANGYIN, ZHAO ZHEN, XU CHUNMING, et al. FeHZSM-5molecularsieves–Highly active catalysts for catalytic cracking of isobutane to produceethylene and propylene[J]. Catalysis Communications,2006,7(4):199-203.
    [114] SHIBATA YUSUKE, HAMADA REI, UEDA TAKAHIRO, et al. Gas-PhaseCatalytic Oxidation of Benzene to Phenol over Cu-Impregnated HZSM-5Catalysts[J]. Industrial&Engineering Chemistry Research,2005,44(23):8765-8772.
    [1] FURIKADO IPPEI, MIYAZAWA TOMOHISA, KOSO SHUICHI, et al.Catalytic performance of Rh/SiO2in glycerol reaction under hydrogen[J].Green Chemistry,2007,9(6):582-588.
    [2] CHEN YANGYING, WANG CHUANG, LIU HONGYANG, et al. Ag/SiO2: anovel catalyst with high activity and selectivity for hydrogenation ofchloronitrobenzenes[J]. Chemical Communications,2005(42):5298-5300.
    [3] VENUGOPAL A., NAVEEN KUMAR S., ASHOK J., et al. Hydrogenproduction by catalytic decomposition of methane over Ni/SiO2[J].International Journal of Hydrogen Energy,2007,32(12):1782-1788.
    [4] JI CHAN PARK HYUN JU LEE, JUNG UP BANG, KANG HYUN PARK ANDHYUNJOON SONG Chemical transformation and morphology change ofnickel-silica hybrid nanostructures via nickel phyllosilicates[J]. ChemicalCommunications,2009(47):7345–7347.
    [5] ZHANG BO, HUI SHENGGUO, ZHANG SUHUA, et al. Effect of copperloading on texture, structure and catalytic performance of Cu/SiO2catalyst forhydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Natural GasChemistry,2012,21(5):563-570.
    [6] CHE MICHEL, CHENG ZHENG XING, LOUIS CATHERINE. Nucleation andParticle Growth Processes Involved in the Preparation of Silica-SupportedNickel Materials by a Two-Step Procedure[J]. Journal of the AmericanChemical Society,1995,117(7):2008-2018.
    [7] BURATTIN PAOLO, CHE MICHEL, LOUIS CATHERINE. Characterization ofthe Ni(II) Phase Formed on Silica Upon Deposition-Precipitation[J]. TheJournal of Physical Chemistry B,1997,101(36):7060-7074.
    [8] FONSECA MARIA G., AIROLDI CLAUDIO. Mercaptopropyl magnesiumphyllosilicate-thermodynamic data on the interaction with divalent cations inaqueous solution[J]. Thermochimica Acta,2000,359(1):1-9.
    [9] LAGADIC ISABELLE L., MITCHELL MOLLY K., PAYNE BRYAN D. HighlyEffective Adsorption of Heavy Metal Ions by a Thiol-FunctionalizedMagnesium Phyllosilicate Clay[J]. Environmental Science&Technology,2001,35(5):984-990.
    [10] MHAMDI MOURAD, MARCEAU ERIC, KHADDAR-ZINE SIHEM, et al.Formation of Cobalt Phyllosilicate During Solid State Preparation ofCo2+/ZSM5Catalysts from Cobalt Acetate[J]. Catalysis Letters,2004,98(2-3):135-140.
    [11] LOAIZA-GIL ALFONSO, ARENAS JENNIFER, VILLARROEL MARLIN, etal. Heavier alcohols synthesis on cobalt phyllosilicate catalysts[J]. Journal ofMolecular Catalysis A: Chemical,2005,228(1–2):339-344.
    [12] SCHLEGEL MICHEL L., MANCEAU ALAIN. Evidence for the nucleationand epitaxial growth of Zn phyllosilicate on montmorillonite[J]. Geochimica etCosmochimica Acta,2006,70(4):901-917.
    [13] TOUPANCE THIERRY, KERMAREC MAGGY, LOUIS CATHERINE. MetalParticle Size in Silica-Supported Copper Catalysts. Influence of the Conditionsof Preparation and of Thermal Pretreatments[J]. The Journal of PhysicalChemistry B,2000,104(5):965-972.
    [14] TOUPANCE THIERRY, KERMAREC MAGGY, LAMBERT JEAN-FRANOIS, et al. Conditions of Formation of Copper Phyllosilicates inSilica-Supported Copper Catalysts Prepared by Selective Adsorption[J]. TheJournal of Physical Chemistry B,2002,106(9):2277-2286.
    [15] HUANG ZHIWEI, CUI FANG, XUE JINGJING, et al. Synthesis and StructuralCharacterization of Silica Dispersed Copper Nanomaterials with UnusualThermal Stability Prepared by Precipitation-Gel Method[J]. The Journal ofPhysical Chemistry C,2010,114(39):16104-16113.
    [16] ZHANG BIN, ZHU YULEI, DING GUOQIANG, et al. Modification of thesupported Cu/SiO2catalyst by alkaline earth metals in the selective conversionof1,4-butanediol to γ-butyrolactone[J]. Applied Catalysis A: General,2012,443–444:191-201.
    [17] CHEN LIANG-FENG, GUO PING-JUN, QIAO MING-HUA, et al. Cu/SiO2catalysts prepared by the ammonia-evaporation method: Texture, structure, andcatalytic performance in hydrogenation of dimethyl oxalate to ethyleneglycol[J]. Journal of Catalysis,2008,257(1):172-180.
    [18] ZHAO LI, ZHAO YUJUN, WANG SHENGPING, et al. Hydrogenation ofDimethyl Oxalate Using Extruded Cu/SiO2Catalysts: Mechanical Strength andCatalytic Performance[J]. Industrial&Engineering Chemistry Research,2012,51(43):13935-13943.
    [19] YIN ANYUAN, GUO XIAOYANG, DAI WEI-LIN, et al. Effect of initialprecipitation temperature on the structural evolution and catalytic behavior ofCu/SiO2catalyst in the hydrogenation of dimethyloxalate[J]. CatalysisCommunications,2011,12(6):412-416.
    [20] GONG JINLONG, YUE HAIRONG, ZHAO YUJUN, et al. Synthesis ofEthanol via Syngas on Cu/SiO2Catalysts with Balanced Cu0-Cu+Sites[J].Journal of the American Chemical Society,2012,134(34):13922-13925.
    [21] SU WEI GUANG, WANG SHOU GUO, YING PIN LIANG, et al. A molecularinsight into propylene epoxidation on Cu/SiO2catalysts using O2as oxidant[J].Journal of Catalysis,2009,268(1):165-174.
    [22] MARCHI A. J., FIERRO J. L. G., SANTAMAR A J., et al. Dehydrogenation ofisopropylic alcohol on a Cu/SiO2catalyst: a study of the activity evolution andreactivation of the catalyst[J]. Applied Catalysis A: General,1996,142(2):375-386.
    [23] CHEN XIAO RONG, JU YI HSU, MOU CHUNG YUAN. Direct Synthesis ofMesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity forBiodiesel via Esterification[J]. The Journal of Physical Chemistry C,2007,111(50):18731-18737.
    [24] TURCO MARIA, BAGNASCO GIOVANNI, CAMMARANO CLAUDIA, etal. Cu/ZnO/Al2O3catalysts for oxidative steam reforming of methanol: The roleof Cu and the dispersing oxide matrix[J]. Applied Catalysis B: Environmental,2007,77(1-2):46-57.
    [25] ZHANG YIN QING, WANG SHENG JIE, WANG JUN WEI, et al. Synthesisand characterization of Zr-SBA-15supported tungsten oxide as a newmesoporous solid acid[J]. Solid State Sciences,2009,11(8):1412-1418.
    [26] CHEN L. F., NORE A L. E., NAVARRETE J., et al. Improvement of surfaceacidity and structural regularity of Zr-modified mesoporous MCM-41[J].Materials Chemistry and Physics,2006,97(2-3):236-242.
    [27] JIA AI ZHONG, LI JIE, ZHANG YIN QING, et al. Synthesis andcharacterization of nanosized micro-mesoporous Zr–SiO2via Ionic liquidtemplating[J]. Materials Science and Engineering C,2008,28(8):1217-1226.
    [28] TONNER STEPHEN P., TRIMM DAVID L., WAINWRIGHT MARK S., et al.Dehydrogenation of methanol to methyl formate over copper catalysts[J].Industrial&Engineering Chemistry Product Research and Development,1984,23(3):384-388.
    [29] CRIVELLO M NICA E., P REZ CELSO F., MENDIETA SILVIA N., et al.n-Octyl alcohol dehydrogenation over copper catalysts[J]. Catalysis Today,2008,133–135(0):787-792.
    [30] INUI KANICHIRO, KURABAYASHI TORU, SATO SATOSHI, et al. Effectiveformation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journalof Molecular Catalysis A: Chemical,2004,216(1):147-156.
    [31] WANG LI XIA, ZHU WAN CHUN, ZHENG DA FANG, et al. Directtransformation of ethanol to ethyl acetate on Cu/ZrO2catalyst[J]. ReactionKinetics, Mechanisms and Catalysis,2010,101(2):365-375.
    [32] ZHU WAN CHUN, WANG LI XIA, LIU SHI YAN, et al. Characterization andcatalytic behavior of silica-supported copper catalysts prepared by impregnationand ion-exchange methods[J]. Reaction Kinetics and Catalysis Letters,2008,93(1):93-99.
    [33] GONG YANJUN, DOU TAO, KANG SHANJIAO, et al. Deep desulfurizationof gasoline using ion-exchange zeolites: Cu(I)-and Ag(I)-beta[J]. FuelProcessing Technology,2009,90(1):122-129.
    [34] BENALIOUCHE F., BOUCHEFFA Y., THIBAULT-STARZYK F. In situ FTIRstudies of propene adsorption over Ag-and Cu-exchanged Y zeolites[J].Microporous and Mesoporous Materials,2012,147(1):10-16.
    [35] GUERREIRO E. D., GORRIZ O. F., RIVAROLA J. B., et al. Characterizationof Cu/SiO2catalysts prepared by ion exchange for methanol dehydrogenation[J].Applied Catalysis A: General,1997,165(1–2):259-271.
    [1] AHMED A. I., EL-HAKAM S. A., SAMRA S. E., et al. Structuralcharacterization of sulfated zirconia and their catalytic activity in dehydrationof ethanol[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2008,317(1–3):62-70.
    [2] BUSTO MARIANA, GRAU JAVIER M., SEPULVEDA JORGE H., et al.Hydrocracking of Long Paraffins over Pt-Pd/WO3-ZrO2in the Presence ofSulfur and Aromatic Impurities[J]. Energy&Fuels,2013,27(11):6962-6972.
    [3] KUBA STEFAN, GATES BRUCE C., GRASSELLI ROBERT K., et al. Anactive and selective alkane isomerization catalyst: iron-and platinum-promotedtungstated zirconia[J]. Chemical Communications,2001(4):321-322.
    [4]孙锦宜.工业催化剂的失活与再生[M].北京:北京工业出版社,2005:223.
    [5] RHODES MICHAEL D., BELL ALEXIS T. The effects of zirconia morphologyon methanol synthesis from CO and over catalysts: Part I. Steady-statestudies[J]. Journal of Catalysis,2005,233(1):198-209.
    [6] AGRELL J., BIRGERSSON H., BOUTONNET M., et al. Production ofhydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2and Al2O3[J].Journal of Catalysis,2003,219(2):389-403.
    [7] ZHU WAN CHUN, WANG LI XIA, LIU SHI YAN, et al. Characterization andcatalytic behavior of silica-supported copper catalysts prepared by impregnationand ion-exchange methods[J]. Reaction Kinetics and Catalysis Letters,2008,93(1):93-99.
    [8] SU WEI GUANG, WANG SHOU GUO, YING PIN LIANG, et al. A molecularinsight into propylene epoxidation on Cu/SiO2catalysts using O2as oxidant[J].Journal of Catalysis,2009,268(1):165-174.
    [9] SI ZHI CHUN, WENG DUAN, WU XIAO DONG, et al. Structure, acidity andactivity of CuOx/WOx-ZrO2catalyst for selective catalytic reduction of NO byNH3[J]. Journal of Catalysis,2010,271(1):43-51.
    [10] GUERRERO SICHEM, GUZM N IGOR, AGUILA GONZALO, et al.Sodium-promoted NO adsorption under lean conditions over Cu/TiO2catalysts[J]. Catalysis Communications,2009,11(1):38-42.
    [11] TURCO MARIA, CAMMARANO CLAUDIA, BAGNASCO GIOVANNI, etal. Oxidative methanol steam reforming on a highly dispersed CuO/CeO2/Al2O3catalyst prepared by a single-step method[J]. Applied Catalysis B:Environmental,2009,91(1-2):101-107.
    [12] WANG LU-CUN, LIU QIAN, CHEN MIAO, et al. Structural Evolution andCatalytic Properties of Nanostructured Cu/ZrO2Catalysts Prepared by OxalateGel-Coprecipitation Technique[J]. The Journal of Physical Chemistry C,2007,111(44):16549-16557.
    [13] JONES SAMUEL D., NEAL LUKE M., EVERETT MICHAEL L., et al.Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3methanol steamreforming catalysts[J]. Applied Surface Science,2010,256(24):7345-7353.
    [14] ZHUANG HUI DONG, BAI SHAO FEN, LIU XIN MEI, et al. Structure andperformance of Cu/ZrO2catalyst For the synthesis of methanol from CO2hydrogenation[J]. Journal of Fuel Chemistry and Technology,2010,38(4):462-467.
    [15] CHARY KOMANDUR V. R., SAGAR GUGGILLA VIDYA, NARESHDHACHAPALLY, et al. Characterization and Reactivity of Copper OxideCatalysts Supported on TiO2-ZrO2[J]. The Journal of Physical Chemistry B,2005,109(19):9437-9444.
    [16] MATTER PAUL H., OZKAN UMIT S. Effect of pretreatment conditions onCu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. Journalof Catalysis,2005,234(2):463-475.
    [17] CHEN XIAO RONG, JU YI HSU, MOU CHUNG YUAN. Direct Synthesis ofMesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity forBiodiesel via Esterification[J]. The Journal of Physical Chemistry C,2007,111(50):18731-18737.
    [18] TURCO MARIA, BAGNASCO GIOVANNI, CAMMARANO CLAUDIA, etal. Cu/ZnO/Al2O3catalysts for oxidative steam reforming of methanol: Therole of Cu and the dispersing oxide matrix[J]. Applied Catalysis B:Environmental,2007,77(1-2):46-57.
    [19] ZHENG HONG YAN, ZHU YU LEI, HUANG LONG, et al. Study onCu–Mn–Si catalysts for synthesis of cyclohexanone and2-methylfuran throughthe coupling process[J]. Catalysis Communications,2008,9(3):342-348.
    [20] CHEN L. F., NORE A L. E., NAVARRETE J., et al. Improvement of surfaceacidity and structural regularity of Zr-modified mesoporous MCM-41[J].Materials Chemistry and Physics,2006,97(2-3):236-242.
    [21] ZHANG YIN QING, WANG SHENG JIE, WANG JUN WEI, et al. Synthesisand characterization of Zr-SBA-15supported tungsten oxide as a newmesoporous solid acid[J]. Solid State Sciences,2009,11(8):1412-1418.
    [22] JIA AI ZHONG, LI JIE, ZHANG YIN QING, et al. Synthesis andcharacterization of nanosized micro-mesoporous Zr–SiO2via Ionic liquidtemplating[J]. Materials Science and Engineering C,2008,28(8):1217-1226.
    [23] SALAS P., WANG J. A., ARMENDARIZ H., et al. Effect of the Si/Zr molarratio on the synthesis of Zr-based mesoporous molecular sieves[J]. MaterialsChemistry and Physics,2009,114(1):139-144.
    [24] S NCHEZ ADRIANA BONILLA, HOMS NARC S, FIERRO J. L. G., et al.New supported Pd catalysts for the direct transformation of ethanol to ethylacetate under medium pressure conditions[J]. Catalysis Today,2005,107-108:431-435.
    [25] CHANG FEG WEN, KUO WEN YAO, LEE KUEN CHAN. Dehydrogenationof ethanol over copper catalysts on rice husk ash prepared by incipient wetnessimpregnation[J]. Applied Catalysis A: General,2003,246(2):253-264.
    [26] TADA MIZUKI, BAL RAJARAM, NAMBA SEITARO, et al.Surfactant-promoted novel synthesis of supported metallic Cu nanoparticlesactive for selective dehydrogenation of methanol[J]. Applied Catalysis A:General,2006,307(1):78-84.
    [27] INUI KANICHIRO, KURABAYASHI TORU, SATO SATOSHI, et al. Effectiveformation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journalof Molecular Catalysis A: Chemical,2004,216(1):147-156.
    [28] WANG LI XIA, ZHU WAN CHUN, ZHENG DA FANG, et al. Directtransformation of ethanol to ethyl acetate on Cu/ZrO2catalyst[J]. ReactionKinetics, Mechanisms and Catalysis,2010,101(2):365-375.
    [29] JADHAV SUMIT V., JINKA KRISHNA MOHAN, BAJAJ HARI C. Synthesisof nopol via Prins condensation of β-pinene and paraformaldehyde catalyzed bysulfated zirconia[J]. Applied Catalysis A: General,2010,390(1–2):158-165.
    [30] ZHAO TIAN-SHENG, TAKEMOTO TOMOKAZU, TSUBAKI NORITATSU.Direct synthesis of propylene and light olefins from dimethyl ether catalyzed bymodified H-ZSM-5[J]. Catalysis Communications,2006,7(9):647-650.
    [31] HE DAIPING, DING YUNJIE, LUO HONGYUAN, et al. Effects of zirconiaphase on the synthesis of higher alcohols over zirconia and modified zirconia[J].Journal of Molecular Catalysis A: Chemical,2004,208(1–2):267-271.
    [32] DJURADO E., BOUVIER P., LUCAZEAU G. Crystallite Size Effect on theTetragonal-Monoclinic Transition of Undoped Nanocrystalline Zirconia Studiedby XRD and Raman Spectrometry[J]. Journal of Solid State Chemistry,2000,149(2):399-407.
    [33] MURCIA-MASCAR S S., NAVARRO R. M., G MEZ-SAINERO L., et al.Oxidative Methanol Reforming Reactions on CuZnAl Catalysts Derived fromHydrotalcite-like Precursors[J]. Journal of Catalysis,2001,198(2):338-347.
    [34] LINDSTR M B., AGRELL J., PETTERSSON L. J. Combined methanolreforming for hydrogen generation over monolithic catalysts[J]. ChemicalEngineering Journal,2003,93(1):91-101.
    [35] TURCO M., BAGNASCO G., COSTANTINO U., et al. Production of hydrogenfrom oxidative steam reforming of methanol: II. Catalytic activity and reactionmechanism on Cu/ZnO/Al2O3hydrotalcite-derived catalysts[J]. Journal ofCatalysis,2004,228(1):56-65.
    [36] TURCO MARIA, BAGNASCO GIOVANNI, CAMMARANO CLAUDIA, etal. Cu/ZnO/Al2O3catalysts for oxidative steam reforming of methanol: The roleof Cu and the dispersing oxide matrix[J]. Applied Catalysis B: Environmental,2007,77(1–2):46-57.
    [37] ESPOSITO SERENA, TURCO MARIA, BAGNASCO GIOVANNI, et al.Highly dispersed sol-gel synthesized Cu–ZrO2materials as catalysts foroxidative steam reforming of methanol[J]. Applied Catalysis A: General,2010,372(1):48-57.
    [38] ESPOSITO SERENA, TURCO MARIA, BAGNASCO GIOVANNI, et al. Newinsight into the preparation of copper/zirconia catalysts by sol-gel method[J].Applied Catalysis A: General,2011,403(1–2):128-135.
    [1] DEGNAN T. F., CHITNIS G. K., SCHIPPER P. H. History of ZSM-5fluidcatalytic cracking additive development at Mobil[J]. Microporous andMesoporous Materials,2000,35–36:245-252.
    [2] ABUL-HAMAYEL M. A., AITANI A. M., SAEED M. R. Enhancement ofPropylene Production in a Downer FCC Operation using a ZSM-5Additive[J].Chemical Engineering&Technology,2005,28(8):923-929.
    [3] FAN YU, XIAO HAN, SHI GANG, et al. Alkylphosphonic acid-and smallamine-templated synthesis of hierarchical silicoaluminophosphate molecularsieves with high isomerization selectivity to di-branched paraffins[J]. Journal ofCatalysis,2012,285(1):251-259.
    [4] EJKA JI, KREJ ANDREA, ILKOV NADě DA, et al. Alkylation anddisproportionation of aromatic hydrocarbons over mesoporous molecularsieves[J]. Microporous and Mesoporous Materials,2001,44–45:499-507.
    [5] JERMY B. RABINDRAN, PANDURANGAN A. Catalytic application ofAl-MCM-41in the esterification of acetic acid with various alcohols[J].Applied Catalysis A: General,2005,288(1–2):25-33.
    [6] CHOUDHARY VASANT R., JANA SUMAN K. Benzylation of benzene bybenzyl chloride over Fe-, Zn-, Ga-and In-modified ZSM-5type zeolitecatalysts[J]. Applied Catalysis A: General,2002,224(1–2):51-62.
    [7] SONG ZHAOXIA, TAKAHASHI ATSUSHI, MIMURA NAOKI, et al.Production of Propylene from Ethanol Over ZSM-5Zeolites[J]. CatalysisLetters,2009,131(3-4):364-369.
    [8] MHAMDI MOURAD, KHADDAR-ZINE SIHEM, GHORBEL ABDELHAMID.Influence of the cobalt salt precursors on the cobalt speciation and catalyticproperties of H-ZSM-5modified with cobalt by solid-state ion exchangereaction[J]. Applied Catalysis A: General,2009,357(1):42-50.
    [9] JIANG GUIYUAN, ZHANG LI, ZHAO ZHEN, et al. Highly effectiveP-modified HZSM-5catalyst for the cracking of C4alkanes to produce lightolefins[J]. Applied Catalysis A: General,2008,340(2):176-182.
    [10] BALKRISHNAN I., RAO B. S., HEGDE S. G., et al. Catalytic activity andselectivity in the conversion of methanol to light olefins[J]. Journal ofMolecular Catalysis,1982,17(2–3):261-270.
    [11] TAO YOUSHENG, KANOH HIROFUMI, KANEKO KATSUMI. ZSM-5Monolith of Uniform Mesoporous Channels[J]. Journal of the AmericanChemical Society,2003,125(20):6044-6045.
    [12] ZHANG DONGSHENG, WANG RIJIE, YANG XIAOXIA. Effect of P Contenton the Catalytic Performance of P-modified HZSM-5Catalysts in Dehydrationof Ethanol to Ethylene[J]. Catalysis Letters,2008,124(3-4):384-391.
    [13] XUE NIANHUA, CHEN XIANGKE, NIE LEI, et al. Understanding theenhancement of catalytic performance for olefin cracking: Hydrothermallystable acids in P/HZSM-5[J]. Journal of Catalysis,2007,248(1):20-28.
    [14] JAUMAIN DENIS, SU BAO-LIAN. Direct catalytic conversion ofchloromethane to higher hydrocarbons over a series of ZSM-5zeolitesexchanged with alkali cations[J]. Journal of Molecular Catalysis A: Chemical,2003,197(1–2):263-273.
    [15] TAO LING, CHEN LANG, YIN SHUANG-FENG, et al. Catalytic conversionof CH3Br to aromatics over PbO-modified HZSM-5[J]. Applied Catalysis A:General,2009,367(1–2):99-107.
    [16] DUMITRIU E., GONGESCU D., HULEA V. Contributiong to the study ofisobutene condensation with formaldehyde catalyzed by zeolites[J]. Studies inSurface Science and Catalysis,1993,78:669-676.
    [17] ZHUANG JIANQIN, MA DING, YANG GANG, et al. Solid-state MAS NMRstudies on the hydrothermal stability of the zeolite catalysts for residual oilselective catalytic cracking[J]. Journal of Catalysis,2004,228(1):234-242.
    [18] KAEDING WARREN W., BUTTER STEPHEN A. Production of chemicalsfrom methanol: I. Low molecular weight olefins[J]. Journal of Catalysis,1980,61(1):155-164.
    [19] TYNJ L PEKKA, PAKKANEN TUULA T., MUSTAM KI SAARA.Modification of ZSM-5Zeolite with Trimethyl Phosphite.2. CatalyticProperties in the Conversion of C1C4Alcohols[J]. The Journal of PhysicalChemistry B,1998,102(27):5280-5286.
    [20]王世珍,黄南贵. ZSM-5沸石氮吸附低压滞后现象的研究[J]. pet roleumprocessing and pet rpchemicals,1999,30(4):50-55.
    [21] JENTYS ANDREAS, RUMPLMAYR GERD, LERCHER JOHANNES A.Hydroxyl groups in phosphorus-modified HZSM-5[J]. Applied Catalysis,1989,53(2–3):299-312.
    [22] BLASCO T., CORMA A., MART NEZ-TRIGUERO J. Hydrothermalstabilization of ZSM-5catalytic-cracking additives by phosphorus addition[J].Journal of Catalysis,2006,237(2):267-277.
    [23] ZHAO GUOLIANG, TENG JIAWEI, XIE ZAIKU, et al. Effect of phosphoruson HZSM-5catalyst for C4-olefin cracking reactions to produce propylene[J].Journal of Catalysis,2007,248(1):29-37.
    [24] SUSHKEVICH V. L., ORDOMSKY V. V., IVANOVA I. I. Synthesis of isoprenefrom formaldehyde and isobutene over phosphate catalysts [J]. AppliedCatalysis A: General,2012,441–442(0):21-29.
    [25] IVANOVA IRINA, SUSHKEVICH VITALY L., KOLYAGIN YURY G., et al.Catalysis by Coke Deposits: Synthesis of Isoprene over Solid Catalysts[J].Angewandte Chemie,2013,125(49):13199-13202.
    [26] ZHAO HOUYIN, CAO YAN, ZHANG KAI, et al. Fast pyrolysis characteristicsof miscanthus over M/ZSM-5(M=La and Ca)[J]. Journal of Thermal Analysisand Calorimetry,2013,113(2):511-517.
    [27] SERRANO D. P., SANZ R., PIZARRO P., et al. Preparation of extrudedcatalysts based on TS-1zeolite for their application in propylene epoxidation[J].Catalysis Today,2009,143(1–2):151-157.
    [28] FEI JINHUA, HOU ZHAOYIN, ZHU BING, et al. Synthesis of dimethyl ether(DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zncatalysts[J]. Applied Catalysis A: General,2006,304:49-54.
    [29] BAO JUN, HE JINGJIANG, ZHANG YI, et al. A Core/Shell Catalyst Producesa Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction[J].Angewandte Chemie,2008,120(2):359-362.
    [30] HAO J. I. N., XIAODONG Y. I., XIAODAN S. U. N., et al. Influence ofH4SiW12O40loading on hydrocracking activity of non-sulfide Ni-H4SiW12O40/SiO2catalysts[J]. Fuel (Guildford),2010,89(8):1953-1960.
    [1] KOZHEVNIKOV IVAN V., HOLMES STEPHEN, SIDDIQUI M. R. H. Cokingand regeneration of H3PW12O40/SiO2catalysts[J]. Applied Catalysis A: General,2001,214(1):47-58.
    [2] LI GUIXIAN, GU YANLONG, DING YONG, et al. Wells-Dawson typemolybdovanadophosphoric heteropolyacids catalyzed Prins cyclization ofalkenes with paraformaldehyde under mild conditions-a facile and efficientmethod to1,3-dioxane derivatives[J]. Journal of Molecular Catalysis A:Chemical,2004,218(2):147-152.
    [3]吴庆银,林桐枫.钨锗酸催化苯乙烯与福尔马林的Prins反应研究[J].沈阳化工,1996(3):2-3.
    [4]吴庆银,华宏伟.杂多酸催化Prins反应研究[J].化学与粘合,1997(2):69-70.
    [5] ZHU WAN CHUN, WANG LI XIA, LIU SHI YAN, et al. Characterization andcatalytic behavior of silica-supported copper catalysts prepared by impregnationand ion-exchange methods[J]. Reaction Kinetics and Catalysis Letters,2008,93(1):93-99.
    [6] FIXMAN ESTHER M., ABELLO M CRISTINA, GORRIZ OSVALDO F., et al.Preparation of Cu/SiO2catalysts with and without tartaric acid as template via asol–gel process: Characterization and evaluation in the methanol partialoxidation[J]. Applied Catalysis A: General,2007,319:111-118.
    [7] ZENG JIE, JIANG SAN PING, LI LIN. High Temperature Proton ExchangeMembranes Based on Various Heteropoly Acids(HPW, HSiW, HPMo or HSiMo)Functionalized Silica Nanocomposites with Tunable Mesoporous Structure andSuperior Proton Conductivity for Fuel Cells[J]. ECS Transactions,2011,41(1):1603-1613.
    [8] ZHANG JIN, KANNO MITSURU, ZHANG JIAO, et al. Preferentialoligomerization of isobutene in a mixture of isobutene and1-butene oversodium-modified12-tungstosilicic acid supported on silica[J]. Journal ofMolecular Catalysis A: Chemical,2010,326(1–2):107-112.
    [9] LIU DAPENG, QUEK XIAN-YANG, HU SHUANGQUAN, et al.Mesostructured TUD-1supported molybdophosphoric acid (HPMo/TUD-1)catalysts for n-heptane hydroisomerization[J]. Catalysis Today,2009,147:S51-S57.
    [10] BELANGER R., MOFFAT J. B. A Comparative Study of the Adsorption andReaction of Nitrogen Oxides on12-Tungstophosphoric,12-Tungstosilicic, and12-Molybdophosphoric Acids[J]. Journal of Catalysis,1995,152(1):179-188.
    [11] JIA AI ZHONG, LI JIE, ZHANG YIN QING, et al. Synthesis andcharacterization of nanosized micro-mesoporous Zr–SiO2via Ionic liquidtemplating[J]. Materials Science and Engineering C,2008,28(8):1217-1226.
    [12] CHEN L. F., NORE A L. E., NAVARRETE J., et al. Improvement of surfaceacidity and structural regularity of Zr-modified mesoporous MCM-41[J].Materials Chemistry and Physics,2006,97(2-3):236-242.
    [13] ZHANG YIN QING, WANG SHENG JIE, WANG JUN WEI, et al. Synthesisand characterization of Zr-SBA-15supported tungsten oxide as a newmesoporous solid acid[J]. Solid State Sciences,2009,11(8):1412-1418.
    [14] YONG TAE K. I. M., KWANG-DEOG JUNG, EUN DUCK PARK. Gas-phaseDehydration of Glycerol over Supported Silicotungstic Acids Catalysts[J].Bulletin of the Korean Chemical Society,2010,31(11):3283-3290.
    [15] BIELA SKI ADAM, LUBANSKA ANNA, POZNICZEK JOANNA, et al. Theformation of MTBE on supported and unsupported H4SiW12O40[J]. AppliedCatalysis A: General,2003,256(1–2):153-171.
    [16]吴越,叶兴凯,杨向光等人.杂多酸的固载化一关于制备负载型酸催化剂的一般原理[J].分子催化,1996,10(4):299-319.
    [17] ATIA HANAN, ARMBRUSTER UDO, MARTIN ANDREAS. Dehydration ofglycerol in gas phase using heteropolyacid catalysts as active compounds[J].Journal of Catalysis,2008,258(1):71-82.
    [18] SU WEI GUANG, WANG SHOU GUO, YING PIN LIANG, et al. A molecularinsight into propylene epoxidation on Cu/SiO2catalysts using O2as oxidant[J].Journal of Catalysis,2009,268(1):165-174.
    [19] MIYAJI ATSUYUKI, ECHIZEN TSUNEO, NAGATA KOHICHI, et al.Selective hydroisomerization of n-pentane to isopentane over highly dispersedPd-H4SiW12O40/SiO2[J]. Journal of Molecular Catalysis A: Chemical,2003,201(1–2):145-153.
    [20] ZHAO LI, ZHAO YUJUN, WANG SHENGPING, et al. Hydrogenation ofDimethyl Oxalate Using Extruded Cu/SiO2Catalysts: Mechanical Strength andCatalytic Performance[J]. Industrial&Engineering Chemistry Research,2012,51(43):13935-13943.
    [21] SUSHKEVICH V. L., ORDOMSKY V. V., IVANOVA I. I. Synthesis of isoprenefrom formaldehyde and isobutene over phosphate catalysts[J]. AppliedCatalysis A: General,2012,441–442:21-29.
    [22] HUTCHINGS GRAHAM J., HUDSON IAN D., BETHELLA DONALD, et al.Novel synthesis of isoprene from3-methylbutan-2-one using phosphatecatalysts[J]. Chem. Commun,1999:1489-1490.
    [23] ZHOU WENHUI, CAO MINHUA, SU SHUANGYUE, et al. Anewly-designed polyoxometalate-based plasmonic visible-light catalyst for thephotodegradation of methyl blue[J]. Journal of Molecular Catalysis A:Chemical,2013,371:70-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700