用户名: 密码: 验证码:
基于多酸阴离子功能化的主客体型催化剂的燃油深度脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油燃烧过程中释放的硫氧化物(SOx)属于危害极大又较难治理的大气污染物之一,可以诱发酸雨、气溶胶等污染的形成,还严重危害人体健康。鉴于燃油含硫的危害,世界各国和地区相继颁布了严格的燃油含硫标准。研究人员将超低硫燃油生产技术作为主要研究方向。氧化脱硫(oxidative desulfuri-zation, ODS)技术,具有反应条件温和、脱硫率高、工艺简单、易操作、设备投资少、运行费用低、低碳节能环保等诸多优点,已经成为超低硫燃油技术开发的一个热点。杂多化合物因具有反应条件温和、高活性、高稳定性、高选择性等优点,作为环境友好型催化剂被广泛应用于氧化脱硫领域研究。文本以杂多酸阴离子为主体、改变客体组成,制备了四类基于杂多酸阴离子催化功能的不同主客体型催化剂(包括:杂多酸铯盐负载型催化剂、杂多酸柱撑类水滑石催化剂、有机-无机型杂多酸类催化剂和氨基改性MCM-41固载杂多酸催化剂),并考察了四类杂多酸型催化剂对模拟油品的催化氧化性能。
     本文合成了杂多酸铯盐负载型催化剂,其既保留了主体杂多酸的催化性能又通过客体材料实现了杂多酸固化,反应结束后催化剂可过滤回收且再生操作简单,且催化氧化脱硫性能良好。本文首先通过共沉淀法合成了三种杂多酸铯盐(Cs2.5H0.5PW12O40、CS2.5H0.5PMo12O40和Cs2.5H1.5SiW12O40),比较了它们对模拟油品氧化脱硫的催化性能(二苯并噻吩DBT溶于正辛烷,制备硫含量500ppmw质量比的模拟油品)。结果发现,Cs2.5H0.5PW12O40的催化性能最佳。以Cs2.5H0.5PW12O40为催化剂,过氧化氢为氧化剂,乙腈为萃取剂,研究了反应温度、催化剂用量、氧化剂用量和催化剂与氧化剂预接触时间等因素的影响,得到了优化的氧化脱硫条件。其次,将Cs2.5H0.5PW12O40分别负载于碳纳米管(CNT)、活性炭(AC)和层析硅胶(SiO2),制备了碳纳米管负载磷钨酸铯盐(CsPW/CNT).活性炭负载磷钨酸铯盐(CsPW/AC)和层析硅胶负载磷钨酸铯盐(CsPW/SiO2),并考察了当负载量相同时三种催化剂催化氧化脱硫的性能。结果表明,CsPW/CNT催化性能最佳。比较了不同负载量的CsPW/CNT的催化活性,结果表明,当负载量为30%(质量比)时CsPW/CNT(记作30%CsPW/CNT)的催化活性最佳。选取30%CsPW/CNT为催化剂,过氧化氢为氧化剂,乙腈为萃取剂,研究了反应温度、催化剂用量、氧化剂用量和催化剂与氧化剂预接触时间等因素的影响,得到了优化的氧化脱硫条件。在最佳实验条件:催化剂用量为正辛烷质量1%,O/S摩尔比20,催化剂与H2O2预接触时间20min,反应温度60℃,正辛烷体积用量60mL,乙腈用量(V乙腈:V油=1),以30%CsPW/CNT为催化剂,考察了对不同噻吩类含硫化物的催化活性。结果表明,由于噻吩类含硫化物本身硫原子电子云密度和空间位阻效应的双重作用,其脱硫难易顺序为:DBT>4,6-二甲基二苯并噻吩(4.6-DMDBT)>苯并噻吩(BT)>噻吩(TH)。通过过滤回收焙烧再生,五次回收利用后的30%CsPW/CNT催化活性略有下降,说明载体本身稳定性较好,该催化剂具有可循环再生实用性。最后,在最佳实验条件下考察了30%CsPW/CNT催化柴油氧化脱硫效果。结果表明,柴油含硫量由507ppmw降至48.1ppmw,硫化物去除率达97.1%,柴油回收率达97.1%。
     本文通过离子交换法,将杂多阴离子插入类水滑石层间,使其与层板间金属离子以化学键形式连接,既保留了主体杂多酸阴离子的催化性能,又保留了客体类水滑石不溶于水不溶于油的特性,反应结束后催化剂沉淀易于回收。研究了采用不同杂多酸阴离子柱撑二元或三元类水滑石材料作催化剂,对模拟油品中DBT氧化脱硫催化活性变化规律的影响。首先,对于主体杂多酸阴离子不同、客体二元(或三元)类水滑石相同的杂多酸柱撑类水滑石,研究发现其催化氧化脱硫活性与插层固载的杂多酸阴离子种类和数量有关,其催化活性递减次序为:磷钼酸系列柱撑类水滑石>磷钨酸系列柱撑类水滑石>硅钨酸系列柱撑类水滑石。其次,对于主体杂多酸阴离子相同、客体二元(或三元)类水滑石不同的杂多酸柱撑类水滑石,其催化氧化脱硫活性和类水滑石中金属离子半径比近似原则有关。当类水滑石中二价、三价金属离子半径比越接近1,其合成类水滑石的层板结构越接近八面体配位的典型结构,越容易向其层间插入阴离子。结果表明,主体杂多酸阴离子相同、客体二元类水滑石不同的杂多酸柱撑类水滑石催化剂活性递减顺序为:NiAl-LDHs系列>MgAl-LDHs系列>Zn-Al-LDHs系列。主体杂多酸阴离子相同、客体三元类水滑石不同的杂多酸柱撑类水滑石催化剂活性递减顺序为:NiMgAl-LDHs系列>NiZnAl-LDHs系列>MgZnAl-LDHs系列。分别利用NiAl-PMo和NiMgAl-PMo为催化剂,过氧化氢为氧化剂,乙腈为萃取剂,研究了催化剂用量、反应温度、氧化剂用量、催化剂与氧化剂预接触时间等因素的影响,得到了优化的脱硫验条件,且NiAl-PMo的催化活性优于NiMgAl-PMo。在最佳实验条件下,噻吩类含硫化合物被氧化难易程度也受其本身硫原子电子云密度和空间位阻效应双重作用影响,其难易顺序为:DBT>4,6-DMDBT>BT>TH。另外,NiAl-PMo在噻吩类含硫化合物的催化氧化中展现了优异的催化活性和重复利用性能,经五次循环使用后,基本没有活性损失。在最佳实验条件:催化剂用量为柴油质量1%,氧化剂用量满足O/S摩尔比15,催化剂与H202预接触时间5min,反应温度60℃,乙腈用量(V乙腈:V柴油=1),以NiAl-PMo为催化剂,对柴油进行了氧化脱硫实验研究。结果表明,柴油中硫含量从492ppmw降至44.3ppmw,脱除率达90.4%,回收率96.8%。
     本文制备了一种反应控制的相转移催化剂,即有机-无机型杂多酸,其在氧化脱硫反应过程中呈现“固-液-固”态变化,且其相态变化受过氧化剂控制,整个氧化脱硫反应体系属于反应控制相转移催化体系。本文合成了四种有机-无机型杂多酸,包括:[π-C5H5NC16H33]3[PW4O16]、[π-C5H5NC16H33]3[PMo4O16]、[π-C5H4NC12H25]3[PW4O16]和[π-C5H5NC12H25]3[PMo4016]。考察了这四种有机-无机型杂多酸在氧化脱硫体系中的催化性能,结果表明,[π-C5H5N16H33]3[PW4O16]催化性能最好。以[π-C5H5NC16H33]3[PW4016]为催化剂,过氧化氢为氧化剂,乙腈为萃取剂,研究了改变催化剂用量、反应温度、氧化剂用量、催化剂与氧化剂预接触时间等实验条件对脱硫效果的影响,确定最佳实验条件。研究发现,在常温常压条件下,有机-无机型杂多酸以固体形式存在,具有亲水亲油性,但不溶于油水两相反应;当催化剂与H202发生接触反应时,生成具有水溶性的过氧酸活性物质,溶于乙腈相中与含硫化合物发生氧化反应;当[π-C5H5NC16H33]3[PW4016]与H2O2发生接触反应时,生成具有水溶性的过氧酸活性物质,同时其分子内有机基团具有亲油性的特性,加速发生氧化反应。反应结束后,因H202消耗殆尽,催化剂失去活性,转化成为在油水两相中均不溶解的有机-无机型杂多酸,从油水两相中分离出来,最终以沉淀的形式析出。整个过程表明催化剂发挥作用时具有均相催化的特征,当反应结束后,催化剂发生相的变化而从反应体系中析出,实现了催化剂的自动分离与简易回收。在最佳实验条件下,[π-C5H5NC16H33]3[PW4O16]经过三次循环使用,对模拟油品中DBT的脱除率可达98%,说明其仍具有较好的催化活性。将其应用于柴油脱硫,在最佳实验条件:催化剂用量为正辛烷质量的1%、反应温度为60℃、氧化剂用量满足氧硫摩尔比10、催化剂与氧化剂预接触时间10min,柴油含硫量由515ppmw降至44.8ppmw,去除率达91.3%,回收率达95.9%。
     本文将氨基作引入基团使杂多酸被锚定于MCM-41分子筛孔道内制备了氨基改性MCM41型杂多酸,其利用MCM-41的多孔结构即保持了杂多酸的催化剂性能又增加了其比表面积,避免了传统负载型MCM41杂多酸催化剂在使用过程中的流失,通过过滤即可实现催化剂回收。首次将EDTA-2Na作为H2O2分解反应抑制剂引入氧化脱硫体系研究,并考察了其加入对DBT脱除效果的影响。将不同杂多酸锚定于氨基改性MCM-41分子筛孔道内部,合成了包括:磷钨酸、磷钼酸、磷钼一钒酸、磷钼二钒酸、磷钼三钒酸分别固载于氨基改性MCM-41分子筛(分别记作:MCM41-NH-PW、MCM41-NH-PMo、MCM41-NH-V1、MCM41-NH-V2和MCM41-NH-V3)。 FT-IR谱图、SEM和XRD分析结果表明,合成的氨基改性MCM-41型杂多酸保持了Keggin型结构,且具有MCM-41分子筛的介孔结构特征。考察了上述五种催化剂的氧化脱硫性能,结果表明MCM41-NH-PW催化活性最大。以MCM41-NH-PW为催化剂,研究了催化剂用量、反应温度、氧化剂用量、催化剂与氧化剂预接触时间等对模拟油品氧化脱硫的影响,并确定最佳反应条件。由于硫原子电子云密度和空间位阻的双重作用,MCM41-NH-PW对不同含硫化合物氧化脱硫催化活性递减次序为:DBT》4,6-DMDBT>BT>TH。在最优实验条件:催化剂用量为柴油质量1%;O/S摩尔比15;催化剂与H202预接触时间10min;反应温度60℃;乙腈用量(V乙腈:V油=1),以MCM41-NH-PW为催化剂,H202为氧化剂,乙腈为萃取剂,考察了EDTA-2Na的加入对模拟油品中DBT脱除效果的影响。结果表明,当10mL浓度0.02mol/L的EDTA-2Na加入上述反应体系,反应180min后,DBT脱除率明显提高,由96.8%增至100%。主要原因是:由于EDTA-2Na与溶液中痕量金属离子结合形成稳定的环状金属螯合物,可以有效抑制痕量金属离子对过氧化氢的催化分解作用,从而提高过氧化氢利用率。利用回收的MCM41-NH-PW为催化剂,第1、2次重复利用实验中DBT脱除率明显下降,之后的重复利用实验中,DBT脱除率下降不明显。这主要是由于在催化剂制备过程中,有少量磷钨酸吸附在MCM-41表面。当MCM41-NH-PW重复使用时,这部分磷钨酸逐渐从MCM-41表面脱落,致使单位质量MCM41-NH-PW所含磷钨酸阴离子比例降低,最终影响催化效果。在最佳实验条件:催化剂用量为柴油质量比1%,0/S摩尔比15,催化剂与H202预接触时间5min,反应温度60℃,乙腈用量(V乙腈:V柴油=1),抑制剂EDTA-2Na(浓度0.02mol/L)10mL,以MCM41-NH-PW为催化剂,考察了其催化柴油氧化脱硫效果。柴油含硫量由496ppmw降至49.2ppmw,硫化物去除率达90.1%,柴油回收率达96.2%。
     文中通过研究DBT氧化反应动力学,确定对于不同杂多酸阴离子功能化主客体型催化剂,DBT的表观反应级数均为一级,DBT的表观活化能在45.2-49.4kJ/mol之间。通过红外谱图发现杂多酸阴离子首先被H202氧化成过氧杂多酸阴离子,通过过氧杂多酸阴离子使硫化物中硫原子被氧化,硫化物被氧化活性大小受硫原子电子云密度和硫原子附近空间位阻效应双重影响。研究还发现,DBT砜是DBT的唯一氧化产物,且全部留存于乙腈相中,实现了氧化脱除油品中含硫化合物的目的。
A great deal of sulfur oxide has been emitted from fuel oil combustion, and has been found to contribute to acid rain and aerosol, even to endanger people's health. Due to the danger of sulfur compounds in fuel oil, the limitation of S content in fuel oil becomes more critical in the world. The aim of researchers is to find out the production technology of ultra-low sulfur fuel oil. Oxidative desulfurization (ODS) is considered to be one of the most promising desulfurization methods for its mild reaction condition, high efficiency, simple technology, low cost, low carbon and environment-friendly. Heteropoly compounds have the advantage of mild reaction conditions, high catalysis, high stability and high selectivity. Heteropoly compounds, as a new environment-friendly catalyst for ODS, have attracted the attention of worldwide researchers during the past years.
     In this paper, four heteropoly compounds with the heteropolyacid anion as subject and the change of object were prepared as catalyst, including supported for heteropolyacid cesium, heteropolyacids pillared hydrotalcite like compounds, organic-inorganic heteropolyacids, and immobilization of heteropolyacids on amino group functionalized MCM-41moleculars sieves. And we studied the catalysis of four catalysts in the ODS process.
     Supported for heteropolyacids cesium was synthesized, which keeps the catalytic performance by the subject of heteropolyacid and was achieved fixation by the object. The catalyst can be recovered by filtration after reaction. The operation of catalyst regeneration is simple. And it shows excellent catalytic performance on ODS. Three heteropolyacids cesium were prepared by coprecipitation, including CS2.5H0.5PW12O40, Cs2.5H0.5PMo12O40and Cs2.5H1.5SiW12O40. Compared the catalysis of them on ODS in simulated fuel oil, Cs2.5H0.5PW12O40showed the best catalytic performance. The catalysis of Cs2.5H0.5PW12O40in an ODS process was studied with H2O2as oxidant and acetonitrile as extractant. The main factors affecting the desulfurization process were investigated, including temperature, the amount of catalyst and oxidizing agent, and the pre-reaction time, obtaining finally the optimum experimental conditions. Then, Cs2.5H0.5PW12O40was supported to CNT, AC and silica column respectively to prepared CsPW/CNT, CsPW/AC and CsPW/SiO2.Compared the catalysis of them on ODS in simulated fuel oil by the same loading level. Experiment results show the catalysis of CsPW/CNT is the best. Compared the different loading level of CsPW/CNT, it shows the catalysis of30%loading level of CsPW/CNT is the best. With30%CsPW/CNT as catalyst, H2O2as oxidant and acetonitrile as extractant, the main factors affecting the desulfurization process were investigated, including temperature, the amount of catalyst and oxidizing agent, and the pre-reaction time, obtaining finally the optimum experimental conditions. Under the optimal conditions(catalyst dosage,1%the mass of normal octane; O/S molar ratio,20; pre-reaction time,20min; temperature,60℃; acetonitrile dosage,100%the volume of normal octane), compared the desulfurization efficiency of different sulfur compounds with the catalyst of30%CsPW/CNT on the same S-content simulated fuel oil. It shows that the oxidation reactivity of different sulfur compounds was in the order of DBT>4.6-DMDBT> BT> TH. The result shows the electron density of sulfur compounds on the sulfur atoms and the space steric hindrance were two important factors in the ODS. By filtration, recycling and roasting regeneration, the catalysis of the fifth recycling30%CsPW/CNT was down slightly. It shows the supporter was high stability. And the catalyst can be reused. Under the optimal conditions, the desulfurization efficiency of diesel was investigated. It shows that S-content in diesel decreased from507ppmw to48.1ppmw, the desulfurization efficiency90.5%and the recovery rate97.1%.
     Heteropolyacids pillared hydrotalcite like compounds were prepared by ion exchange. Heteropolyacid anions insert hydrotalcite like compounds, the chemical attachment between the heteropolyacid anions and the interlaminar metal ions, which keeps the catalytic performance by the subject of heteropolyacid and achieves the characteristic of insoluble in water or fuel oil the object of hydrotalcite like compounds oxidative desulfurization. The catalyst can be recovered by filtration after reaction. The catalysis in an ODS process of DBT in simulated fuel oil was studied, which were prepared by the different heteropolyacids anion pillared bimetal (or trimetal) hydrotalcite like compounds. At first, when the catalyst were prepared by the different subject of heteropolyacids anion and the same object of bimetal (or trimetal) hydrotalcite like compounds, the catalytic activity of them was related to the kind and amount of heteropolyacids. Their catalytic activity decreased according to the order: phosphomolybdic acid pillared hydrotalcite like compounds> phosphotungstic acid pillared hydrotalcite like compounds> silicotungstic acid pillared hydrotalcite like compounds. Secondly, when the catalyst were prepared by the same subject of heteropolyacids anion and the different object of bimetal (or trimetal) hydrotalcite like compounds, the catalytic activity of them was related to the ionic radius comparison similar principles. When the rate of divalent metal ionic radius and trivalent metal ionic radius is near one in hydrotalcite like compounds, its layer board structure is close to the typical structure of octahedral coordination. It shows that when the same subject of heteropolyacids anion and the different object of bimetal hydrotalcite like compounds in the catalysts, their catalytic activity decreased according to the order: NiAl hydrotalcite like compounds> MgAl hydrotalcite like compounds> ZnAl hydrotalcite like compounds. When the same subject of heteropolyacids anion and the different object of trimetal hydrotalcite like compounds in the catalysts, their catalytic activity decreased according to the order:NiMgAl hydrotalcite like compounds> NiMgAl hydrotalcite like compounds> MgZnAl hydrotalcite like compounds. With NiAl-PMo or NiMgAl-PMo as catalyst, H2O2as oxidant and acetonitrile as extractant, the main factors affecting the desulfurization process were investigated, including temperature, the amount of catalyst and oxidizing agent, and the pre-reaction time, obtaining finally the optimum experimental conditions. And the catalysis activity of NiAl-PMo is better than NiMgAL-PMo. Under the optimum experimental conditions, we compared the desulfurization efficiency of different sulfur compounds with the catalyst of NiAl-PMo on the same S-content simulated fuel oil. It shows that the oxidation reactivity of different sulfur compounds was in the order of DBT> 4.6-DMDBT> BT> TH. The result shows the electron density of sulfur compounds on the sulfur atoms and the space steric hindrance were two important factors in the ODS. The catalysis of the fifth recycling NiAl-PMo was never down. It exhibits excellent catalyzed active properties and utilization. Under the optimal conditions(catalyst dosage,1%the mass of normal octane; O/S molar ratio,15; pre-reaction time,5min; temperature,60℃; acetonitrile dosage,100%the volume of diesel), we investigated the desulfurization efficiency of diesel. It shows that S-content in diesel was decreased from492ppmw to44.3ppmw, the desulfurization efficiency90.4%and the recovery rate96.8%.
     In this paper, organic-inorganic heteropolyacids were prepared, including [π-C5H5NC16H33]3[PW4O16],[π-C5H5NC16H33]3[PMO4O16],[π-C5H5NC12H25]3[PW4O16] and [π-C5H5NC12H25]3[PMo4O16].During the reaction process, the phase state of catalyst changed in "solid-liquid-solid". The results show that organic-inorganic heteropolyacids are phase transfer catalyst and oxidative desulfurization system belongs to the phase transfer catalysis system controlled by reaction. The efficiency of oxidative desulfurization was investigated on the four kinds of catalysts under same conditions using the simulated oil prepared by dissolving organo-sulfur in normal octane. The results show that the catalytic activity of [π-C5H5NC16H33]3[PW4O16] is the best. With [π-C5H5NC16H33]3[PW4O16]as catalyst, H2O2as oxidant and acetonitrile as extractant, the main factors affecting the desulfurization process were investigated, including temperature, the amount of catalyst and oxidizing agent, and the pre-reaction time, obtaining finally the optimum experimental conditions. It shows that the phase state of organic-inorganic heteropolyacids is solid under normal pressure and temperature and it is insoluble in water or oil. When it reacted with H2O2, the production of peroxide heteropolyacid is soluble in acetonitrile and it react with sulfur compounds. When [π-C5HsNC16H33]3[PW4O16] reacted with H2O2, the organic part of the production of peroxide heteropolyacid is lipophilicity, which can promoted the oxidative reaction. The catalyst [π-C5H5NC16H33]3[PW4O16] can be reclaimed by auto precipitation due to the exhausting of H2O2.It shows that the catalyst has the characteristics of homogeneous catalysis, the phase state of which changes in the precipitation from the reaction system after the reaction. It realized the automatic separation and recycling of the catalyst. On the similar conditions, the catalyst of the3th recovered [π-C5H5N C16H33]3[PW4O16], the DBT conversion was nearly98%after120min, which was quite close to the result of fresh catalyst. The catalytic activity of the recycled [π-C5H5NC16H33]3[PW4O16] is almost the same as the fresh. We investigated the desulfurization efficiency of diesel with [π-C5H5NC16H33]3[PW4O16] as catalyst. It shows that S-content in diesel was decreased from515ppmw to44.8ppmw, the desulfurization efficiency91.3%and the recovery rate96.2%.
     The heteropolyacids have been immobilized on the inner surface of amino group functionalized MCM-41moleculars sieves. A new kind of catalyst were prepared, which keeps the catalytic performance mesoporous and avoids the loss of heteropolyacids in the traditional MCM-41supported heteropolyacids. And it can be recycled by filtration. EDTA-2Na was involved in the ODS as H2O2decomposition reaction inhibitors for the first time. The catalysts were prepared on the different heteropolyacids immobilization on amino group functionalized MCM-41moleculars sieves, including MCM41-NH-PW, MCM41-NH-PMo, MCM41-NH-V1, MCM41-NH-V2and MCM41-NH-V3. The five catalysts were synthesized and characterized by FT-IR, X-ray diffraction and SEM. The results show that they have the Keggin-type heteropolyacids and the structure of mesoporous. Compared with the above catalysts, the desulfurization efficiency of DBT in simulated fuel oil was investigated.It showed that the catalysis activity of MCM41-NH-PW was the best. With MCM41-NH-PW as catalyst, H2O2as oxidant and acetonitrile as extractant, the main factors affecting the desulfurization process were investigated, including temperature, the amount of catalyst and oxidizing agent, and the pre-reaction time, obtaining finally the optimum experimental conditions (catalyst dosage,1%the mass of normal octane; O/S molar ratio,15; pre-reaction time,5min; temperature,60℃; acetonitrile dosage,100%the volume of normal octane).It shows that the oxidation reactivity of different sulfur compounds was in the order of DBT>4.6-DMDBT> BT> TH. The result shows the electron density of sulfur compounds on the sulfur atoms and the space steric hindrance were two important factors in the ODS. Under the optimum experimental conditions, we studied the desulfurization efficiency of DBT in simulated fuel oil with EDTA-2Na as inhibitors. It showed that when10mL of EDTA-2Na were added to the reaction system, the desulfurization efficiency was obviously increased from96.8%to100%after180min. EDTA-2Na and trace metal ions can react to product the stable circular metal chelate. So there were no metal ions to catalyze the decomposition of hydrogen peroxide. The main reason is the production of the stable circular metal chelate. On the similar conditions, the catalyst of the1st and2nd recovered MCM41-NH-PW, the DBT conversion was obviously decreased. The catalyst of3rd and more time recovered MCM41-NH-PW, the DBT conversion was unchanged. When the MCM41-NH-PW was reused, the phosphotungstic acid was shedding, which were adsorbed on the surface of the catalyst, and the percent of unit mass heteropolyacids anion were reduced. Under the optimum experiment conditions and EDTA-2Na as inhibitors, we investigated the desulfurization efficiency of diesel with MCM41-NH-PW as catalyst. It shows that S-content in diesel decreased from496ppmw to49.2ppmw, the desulfurization efficiency90.1%and the recovery rate96.2%.
     Kinetics of the process catalyzed by four kinds of heteropolyacid compounds were studied, from which the reaction order were found to be1to DBT and the activation energy of reaction was found to be from45.2to49.4kJ/mol. It was found that heteropolyacids anion were be oxidized by H2O2, and the production of them were peracetic heteropolyacids anion by FTIR. Then, the peracetic heteropolyacids oxidized the sulfur atom in the sulfur compounds. And the oxidation of sulfur atoms were determined by the electron density of sulfur compounds on the sulfur atoms and the space steric hindrance. It was found that the DBT sulfone was only production on ODS and it was soluble in acetonitrile to achieve desulfurization.
引文
[1]Donoqhue A.M., Thomas M. Point source sulphur dioxide peaks and hospital presentations for Astham [J]. Occupational and Environmental Medicine.1999, 56:232-236.
    [2]Speizer F.E., Frank N.P. A comparison of changes in pulmonary flow resistance in healthy volunteers acutely exposed to SO2 by mouth and by nose [J]. British Journal of Industrial Medicine,1996,23:75-79.
    [3]Wilson G.B., Bell J.N.B. Studies on the tolerance to SO2 of grass populations in polluted areas. Ⅲ. investigations on the rate of development of tolerance [J]. New Phytologist,1985,100:63-77.
    [4]Wilson G.B., Bell J.N.B. Studies on the Tolerance to Sulphur Dioxide of Grass Populations in Polluted Areas. VI. The Genetic Nature of Tolerance in Lolium perenne L. [J]. New Phytologist,1999,116:313-317.
    [5]Sydbom A., Blomberg A., Parnia S., et al. Health effects of diesel exhaust emissions [J]. European Respiratory Journal,2001,17(4):733-46.
    [6]Antony S., Abdulazeem M., Mohan S.R. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production [J]. Catalyst Today, 2010,153:1-68.
    [7]Demonstration of advanced emission control technologies enabling diesel-powered heavy-duty engines to achieve low emission levels, Final Report 1999, Manufacturers of Emission Controls Association, Washington, DC 20036.
    [8]刘影,徐忠贤.汽油脱硫意义及脱硫技术浅述[J].石油商技,2002,20(5):22-24.
    [9]于善青,朱玉霞.催化裂化汽油中含硫化合物的分析[J].石油化工,2005,34:853-857.
    [10]吴华东,樊慧丽,赵震等.汽油和柴油中含硫化合物加氢脱硫反应机理研究进展[J].工业催化,2011,19(1):1-6.
    [11]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-82.
    [12]赖先熔,江涛,贾艳秋等.电位滴定法分析催化裂化汽油中类型硫含量[J].石化技术与应用,2010,28(6):524-526.
    [13]王少军,凌凤香,吴洪新等.FCC柴油中硫、氮化合物的类型及分布[J].石油与天然气化工,2010,39(3):258-261.
    [14]Song C., Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B:Environmental, 2003,41:207-238.
    [15]Hua R, Li Y, Liu W, et al. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector [J]. Chromatographic Science Series,2003,1019: 101-109.
    [16]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalyst Today,2003,86:211-263.
    [17]程型国.燃料油中含硫化合物的形态及分布研究[J].润滑油与燃料,2007,17(4):24-31.
    [18]Andari M., Abuseedo F., Stanislaus A., et al. Kinetics of individual sulfur compounds in deep desulfurization of Kuwait diesel oil [J]. Fuel,1996, 75:1664-1670.
    [19]Knudsen K.G., Cooper B.H., Topsoe H. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General,1999,189:205-215.
    [20]Landau M.V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catalyst Today,1997,36:393-429.
    [21]Amorelli A., Amos Y.D., Halsing C.P., et al. Characterization of sulfur compounds in middle distillates and deeply hydrotreated products [J]. Hydrocarbon Processing,1992(70):93-101.
    [22]Kabe T., Tajima H. Deep desulfurization of methyl-substituted benzothiophenes and dibenzothiophenes in light gas oil [J]. Journal of Japan Petroleum Institute, 1992,36:467-471.
    [23]Quimby B.D., Giarrocco V., McCleary K.A. Fast analysis of oxygen and sulfur compounds in gasoline by GC-AED [J]. Journal of High Resolution Chromatography,2005,15:705-709.
    [24]Garcia C.L., Becchi M., Grenier-Loustalot M.F., et al. Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS [J]. Analytical Chemistry,2002,74:3849-3857.
    [25]Adam F., Bertoncini F., Brodusch N., et al. New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography [J]. Journal of Chromatographic A,2007, 1148:55-64.
    [26]Qabazard H., Abu-Seedo F., Stanislaus A., et al. Comparison between the performance of conventional and high-metal Co-Mo and Ni-Mo catalysts in deep desulfurization of Kuwait atmospheric gas oil [J]. Fuel Science & Technology International,1995,13:1135-1151.
    [27]Al-Barood A., Stanislaus A. Ultra-deep desulfurization of coker and straightrun gas oils:effect of lowering feedstock 95% boiling point [J]. Fuel Processing Technology,2007,88:309-315.
    [28]Choi K.H., Sano Y., Korai Y., et al. An approach to the deep hydro-desulfurization of light cycle oil [J]. Applied Catalysis B:Environmental,2004, 53:275-283.
    [29]Kaufmann T.G., Kaldor A., Stuntz G.F., et al. Catalysis science and technology for cleaner transportation fuels [J]. Catalysis Today,2000,62:77-90.
    [30]Fuel Regulations[EB/OL]. http://www.dieselnet.com/standards/fuels.html, 2012.03.12.
    [31]Vona C. MiddleEast fuel quality-overview:Presented to UNEP Jordan National post lead workshop[R]. Amman, Jordan:International Fuel Quality Center,2008.
    [32]Fuel Regulations Argentina:Diesel Fuel, http://www.dieselnet.com/standards/ar/ fuel.php
    [33]Tailieur R.G., Ravigli J., Quenza S., et al. Catalyst for ultra-low sulfur and aromatic diesel [J]. Applied Catalysis A:General,2005,282:227-235.
    [34]朱全力,赵旭涛,赵振兴等.加氢脱硫催化剂与反应机理的研究进展[J].分子催化,2006,20(4):372-383.
    [35]吴华东,樊慧丽,赵震等.汽油和柴油中含硫化合物加氢脱硫反应机理研究进展[J].工业催化,2011,19(1):1-6.
    [36]Perot G. Hydrotreating catalysts containing zeolites and related materials-mechanistic aspects related to deep desulfurization [J]. Catalysis Today,2003,86: 111-128.
    [37]Wang H., Prins R. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfide MO/γ-Al2O3 [J]. Journal of Catalysis, 2008,258(1):153-164.
    [38]Ho T.C. Deep HDS of diesel fuel:chemistry [J]. Catalysis Today,2004,98: 3-18.
    [39]Schulz H., Bohringer W., Waller P., et al. Gas oil deep hydrodesulfurization: refractory compounds and retarded kinetics [J]. Catalysis Today,1999,49:87-97.
    [40]Houalla M., Broderick D.H., Spare A.V., et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfide Co-Mo3/γ-Al2O3 [J]. Journal of Catalysis,1980,61:523-527.
    [41]Nag N.K., Sapre A.V., Broderick D.H., et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfide Co-Mo3/γ-Al2O3:the relative reactivities [J]. Journal of Catalysis,1979,57:509-512.
    [42]Knudsen K.G., Cooper B.H., Topsoe H. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General,1999,189:205-215.
    [43]Landau, M. V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catalysis Today,1997,36:393-429.
    [44]Ma X.L., Sakanishi K., Mochida I. Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil [J]. Industrial and Engineering Chemistry Research,1996,35:2487-2494.
    [45]Willam R.M., Geroge A. Rossetti J., et al. Tetrahydrothiophene desulfurization on Co-Mo/γ-Al2O3:a temporal analysis of products (TAP) investigation [J]. Journal of Catalysis,1991,127:190-200.
    [46]Ramirez J., Macias G., Cedeno L., et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts:analysis of past and new evidences [J]. Catalysis Today,2004,98:19-30.
    [47]Perla C., Jorge R. Spectroscopic study of the electronic interactions in Ru/TiO2 HDS catalyst [J]. Journal of Catalysis,2009,268:39-48.
    [48]Guoran L., Wei L., Minghui Z., et al. Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticlescombined with Al2O3 [J]. Applied Catalysis A:General,2004,273:233-238.
    [49]Kunming D., Xiaoming M., Hongbin Z., et al. Nove MWCNT-support for Co-Mo sulfide catalyst in HDS of thiophene and HDN of pyrrole [J]. Journal of Natural Gas Chemistry,2006,15:28-37.
    [50]Daniela G., Ludek L., Zdenek V., et al. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading:Effect of MoO3 dispersion on rate spreading [J]. Catalysis Communications,2006, 7:276-280.
    [51]Mochida I., Choi K. An overview of Hydrodesulfurization and Hydrodenitrogentation [J]. Journal of Japan Petroleum Institute,2004,47: 145-163.
    [52]Ninh T.K.T., Massin L., Laurenti D., et al. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts [J]. Applied Catalysis B:Environment,2012,111-112:133-140.
    [53]Patrick D.C., Jean-Marie M., Claude P., et al. Deep HDS on doped molybdenum carbides:from probe molecules to real feedstocks[J]. Catalysis Today,2005, 107-108:520-530.
    [54]董昆明,林国栋,张鸿斌.碳纳米管负载Mo-Co-S基HDS/HDN催化剂的制备及其表征研究[J].厦门大学学报(自然科学版),2006,45(1):63-68.
    [55]任靖,王安杰,李翔等.MCM-41-HY复合分子筛的合成及其在深度加氢脱硫中的应用[J].高等学校化学学报,2006,27:2353-2356.
    [56]Osbaldiston R.J.C., Markel E.J. Thiophene desulfurization by Co/carbon catalysts synthesized by reaction of Co(CsHs)2 and carbon support[J]. Journal of Molecular Catalysis,1994,91:91-106.
    [57]曲本连,柴永明,相春娥等.磷化镍和磷化钼催化剂的原位XRD研究[J].石油学报(石油加工),2009,25(4):496-562.
    [58]靳广洲,朱建华,俱虎良等.碳化钼催化剂的制备及噻吩加氢脱硫性能[J].化工学报,2006,57:799-804.
    [59]赵业军,肖安陆,胡典明等.深度加氢脱硫催化剂的研究进展[J].安徽化工,2007,33(6):14-17.
    [60]Infantes-Molina A., Cecilia J.A., Pawelec B., et al. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions[J]. Applied Catalysis A:General,2010,390:253-263.
    [61]Kim H.Y., Kim T.S., Kim B.H. Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by desulfuribrio desulfuricans M6[J]. Biotechnology Letters,1990,10:761-764.
    [62]Kodama K., Nakatani S.,Umehara K., et al. Microbial conversion of petro-sulfur compounds.3. Isolation and identification of products from dibenzothiophene[J]. Agricultural and Biological Chemistry,1970,34(9):1320-1324.
    [63]Kodama K., Umehara K., Shimizu K., et al. Identification bacterial growth on substituted thiophenes of microbial products from dibenzothiophenes and its proposed oxidation pathway[J]. Agricultural and Biological Chemistry,1973, 37(1):45-50.
    [64]McFarland B.L., Boron D.J., Deever W., et al. Biocatalytic sulfur removed from fuels:applicability for producing low sulfur gasoline[J]. Critical Reviews in Microbiology,1998,24:99-147.
    [65]Olson E.S., Stanley D.C., Gallagher J.R. Characterization of intermediates desulfurization of dibenzothiophene[J]. Energy Fuel,1993,7:159-164.
    [66]Gallagher,J.R., Olson, E.S., Stanley, D.C. Microbial desulfurization of dibenzothiophene:a sulfur specific pathway [J]. FEMS Microbiology Letters, 1993,107:31-36
    [67]赵腾飞.柴油生物脱硫技术进展[J].中外能源,2007,12(3):72-77.
    [68]陈晗.模拟柴油生物脱硫机理及动力学研究[D].杭州:浙江大学,2010.
    [69]Takashi O., Yoshimitsu H., Yoshikazu L. Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1[J]. FEMS Microbiology Letters,1994,118:341-344.
    [70]Yan H., Kishimoto M., Omasa T., et al. Increase in desulfurization activity of Rhodococcus erythripolis KA2-5-1 using ethanol feeding[J]. Journal of Bioscience and Bioengineering,2000,89(4):361-366.
    [71]Yan H., Sun X., Xu Q., et al. Effect of nicotinamide and riboflavin on the Biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03[J]. Journal of Environmental Sciences,2008,20(5):613-618.
    [72]Carolina H.O., Almudena A., Victoria E.S. Felix Garcia-Ochoa Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization:influence of media composition [J]. Enzyme and Microbial Technology,2005,37(2):157-166.
    [73]Oda S., Ohta H. Biodesulfurization of dibenzothiophene with rhodococcus erythropolis ATCC53968 and its mutant in an interface bioreactor [J]. Journal of Bioscience and Bioengineer,1994,5:474-477.
    [74]章燕豪.吸附作用[M].上海:科学技术文献出版社,1989.
    [75]张自杰.排水工程[M].北京:中国建筑工业出版社,2000.
    [76]Bakr A,, Salem S.H, Naphtha desulfurization by adsorption[J].Industrial and Engineering Chemistry Research,1994,33(2):336-340.
    [77]罗国华,徐新,佟泽民等.沸石分子筛选择吸附焦化苯中的噻吩[J].燃料化学学报,1999,27(5):476-480.
    [78]Bakr A., Salem S.H., Hamid H.S. Removal of sulfur compounds from naphtha solutions using solid adsorbents[J]. Chemical Engineering & Technology,1997, 29(5):342-347.
    [79]Kim J.H., Ma X., Zhou A., et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism[J]. Catalysis Today,2006,111:74-93.
    [80]叶敬东,张传学,张清健等.脱除硫醇和硫醚的活性炭精脱硫剂及制备.CN1324686A.2001.
    [81]Seredych M., Rawlins J., Bandosz T.J. Investigation of the thermal regeneration efficiency of activated carbons used in the desulfurization of model diesel fuel[J]. Industrial and Engineering Chemistry Research,2011,50:14097-14104.
    [82]Salem A.S.H., Hamid H.S. Removal of sulfur compounds from naphtha solutions using solid adsorbents [J]. Chemical Engineering & Technology,1997, 20(5):342-347.
    [83]Jiang M., Ng F.T.T. Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry[J]. Catalyst Today,2006,116: 530-536.
    [84]Chica A., Strohmaier K., Iglesia E. Adsorption, desorption, and conversion of thiophene on H-ZSM5[J]. Langmuir,2004,20(25):10982-10991.
    [85]Yang R.T., Hernandez-Maldonado A.J., Yang F.H. Desulfurization of Transportation Fuels with zeolites under ambient conditions [J]. Science,2003, 301:79-81.
    [86]Gao X., Mao H., Lu M., et al. Facile synthesis route to NiO-SiO2 intercalated clay with ordered porous structure:intragallery interfacially controlled functionalization using nickel-ammonia complex for deep desulfurization[J]. Microporous and Mesoporous Materials,2012,148:25-33.
    [87]Jeevanandam P., Klabunde K.J., Tetzler S.H. Adsorption of hydrocarbon using metal impregnated nanocrystalline aluminum oxide [J]. Microporous and Mesoporous Materials,2005,79:101-110.
    [88]王延飞,王晓兰,程键等.有机粘土吸附精制催化裂化柴油[J].石油炼制与 化工,2004,35(12):53-56.
    [89]崔榕,刘晓勤,单佳慧.Ce-MCM-41分子筛吸附剂的制备及其在模拟其油脱硫中的性能[J].天然气化工,2008,33(2):11-16.
    [90]Liu B., Xu D., Wu Z. Prearation of a Cu-MCM-41 adsorbent and its desulfurization performance for diesel fuel [J]. Chinese Journal of Catalysis, 2006,27(5):372-374.
    [91]Yang R.T., Hemandez-Maldonado, Yang F.H. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science,2003,301:79-81.
    [92]Yang R.T., Takahashi A., Yang F.H. New sorbents for desulfurization of liquid fuels by Π-complexation [J].Industrial and Engineering Chemistry Research, 2001,40:6236-6239.
    [93]Beatriz C., Michael J.W., Evgeny N.V. Molecular in printing for the selective adsorption of organosulphur compounds present in fuels [J]. Analytica Chinica Acta,2001,435:83-90.
    [94]Pawelec B., Navarro R.M., Campos-Martin J.M., Towards near zero-sulfur liquid fuels:a perspective review [J]. Catalysis Science &Technology,2011,1:23-42.
    [95]Bosmann A., Datsevich L., Jess A., Deep desulfurization of diesel fuel by extraction with ionic liquids [J].Chemistry Communication,2001, (23):2496-2495.
    [96]Nie T., Ana F.M.C., Isable B., et al. Evaluation of the impact of phosphate salts on the formation of ionic-liquid-based aqueous biphasic systems [J]. The Journal of Chemical Thermodynamics,2012,54:398-405.
    [97]冯婕,李春喜,孟洪等.磷酸酯类离子液体在燃油深度脱硫中的应用[J].石油化工,2006,35(3):272-276.
    [98]王建龙,赵地顺,周二鹏等.吡啶类离子液体在汽油萃取脱硫中应用研究[J].燃料化学学报,2007,35(6):293-296.
    [99]刘冉,赵地顺,王建龙等.硫酸酯类离子液体对FCC汽油萃取脱硫性能的研究[J].石油与天然气化工,2007,36(5):377-381.
    [100]Peter K, Vollhardt C, Schore N.E. Organic Chemistry [M], the 3td ed.New York: W H Freeman and Company,1999:1124-1128.
    [101]Pardhan V.R., Burnett P.A., Huff George A Sulfur removal process [P]. US 6599417,2003.
    [102]罗国华,徐新,佟泽民等.分子筛催化噻吩类硫化物与烯烃烷基化脱硫研究.化学反应工程与工艺,2005,21(4):132-137.
    [103]刘植昌,胡建茹,高金森.离子液体用于催化裂化汽油烷基化脱硫的实验研究.石油炼制与化工,2006,37(1):22-26.
    [104]Liu Y., Yang B., Yi C. Kinetics Study of 3-Methylthiophene Alkylation with Isobutylene Catalyzed by NKC-9 Ion Exchange Resin[J]. Industrial and Engineering Chemistry Research,2001,50:9609-9616.
    [105]唐晓东,崔盈贤,丁志鹏等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):15-19.
    [106]Zhou X.R., Li J., Wang X.N., et al. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine [J]. Fuel processing Technology,2009,90(2):317-323.
    [107]Zhao D.S., Tang L.F., Sun Z.M. Study on photosensitized oxidative desulfurization of thiophene by riboflavin [J]. Journal of Fuel Chemistry and Technology,2008,36(2):161-164.
    [108]张娟,赵地顺,王春芳.在改性HZSM-5和氧气气氛下氧化二苯并噻吩.化学工程[J],2008,36(5):36-39.
    [109]宋华,白冰,宋华林等.Ag/γ-Al2O3催化剂催化氧化深度脱硫及反应动力学模型探索[J].石油炼制与化工,2012,43(8):33-37.
    [110]税蕾蕾,唐晓东,刘亮等.柴油空气催化氧化脱硫的探索研究[J].工业催化,2003,11(9):1-4.
    [111]宋鹏俊,闫锋,张影等.催化裂化柴油空气氧化脱硫工艺研究[J].精细石油化工,2009,26(6):57-60.
    [112]Guo W., Wang C.Y., Lin P., et al. Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system [J]. Applied Energy,2011,88(1): 175-179.
    [113]杨金荣,侯影飞,孔瑛等.柴油臭氧氧化脱硫研究[J].石油大学学报(自然科学版),2002,26(4):84-89.
    [114]Wang B., Zhu J.P., Ma H.Z. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure [J]. Journal of Hazardous Materials,2009,164(1):256-261.
    [115]Chica A., Corma A., Domine M.E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactior [J]. Journal of Catalysis,2006, 242(2):299-308.
    [116]程时富,安莹,司晓娟等.Ti-MWW分子筛催化叔丁基过氧化氢氧化脱硫.燃料化学学报[J].2011,39(10):771-775.
    [117]Zannikos F.E., StournasS.Desulfurization of petroleum fractions of oxidation and solvent extraction[J]. Fuel processing Technology,1995,42(1):35-45.
    [118]Asghar M.D., Mohammad A.S., Mohammad A.N.,Oxidative desulfurization of non-hydrotreated kerosene using hydrogen peroxide and acetic acid[J]. Chinese Journal of Chemical Engineering,2009,17(5):869-974.
    [119]Zhu W.S., Wu P.W., Yang L., et al. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuel[J]. Chemical Engineering Journal,2013,229:250-256.
    [120]Otsuki S., Nonaka T., Takashima N. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy & Fuels,2000, 14(6):1232-1239.
    [121]张玲,李萍,张起凯等.微波作用下柴油脱硫新方法的研究[J].化工科技,2007,15(1):13-16.
    [122]Chen L., Guo S., Zhao D.Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve[J]. Chinnes Journalof Chemical Engineering, 2007,15(4):520-523.
    [123]伊万·科热夫尼科夫(作者),唐培堃(译者),李祥高(译者),王世荣(译者).精细化学品的催化合成:杂多酸化合物及其催化[M],北京:化学工业出版社,2005,11.
    [124]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil [J]. Energy &Fuel,2001,15(6):1535-1536.
    [125]Yazu K, Furuya T, Miki K. Tungstophosphoric acid-catalyzed oxidative desulfurization of light oil with hydrogen peroxide in a light oil/acetic acid biphasic system [J]. Chemistry Letters,2003,32(10):920-921.
    [126]Yazu K, Furuya T, Miki K. Immobilized tungstophosphoric acid-catalyzed oxidative desulfurization of diesel oil with hydrogen peroxide [J]. Journal of Japan Petroleum Institute,2003,46(6):379-382.
    [127]Yazu K, Sato S, Sugimoto Y, et al. Tungstophosphoric acid-catalyzed oxidative desulfurization of naphtha with hydrogen peroxide in naphtha/acetic acid biphasic system [J]. Journal of Japan Petroleum Institute,2007,50(6):329-334.
    [128]刘鹏飞,吕宏缨,齐世学.以硅钨杂多酸盐为催化剂对模拟柴油氧化脱硫的研究[J].烟台大学学报,2013,26(4):101-105.
    [129]Trakampruk W., Rujiraw orawut K. Oxidative desulfurization of Gas oil by polyoxometalates catalysts [J]. Fuel Processing Technoloyg,2009,90:411-414.
    [130]Zhang J., Wang A.J., Li X., et al. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40/SiO2[J]. Journal of Catalysis,2011,279(2): 269-275.
    [131]王恩波,胡长文,许林.杂多酸化学导论[M],北京:化学工业出版社,1998,4.
    [132]钱铭熙.催化剂中的新秀—杂多酸[J].现代化工,1985(4):52-57.
    [133]胡长文,高丽娟,王恩波等.钨系Keggin结构杂多酸的酸强度及催化反应特性[J].东北师大学报自然科学版,1995,2:62-70
    [134]丁元生,罗志臣,周端文Keggin型配合物[(CH2)5NH2]3PMo12O40催化剂催化氧化反应研究[J].化学世界,2010,(1):26-29.
    [135]庄志军,丁元生.Keggin型配合物[(CH2)5NH2]5BW12O40的合成及其催化氧化合成苯甲酸的研究[J].弹性体,2012,22(6):28-31.
    [136]沈怡,李坤兰.P-Mo-V杂多酸的合成及其在环己烷催化氧化中的应用[J].大连轻工业学院学报,2004,23(4):242-245.
    [137]Nakato T., Toyoshi Y., Kimura M., et al.Unique catalysis of an acidic salt of heteropolyacid, Cs2.5H0.5PW12O40, consisting of microcrystal lites[J].Catalysis Today,1999,52(1):23-28.
    [138]Mutsuko K., Teruyuki N., Toshio O. Water-tolerant solid acid catalysis of Cs2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water[J]. Applied Catalysis A:General,1997,165:227-240.
    [139]Okuhara T., Nishimura T., Misono M. Microporous heteropoly compound as a shape selective catalyst:Cs2.2H0.8PW12O40 [J]. Chemistry Letters,1995, (2):155-156.
    [140]Okuhara T., Mizuno N., Misono M. Catalysis by heteropoly compounds recent developments [J]. Applied Catalysis A:General,2001,222 (1-2):63-77.
    [141]Burrington J. D., Johnson J. R., Pudelski J. K. Cationic Polymerization Using Heteropoly acid Salt Catalysts [J]. Topics in Catalysis,2003,23(1-4):175-181.
    [142]施介华,胡玉华,李祥等.硅胶负载磷钨酸铯盐(CS2.5H0.5PW12O40)催化合成2-乙酰噻吩的研究[J].高等化学工程学报,2008,22(1):128-133.
    [143]杜泽学,何奕工,闵恩泽.CsxH3-xPW12O40的孔结构[J].催化学报,1998,19(6):594-597.
    [144]杨晓勇,袁兴东,亓玉台等.介孔分子筛CsxH3-xPW12O40-SBA-15催化合成丙烯酸正丁酯[J].工业催化,2004,12(10):26-29.
    [145]李秀凯,雷宇,赵静等.结构原子组成对Keggin型杂多酸铯盐上丙烷选择氧化性能的影响[J].高等学校化学学报,2005,26(9):1716-1721.
    [146]Essayem N., Tong Y.Y., Jobic H., et al. Characterization of protonic sites in H3PW1204o and Cs1.gH1.1PW12O40:a solid-state 1H,2H,31P MAS-NMR and inelastic neutron scattering study on samples prepared under standard reaction conditions [J]. Applied Catalysis A:General,2000,194-195:109-122.
    [147]Gao R., Chen H., Le Y., et al. Highly active and selective Cs2.5H0.5PW12O40/ SBA-15 composite material in the oxidation of cyclopentane-l,2-diol to glutaric acid by aqueous H2O2 [J]. Applied Catalysis A:General,2009,352:61-65.
    [148]Saemin C., Yong W., Zimin N., et al. Cs-substituted tungstophosphoric acid salt supported on smesoporous silica [J]. Catalysis Today,2000,55,117-124.
    [149]Tatematsu S., Hibi T, Okuhara T. Preparation process and catalytic activity of CsxH0.5PW12O4o [J]. Chemistry Letters,1984,13(6):865-868.
    [150]Yang W., Billy J., Ben Taarit Y., et al. H3PW12O40 supported on Cs modified mesoporous silica:catalytic activity in n-butane isomerization and in situ FTIR study comparison with Microporous CsxH3-xPW12O40 [J].Catalysis Today,2002, 73:153-165.
    [151]Xue M.L., Wei C., Yang L., et al. Effects of support pore size on new Cs2.5H0.5PW12O40/SiO2 catalysts for the ring-opening polymerization of tetrahydrofuran [J]. Chinese Chemical Letters,2009,20:344-347.
    [152]Salles L., Aubry C., Thouvenot R.,et al. Cs2.5H0.5PW12O40/SiO2 as catalysts for deep desulfurization of diesel [J]. European Journal of Inorganic Chemistry, 1994,33:871-878.
    [153]Te M., Faribridge C., Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems [J]. Applied Catalysis A, 2001,219:267-280
    [154]蒋慧灵,傅智敏,刘颖杰,刘宏,过氧化氢热爆炸危险性研究.火灾科学与消防工程国际学术会议论文集,2003:292-296.
    [155]周广栋,郭晓红,刘延,程铁欣,毕颖丽,甄开吉.正己醇氧化生成正己醛磷钨杂多酸催化剂的过氧化氢分解活性[J].分子催化.2001,15(4):267-268.
    [156]马惠敏,韩富荣,胥勃等.十二钼磷酸(盐)在H202分解反应中的催化作用[J].应用化学,1986,3(1):36-40.
    [157]段雪,张法智.无机超分子材料的插层组装化学[M].北京:化学出版社,2009,9.
    [158]单秋杰.过氧杂多阴离子型层柱化合物的合成、表征及催化活性[J].分子科学学报.2008,24(3):210-215.
    [159]倪哲明,俞卫华,王力耕等.新型杂多酸阴离子层柱材料的合成、表征及性能的研究[J].浙江大学学报(理学版),2003,30(3):299-302.
    [160]Hu C.W., He Q.L., Zhang Y.H., et al. Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW11 and ZnAl-SiW11Z [J]. Catalysis Today,1996,30:141-146.
    [161]张波,郑遗凡,卢晗锋等.Mg/Zn/Al类水滑石的热性质和水化性能研究[J].浙江工业大学学报.2006,34(1):37-42.
    [162]Das J., Das D., Parida K.M. Preparation and characterization of Mg-Al hydrotalcite-like compounds containing cerium [J]. Journal of Colloid and Interface Science,2006,301:569-574.
    [163]Cesar A. S. B., Patricia M. D., Ana M. C. F., Vera R.L. C. Mg-Al hydrotalcite-like compounds containing iron-phthalocyanine complex:effect of aluminum substitution on the complex adsorption features and catalytic activity [J]. Applied Clay Science,2005,28:147-158.
    [164]王军涛,徐芳,邓念山等.钴铝和锌铝水滑石的合成[J].合成化学,2007,15(5):585-587.
    [165]谢鲜梅,刘洁翔,安霞等.NiMgA三元类水滑石的制备研究[J].燃料化学学报,2003,31(6):621-623.
    [166]农兰平,甘琳琳,黄艳仙等.含铜三元类水滑石的合成及其催化苯甲醛H202氧化的应用研究.化学与生物工程,2006,23(9):18-20.
    [167]杨一青,刘从华,张莉等.水滑石及类水滑石材料的合成及催化应用新进展 [J].炼油与化工,2008,19(1):9-11.
    [168]刘洁翔,谢鲜梅.NiZnA-1 HTLcs类水滑石化合物的制备和表征[J].燃料化学学报,2001,29:69-72.
    [169]刘炳华,朱海燕,张惠良等.以水滑石及类水滑石为前体制备的Ni、Mg、Al混合氧化物的合成和表征[J].无机化学学报,2005,21(6):852-858.
    [170]毕博.新型杂多酸类水滑石插层材料的制备和吸附、光催化性能研究[D].长春:东北师范大学,2012.
    [171]郭军,矫庆泽,沈剑平等.杂多阴离子柱撑水滑石的合成、热稳定性、酸碱性研究[J].化学学报,1996,54:357-362.
    [172]徐征,贺鹤鸣,蒋大振等.杂多酸柱水滑石的合成及其上烯烃烷基化反应[J].物理化学学报,1994,10(1):6-8.
    [173]颜学敏.杂多酸/介孔氧化硅纳米复合材料的制备、改性及其催化氧化脱硫性能[D].武汉:武汉理工大学,2007.
    [174]Xi Z., Zhou N., Sun Y., et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science,2001,292:1139-1141.
    [175]Zhang Y., Lu H., Wang L., et al. The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion[J]. Journal of Molecular Catalysis A:Chemical,2012,332:59-64.
    [176]周美娟,魏长平,毕颖丽等.磷钨杂多化合物催化H2O2氧化十八醇制十八酸[J].催化学报,1999,20(4):437-441.
    [177]Beck J.S., Vartuli J.C. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society,1992, 114(27):10834-10843.
    [178]肖兵,张毅,任涛等.Fe-MCM-41分子筛的合成及应用—催化氧化环己烷制环己酮[J].辽宁石油化工大学学报,2006,26(1):1-4.
    [179]魏庆玲,申东明,谭涓等.Ti-MCM-41分子筛的合成、表征及其催化作用[J].石油化工,2006,35(8):725-729.
    [180]郭建维,李龙焕,刘卅.介孔分子筛Al-MCM-41的合成与催化异构化性能[J].光谱学与光谱分析,2007,27(7):1368-1371.
    [181]Kozhevnikov I.V., Sinnema A., Van B.H. Proton sites in Keggin heteropoly acids from 17O NMR [J]. Chemistry Letters,1995,34:213-221.
    [182]Verhoef M. J., Kooyman P. J., Peters J. A., et al. A study on the stability of MCM-41-supported heteropoly acids under liquid-and gas-phase esterification conditions [J]. Microporous and Mesoporous Material,1999,27:365-371.
    [183]毕颖丽,阚秋斌,杜秉忱等.MCM-41负载型过氧磷钨杂多酸季胺盐催化剂的制备和结构性能的考察[J].燃料化学学报,2001,29(8):46-48.
    [184]张进,唐英,罗茵等.钼钒磷杂多酸的合成及催化性能研究[J].无机化学学报,2004,20(8):935-940.
    [185]Aliakbar T., Mansour A., Ali N., et al. Immobiliztion of Keggin and preyssler tungsten heteropolyacids on various functionalized silica [J]. Journal of Colloid and Interface Science,2006,303:32-38.
    [186]Trakarnpruk W., Rujiraworawut K.Oxidative desulfurization of gas oil by polyoxometalates catalysts [J]. Fuel Processing Technology,2009,90:411-414.
    [187]Lee J.K., Melsheimer J., Berndt S., et al. Transient responses of the local electronic and geometric structures of vanado-molybdo-hoshate catalysts H3+nPVnMo12-nO40 in selective oxidation [J]. Applied Catalysis A:General,2001, 214:125-148.
    [188]Bassam E. A., Abdel M.E., Mohammed F. H3+nPVnMo12-nO40 catalyzed selective oxidation of benzonins to benzils or aldehydes and eters by dioxygen [J]. J of Molecular Catalysis A:Chemical,2001,165:283-290.
    [189]曲淑华,吴越,王恩波等.2:18磷钼杂多酸(盐)在H2O2分解反应中的催化作用[J].应用化学,1998,5(3):48-53.
    [190]周勇,余丽琼,鲍正荣.对H202催化分解的催化剂的研究[J].中小学实验与装备.2005,15(2):29-30.
    [191]姜成春,庞素艳,江进等.Fe(Ⅲ)催化过氧化氢分解影响因素分析[J].环境科学学报,2007,27(7):1197-1202.
    [192]金碧凤,王世铭,王琼生等.负载型高分子金属配合物的制备及其催化H202分解性能研究[J].福建师范大学学报(自然科学版),2008,24(2):57-62.
    [193]邵晓梅,陈玲,刘德启等.室温Fenton反应过程H202有效利用率的影响因素研究[J].环境科学与管理,2009,34(3):51-55.
    [194]凌昊,沈本贤,高玉延等.提高H202/甲酸体系选择性氧化抽提脱硫效率的研究[J].华东理工大学学报,2003,29(4):351-354.
    [195]张曾,黄干强.螯合剂在H202漂白及废水处理中的变化与影响[J].中国造纸,2001,4:48-51.
    [196]戎关铺.关于金属—EDTA络合物的条件稳定常数[J].冶金分析,1990,10(3):59-61.
    [197]沈勇,毕红梅,高金玲等.金属—EDTA络合物萃取体系的研究[J].内蒙古科技与经济.2007,133(2):73-74.
    [198]孙渝,乐英红,李惠云等.MCM-41负载钨磷杂多酸催化剂的性能研究[J].化学学报,1999,57:746-753.
    [199]Zhu Z.R., Yang W.M. Preparation, characterization and shape-selective catalysis of supported heteropolyacid salts K2.5H0.5PW12O40, (NH4)2.4H0.5PW12O40, and Ce0.83H0.5PW12O40 on MCM-41 mesoporous silica [J]. Journal of Physical Chemistry,2009,113:170025-17031.
    [200]Popa A., Sasca V., Halasz J.Catalytic properties of molecular sieves MCM41 type doped with heteropolyacids for ethanol oxidation [J]. Applied Surface Scienc,2008,255:1830-1835.
    [201]Fa-tang L., Cheng-guang K., Zhi-min S., et al. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid [J]. Journal of Hazardous Materials,2012,205-206:164-170.
    [202]Ming Z., Wenshuai Z., Suhang X., et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids [J]. Chemical Engineering Journal,2013,220:328-336.
    [203]Wenshuai Z., Wangli H., Huaming L., et al. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels [J]. Fuel Processing Technology, 2011,92:1842-1848.
    [204]Jean-Marie B., Maxence V., Laurent S., et al. From polyoxometalates to polyoxoperoxometalates an back again; potential applications. Journal of Molecular Catalysis A:Chemical,2006,250:177-189.
    [205]Yanyong L., Kazuhisa M., Toshiaki H., et al. Syntheses of peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. Journal of Catalysis,2007,248: 277-287.
    [206]Luis C, Jorge F., Navarro A., et al. Oxidative desulfurization of synthetic diesel using supported catalysts Part Ⅱ. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catalysis Today,2006,116:562-568.
    [207]Luis C., Hilda G., Adriana F., et al. Oxidative desulfurization of synthetic diesel using supported catalysts Part Ⅲ. Support effect on vanadium-based catalysts. Catalysis Today,2008,133-135:244-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700