用户名: 密码: 验证码:
栉孔扇贝(Chlamys farreri)酚氧化酶的分离纯化及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前期研究发现,细菌多糖刺激和病毒感染均可导致栉孔扇贝(Chlamysfarreri)血细胞中酚氧化酶活力急剧升高,表明酚氧化酶是栉孔扇贝免疫应答系统中最为敏感高效的因子之一(Xing et al.,2008;Lin et al.,2011)。本论文从栉孔扇贝血细胞中分离纯化出酚氧化酶,分析了该酶的生化及酶学特性;研究了酚氧化酶体外氧化产物的抗菌活性;分析比较了栉孔扇贝酚氧化酶与海湾扇贝(Argopecten irradians)、菲律宾蛤仔(Ruditapes philippinarum)、皱纹盘鲍(Haliotis discus hannai)、毛蚶(Scapharca subcrenata)酚氧化酶在生化及酶学特性上的差异,为栉孔扇贝酚氧化酶免疫机制的研究积累了数据。
     (1)栉孔扇贝酚氧化酶的分离纯化及生化和酶学特性研究。采用线性连续梯度非变性电泳(native-PAGE)结合凝胶过滤层析的方法从栉孔扇贝血细胞中分离纯化出酚氧化酶,研究了该酶的底物特异性、动力学参数以及温度、pH、二价金属离子和抑制剂对酶活的影响。结果显示:提纯的酚氧化酶在native-PAGE中分子量为576kDa,SDS-PAGE中分子量为53kDa,表明该酶是由一种亚基组成的寡聚体;酚氧化酶对L-DOPA、邻苯二酚、多巴胺和对苯二酚的米氏常数Km分别为0.61mmol/L、0.20mmol/L、0.88mmol/L和0.83mmol/L,表明该酶是一种漆酶型的酚氧化酶,其对邻苯二酚的亲和力最高,对多巴胺的亲和力最低,对L-DOPA的亲和力高于对苯二酚;酚氧化酶在30℃和pH8.0时具有最高酶活力;酚氧化酶活力受到Ca2+和Mg2+的强烈激活,但受到Fe2+的显著抑制;酚氧化酶活力不受硫代尿素和叠氮钠的影响,但受到抗坏血酸、亚硫酸钠、柠檬酸、半胱氨酸、二乙基二硫代氨基甲酸钠(DETC)、乙二胺四乙酸二钠(EDTA)的强烈抑制,表明该酶是一种含铜的金属酶。
     (2)栉孔扇贝酚氧化酶体外氧化产物的抗菌活性研究。通过观察和测定提纯的栉孔扇贝酚氧化酶与底物处理后的细菌生长情况,研究了栉孔扇贝酚氧化酶体外氧化产物对溶藻胶弧菌Vibrio alginolyticus、副溶血弧菌Vibrioparahaemolyticus、杀鲑气单胞菌Aeromonas salmonicida、爱德华氏菌Edwardsiellatarda、停乳链球菌Streptococcus dysgadysgalactiae、海豚链球菌Streptococcus iniae和溶壁微球菌Micrococcus lysodeikticus的抗菌活性。细菌生长曲线测定结果显示:酚氧化酶自身不能抑制细菌生长,酚氧化酶与L-DOPA或多巴胺的混合物可抑制细菌生长,表明是酚氧化酶的氧化产物而不是酚氧化酶具有抗菌活性;使用L-DOPA作底物时,酚氧化酶氧化产物仅对杀鲑气单胞菌显示出明显的抑制作用,而使用多巴胺作为底物时,酚氧化酶氧化产物对革兰氏阴性的溶藻胶弧菌、副溶血弧菌和杀鲑气单胞菌均表现出强烈的抑制作用,表明以多巴胺为底物获得的酚氧化酶氧化产物比以L-DOPA为底物获得的氧化产物具有更强的细胞毒性;酚氧化酶的体外氧化产物对革兰氏阳性的停乳链球菌、海豚链球菌和溶壁微球菌无抑制作用,表明与链球菌和微球菌相比,栉孔扇贝酚氧化酶氧化产物对弧菌和气单胞菌细胞成分的毒性作用更大;酚氧化酶氧化产物对同为革兰氏阴性的爱德华氏菌无抑制作用,分析原因可能是爱德华氏菌分泌的胞外产物中含有一些具有抗氧化活力的多糖,这些多糖抑制了酚氧化酶的氧化反应。显微镜检测结果显示:经过与栉孔扇贝酚氧化酶和多巴胺的共孵育后,溶藻胶弧菌、副溶血弧菌和杀鲑气单胞菌的菌体透明度降低,多数菌体丧失了运动能力,细菌聚集成团,被黑色素所覆盖。
     (3)栉孔扇贝酚氧化酶与海湾扇贝、菲律宾蛤仔、皱纹盘鲍、毛蚶酚氧化酶的生化及酶学特性比较研究。采用线性连续梯度非变性电泳结合邻苯二酚发色方法从海湾扇贝、菲律宾蛤仔、皱纹盘鲍、毛蚶的血细胞中分离出酚氧化酶,分析比较了栉孔扇贝酚氧化酶与海湾扇贝、菲律宾蛤仔、皱纹盘鲍、毛蚶酚氧化酶在底物特异性、动力学参数以及金属离子和抑制剂对酶活的影响上的差异。结果显示:在检测到的酚氧化酶种类上,栉孔扇贝与海湾扇贝、菲律宾蛤仔、皱纹盘鲍相同,在血细胞中仅检测到一种酚氧化酶,而从毛蚶的血细胞中则检测出4种酚氧化酶;在分子量上,栉孔扇贝酚氧化酶(576kDa)与海湾扇贝(555kDa)和菲律宾蛤仔(563kDa)中的酚氧化酶较为接近,而与皱纹盘鲍(228kDa)和毛蚶(391kDa、206kDa、174kDa、未知分子量,分别命名为S391PO、S206PO、S174PO和SuPO)中的酚氧化酶差异较大;在底物特异性上,栉孔扇贝酚氧化酶与海湾扇贝、菲律宾蛤仔、皱纹盘鲍和毛蚶中的酚氧化酶相似,均可以氧化邻二酚类底物和对二酚类底物,为漆酶型的酚氧化酶;在动力学参数上,栉孔扇贝酚氧化酶对邻苯二酚、L-DOPA、对苯二酚、多巴胺4种底物的Km值与海湾扇贝酚氧化酶比较接近,表明这两种酶在催化能力上相近;在二价金属离子对酶活的影响上,栉孔扇贝与其他4种贝类的酚氧化酶的活力均对二价金属离子极为敏感,都受到Fe2+的显著抑制,但Ca2+和Mg2+都介导的酚氧化酶活力增强现象只在栉孔扇贝和海湾扇贝中存在,综合比较得出,栉孔扇贝酚氧化酶的二价金属离子影响结果与海湾扇贝酚氧化酶较为接近,表明这两种酚氧化酶在蛋白结构上可能具有很高的相似性;在抑制剂对酶活的影响上,栉孔扇贝酚氧化酶与海湾扇贝、菲律宾蛤仔、皱纹盘鲍和毛蚶中的酚氧化酶都受到EDTA和DETC的强烈抑制,均为含铜的金属酶,但栉孔扇贝酚氧化酶与海湾扇贝酚氧化酶以及毛蚶中的S206PO和SuPO较为相似,其活力均不受硫代尿素和叠氮钠的影响。
Previous studies showed that in the scallop Chlamys farreri, bacterialpolysaccharides challenge or viral infection caused a rapid and dramatic increase ofphenoloxidase (PO) activity in hemocytes, indicating that PO is one of the mostsensitive and effective factors in the immune responses of C. farreri (Xing et al.,2008;Lin et al.,2011). In this dissertation, PO of the scallop C. farreri was purified fromhemocytes and characterized biochemically and enzymatically, then the antibacterialactivity of C. farreri PO reaction products generated in vitro was characterized, finally,the difference among C. farreri PO and POs from Argopecten irradians, Ruditapesphilippinarum, Haliotis discus hannai and Scapharca subcrenata on biochemical andenzymatic characteristics were analyzed.
     (I) Phenoloxidase in the scallop C. farreri: purification, biochemical andenzymatic characterization. PO of the scallop C. farreri was purified fromhemocytes using linear-gradient native PAGE combined with gel permeation columnchromatography, and characterized based on substrate specificity, kinetic parameters,and the effects of temperature, pH, divalent metal ions, and inhibitors on enzymaticactivity. The results show that purified PO had a molecular mass of576kDa in nativePAGE and53kDa in SDS-PAGE, suggesting that C. farreri PO is an aggregatecomposed of one subunit. The analysis of the kinetics indicated that the Kmvalues ofPO for L-DOPA, catechol, dopamine and hydroquinone were0.61mmol/L,0.20mmol/L,0.88mmol/L and0.83mmol/L, respectively, which suggests that C. farreriPO was a laccase-type phenoloxidase, showing the highest affinity for catechol, thelowest affinity for dopamine, and a higher affity for L-DOPA than hydroquinone. ThePO had optimal activities at30oC and a pH of8.0, and its activity was greatlyenhanced by Ca2+and Mg2+, and inhibited by Fe2+. In addition, the PO activity wasinhibited by sodium sulfite, ascorbic acid, sodium diethyldithiocarbamate (DETC),cysteine, citric acid, and ethylenediamine tetraacetic acid disodium (EDTA), which suggests that C. farreri PO was a copper-containing metalloenzyme.
     (II) Antibacterial activity of C. farreri PO reaction products generated in vitro.Antibacterial activity of C. farreri PO reaction products against Vibrio alginolyticus, V.parahaemolyticus, Aeromonas salmonicida, Edwardsiella tarda, Streptococcusdysgadysgalactiae, Streptococcus iniae and Micrococcus lysodeikticus wascharacterized by observation and determination of bacterial growth after treatingbacteria with purified PO and substrates. The results show that the mixture of PO andsubstrates inhibited bacterial growth, while PO solely had no effect on bacterialgrowth, illustrating that it is PO reaction products not PO have the antibacterialactivity. L-DOPA-derived compounds only showed inhibition in A. salmonicida,while dopamine-derived compounds showed strong inhibitions in the Gram-negativeV. alginolyticus, V. parahaemolyticus and A. salmonicida, indicating thatdopamine-derived compounds are more cytotoxic than L-DOPA-derived compounds.No significant inhibition was found in Gram-positive S. dysgadysgalactiae, S. iniaeand M. lysodeikticus, suggesting that PO reaction compounds are more harmful to thecell components of Vibrio and Aeromonas than those of Streptococcus andMicrococcus. Besides, PO reaction products showed no inhibition in E. tarda, whichwas also Gram-negative, suggesting that the extracellular polysaccharides with strongantioxidant activities, produced by Edwardsiella, might inhibit the PO reaction.Microscopic observation showed that after incubation with PO and dopamine, V.alginolyticus, V. parahaemolyticus and A. salmonicida lacked transparency andmobility, and often appeared as aggregates covered with black pigments.
     (III) Comparison of C. farreri PO and POs from A. irradians, R. philippinarum,H. discus hannai and S. subcrenata based on biochemical and enzymaticcharacteristics. POs of A. irradians, R. philippinarum, H. discus hannai and S.subcrenata were isolated from hemocytes using linear-gradient native-PAGEcombined with catechol staining, then C. farreri PO was compared and analyzed withthe isolated POs based on substrate specificity, kinetic parameters and the effects ofdivalent metal ions and inhibitors on enzymatic activity. The results of isolation showthat C. farreri was similar to A. irradians, R. philippinarum and H. discus hannai, in which only one PO was detected in hemocytes, and different from S. subcrenata, inwhich four POs were detected. In terms of molecular mass in native-PAGE, C. farreriPO (576kDa) was similar to POs in A.irradians (555kDa) and R. philippinarum(563kDa), and differed greatly from POs in H. discus hannai (228kDa) and S.subcrenata (391,206,174kDa and an unknown one, which were named as S391PO,S206PO, S174PO and SuPO respectively). As far as substrate specificity is concerned,C. farreri PO was similar to POs from A. irradians, R. philippinarum, H. discushannai and S. subcrenata, which could oxidize o-diphenols and p-dipehnols, werelaccase-type phenoloxidase. Kinetic analysis indicated that the Kmvalues of C. farreriPO for L-DOPA, catechol, dopamine and hydroquinone were more similar to that of A.irradians PO, suggesting that the catalytic capability is parallel between the two POs.Metal ions test showed that C. farreri PO and POs from A. irradians, R.philippinarum, H. discus hannai and S. subcrenata were all sensitive to divalent metalions, and all inhibited by Fe2+, both Ca2+-and Mg2+-mediated enhancement of POactivity were only found in C. farreri and A. irradians, and in general the results ofmetal ions test in C. farreri PO are very similar to that in A. irradians PO, whichsuggests that there might be very high similarity on protein structure between the twoPOs. Besides, the strong inhibition of EDTA and DETC indicating that C. farreri POand POs from A. irradians, R. philippinarum, H. discus hannai and S. subcrenatawere all copper-containing metalloenzyme, however, C. farreri PO was more similarto A. irradians PO, S206PO and SuPO, which were not inhibited by thiourea andsodium azide.
引文
[1] Xing J, Lin TT, Zhan WB. Variations of enzyme activities in the haemocytes of scallopChlamys farreri after infection with the acute virus necrobiotic virus (AVNV). Fish ShellfishImmunol,2008,25:847-852.
    [2] Lin TT, Xing J, Jiang JW, et al. β-glucan-stimulated activation of six enzymes in thehaemocytes of the scallop Chlamys farreri at different water temperatures. Aquaculture,2011,315:213-221.
    [3]李国荣,张士催,李红岩,等.酚氧化酶研究概况.海洋科学,2003,27(4):4-8.
    [4] Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrateimmunity. Curr Opin Immunol,1998,10:23-28.
    [5] Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrateimmunity. Trends Immunol,2008,29(6):263-271.
    [6] Jiravanichpaisal P, Lee BL, S derh ll K. Cell-mediated immunity in arthropods:Hemotopoiesis, coagulation, melanization and opsonization. Immunobiol,2006,211:213-236.
    [7] Cicero R, Sciuto S, Chillemi R, et al. Melanosynthesis in the Kupffer cells of amphibia. CompBiochem Physiol A,1982,73:477-479.
    [8] Saul SJ, Bin L, Sugumaran M. The majority of prophenoloxidase in the hemolymph of ispresent in the plasma and not in the hemocytes. Dev Comp Immunol,1987,11:479–485.
    [9] Parrinello N, Arizza V, Chinnici C, et al. Phenoloxidases in ascidian hemocytes:characterization of the pro-phenoloxidase activating system. Comp Biochem Physiol B,2003,135:583-591.
    [10]孟凡伦,张玉臻,孔健,等.甲壳动物中的酚氧化酶原激活系统研究评价.海洋与湖沼,1999,30(1):110-115.
    [11] Waite JH. The phylogeny and chemical diversity of quinoned-tanned glues and varnishes.Comp Biochem Physiol B,1995,156:491-496.
    [12] Frizzo A, Guidolin L, Ballarin L, et al. Purification and partial characterisation ofphenoloxidase from the colonialascidian Botryllus schlosseri. Mar Biol,1999,135:483-488.
    [13] Nappi AJ, Seymour J. Hemolymph phenoloxidases in Drosophila melanogaster, Locustamigratoria and Austropotamobius pallipes. Biochem Biophys Res Commun,1991,180:748-754.
    [14] Hernandez-Lopez J, Gollas-Galvan T, Vargas-Albores F. Activation of prophenoloxidasesystem of the brown shrimp (Penaeus californiensis Holmes). Comp Biochem Physiol C,1996,113:61-66.
    [15] Fisher CW, Brady UE. Activation, properties and collection of haemolymph phenoloxidase ofthe american cockroach, Periplaneta americana. Comp Biochem Physiol C,1983,75:111-114.
    [16] Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules foundin horseshoe crab hemolymph: their structures and functions. J Biochem,1998,123(1):1-15.
    [17] Johansson MW. Cell adhesion molecules in invertebrate immunity. Dev Comp Immunol,1999,23:303-315.
    [18] Marmaras VJ, Bournazos SN, Katsoris PG, et al. Defense mechanism in insects: certainintegumental proteins and tyrosinase are responsible for non-seIf recognition andimmobilization of Escherichia coli in the cuticle of developing Ceratitis copiatta. Arch lnsectBiochem Physiol, l993,23:169-180.
    [19] Masaaki A, Paul TB. Role of the integument in insect defense: Pro-phenol oxidase cascade inthe cuticular matrix. Proc Natl Acad Sci,1995,92:10698-10702.
    [20] Werner T, Liu G, Kang D, et al. A family of peptidoglycan recognition proteins in the fruit flyDrosophila melanogaster. Proc Nati Acad Sci,2000,97:13772-13777.
    [21] Duvic B, Soderhall K. β-1,3-glucan-binding proteins from plasma of the fresh water crayfishAsstacus astacus and Procambarus clarkii. J Crust Biol,1993,13:403-408.
    [22] Duvic B, Soderhall K. Purification and characterization of a β-1,3-glucan-binding proteinfrom plasma of the crayfish Pacifastacus leniusculus. J Biol Chem,1990,265:9327-9332.
    [23] Vargas-Albores F, Jimenez-Vega F, Yepiz-Plascencia G. Purification and comparison ofβ-1,3-glucan-binding protein from white shrimp (Penaeus vannamei). Comp BiochemPhysiol B,1997,116:453-458.
    [24] Cerenius L, Liang Z,Duvic B. Structure and biological activity of a β-1,3-glucan-bindingprotein in crustacean blood. J Biol Chem,1994,269:462-467.
    [25] Aspan A, S derh ll K. Purification of prophenoloxidase from crayfish blood cells, and itsactivation by an endogenous serine proteinase. Insect Biochem,1991,21:363-373.
    [26] Aspan A, Huang T, Cerenius L, et al. cDNA cloning of prophenoloxidase from the freshwatercrayfish Pacifastacus leniusculus and its activation. Proc Natl Acad Sci,1995,92:939-43.
    [27] Asada N, Sezaki H. Properties of phenoloxidase generated from prophenoloxidase with2-propanol and the natural activator in Drosophila melanogaster. Biochem Genet,1999,37:149-158.
    [28] Parrinello N, Arizza V, Chinnici C, et al. Phenoloxidases in ascidian hemocytes:characterization of the prophenoloxidase activating system. Comp Biochem Physiol B,2003,135:583-591.
    [29] Johansson MW, Soderhall K. The prophenoloxidase activating system and associated proteinsin invertebrates. Prog Mol Subcell Biol,1996,15:46-66.
    [30] Cerenius L, Soderhall K. The prophenoloxidase activating system in invertebrates. ImmunolRev,2004,198:116-126.
    [31] Waite JH, Wilbur KM. Phenoloxidase in the periostracum of the marine bivalve Modiolusdemissus Dillwyn. J Exp Zool,1976,195:359-367.
    [32] Gollas-Galvan T, Hernandez-Lopez J, Vargas-Albores F. Prophenoloxidase from the brownshrimp (Penaeus californiensis) hemocytes. Comp Biochem Physiol B,1999,122:77-82.
    [33] Cong RS, Sun WJ, Liu GX, et al. Purification and characterization of phenoloxidase fromclam Ruditapes philippinarum. Fish Shellfish Immunol,2005,18:61-70.
    [34] Liu GX, Yang LL, Fan TJ, et al. Purification and characterization of phenoloxidase from crabCharybdis japonica. Fish Shellfish Immunol,2006,20:47-57.
    [35] Coles JA, Pipe RK. Phenoloxidase activity in the haemolymph and haemocytes of the marinemussel Mytilus edulis. Fish Shellfish Immunol,1994,4:337-352.
    [36] Hellio C, Anne BN, Gagnaire B, et al. Demonstration of a true phenoloxidase activity andactivation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro. FishShellfish Immunol,2007,22:433-440.
    [37] Asokan R, Arumugam M, Mullainadhan P. Activation of prophenoloxidase in the plasma andhaemocytes of the marine mussel, Perna viridis Linnaeus. Dev Comp Immunol,1997,21:1-12.
    [38] Zhang C, Xie LP, Huang J, et al. A novel putative tyrosinase involved in periostracumformation from the pearl oyster (Pinctada fucata). Biochem Biophys Res Commun,2006,342:632-639.
    [39] Ashida M, Ishizaki Y, Iwahana H. Activation of pro-phenoloxidase by bacterial cell walls orbeta-1,3-glucans in plasma of the silkworm, Bombyx mori. Biochem Biophys Res Commun,1983,113:562-568.
    [40] Feng CJ, Song QS, Lü WJ, et al. Purification and characterization of hemolymphprophenoloxidase from Ostrinia furnacalis (Lepidoptera: Pyralidae) larvae. Comp BiochemPhysiol B,2008,151:139-146.
    [41] Aladaileh S, Rodney P, Nair SV, et al. Characterization of phenoloxidase activity in Sydneyrock oysters (Saccostrea glomerata). Comp Biochem Physiol B,2007,148:470-480.
    [42]梁建光,王宜燕,孙虎山.栉孔扇贝外套膜过氧化物酶和酚氧化酶的电镜细胞化学观察.鲁东大学学报,2007,23(1):80-83.
    [43] Hellio C, Bourgougon N, Gal YL. Phenoloxidase (EC1.14.18.1) from the byssus gland ofMytilus edulis: purification, partial characterization and application for screening productswith potential antifouling activities. Biofouling,2009,16:235-244.
    [44] Bai GX, Brown JF, Watson C, et al. Isolation and characterization of phenoloxidase from eggmasses of the gastropod mollusc, Biomphalaria glabrata. Comp Biochem Physiol B,1997,118:463-469.
    [45] Paskewitz SM, Brown MR, Collins FH, et al. Ultrastructural localization of phenoloxidase inthe midgut of refractory Anopheles gambiae and association of the enzyme with encapsulatedPlasmodium cynomolgi. J Parasitol,1989,75(4):594-600.
    [46]汪晓峰,樊廷俊.中国对虾酚氧化酶的部分生物化学特性的初步研究.海洋科学,2003,27(4):71-75.
    [47] Ashida M. Purification and characterization of pre-phenoloxidase from hemolymph of thesilkworm, Bombyx mori. Arch Biochem Biophys,1971,144:749-762.
    [48] Aso Y, Kramer KJ, Hopkins TL, et al. Characterization of haemolymph protyrosinase and acuticular activator from Manduca sexta (L.). Insect Biochem,1985,15:9-17.
    [49] Durrant HJ, Ratcliffe NA, Hipkin CR, et al. Purification of the pro-phenoloxidase enzymefrom haemocytes of the cockroach Blaberus discoidalis. Biochem J,1993,289:87-91.
    [50] Lopez C, Carballal MJ, Azevedo C, et al. Enzyme characterisation of the circulatinghaemocytes of the carpet shell clam, Ruditapes decussatus (Mollusca: bivalvia). FishShellfish Immunol,1997,7:595-608.
    [51] Munoz P, Meseguer J, Esteban MA. Phenoloxidase activity in three commercial bivalvespecies. Changes due to natural infestation with Perkinsus atlanticus. Fish Shellfish Immunol,2006,20:12-19.
    [52]陆宏达,刘凯,张明辉.中华绒螯蟹血淋巴中酚氧化酶的部分生化特性.上海水产大学学报,2007,16(3):236-241.
    [53]叶星,郑清梅,白俊杰.短沟对虾和斑节对虾酚氧化酶原基因的克隆和序列分析.海洋与湖沼,2003,34(5):533-540.
    [54]吴曙,王淑红,王艺磊,等.软体动物和甲壳动物酚氧化酶的研究进展.动物学杂志,2009,44(5):137-146.
    [55] Zibaee A, Bandani AR, Malagoli D. Purification and characterization of phenoloxidase fromthe hemocytes of Eurygaster integriceps (Hemiptera: Scutelleridae). Comp Biochem PhysiolB,2011,158:117-123.
    [56] Dunphy, GB. Phenoloxidase activity in the serum of two species of insects, the gypsy moth,Lymantria dispar (Lymantriidae) and the greater wax moth, Galleria mellonella (Pyralidae).Comp Biochem Physiol B,1991,98:535-538.
    [57] Dittmer NT, Suderman RJ, Jiang H, et al. Characterization of cDNAs encoding putativelaccase-like multicopper oxidases and developmental expression in the tobacco hornworm,Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol,2004,34:29-41.
    [58] Cherqui A, Duvic B, Brehelin M. Purification and characterization of prophenoloxidase fromthe hemolymph of Locusta migratoria. Arch Insect Biochem Physiol,1996,32:225-235.
    [59] Andersson K, Sun SC, Boman HG, et al. Purification of the prophenoloxidase fromHyalophora cecropia and four proteins involved in its activation. Insect Biochem,1989,19:629-637.
    [60] Jiang H, Wang Y, Ma C, et al. Subunit composition of prophenoloxidase from Manduca sexta:molecular cloning of subunit ProPO-P1. Insect Biochem Mol Biol,1997,27:835-850.
    [61] Perdomo-Morales R, Montero-Alejo V, Perera E, et al. Phenoloxidase activity in thehemolymph of the spiny lobster Panulirus argus. Fish Shellfish Immunol,2007,23:1187-1195.
    [62] Hergenhahn HG, Hall M, Soderhall K. Purification and characterization of anα2-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacusleniusculus. Biochem J,1988,255:801-806.
    [63] Pang QX, Zhang SC, Shi XD, et al. Purification and characterisation of phenoloxidase fromamphioxus Branchiostoma belcheri tsingtauense. Fish Shellfish Immunol,2005,19:139-148.
    [64] Brack A, Hellmann N, Decker H. Kinetic properties of hexameric tyrosinase from thecrustacean Palinurus elephas. Photochem Photobiol,2008,84:692-699.
    [65] Naraoka T, Uchisawa H, Mori H, et al. Purification, characterization and molecular cloning oftyrosinase from the cephalopod mollusk, Illex argentinus. Eur J Biochem,2003,270:4026-4038.
    [66] Maruyama N, Etoh H, Sakata K, et al. Studies on Phenoloxidase from Mytilus edulisassociated with adhesion. Agric Biol Chem,1991,55:2887-2889.
    [67] Jordan PJ, Deaton LE. Characterization of phenoloxidase from Crassostrea virginicahemocytes and the effect of Perkinsus marinus on phenoloxidase activity in the hemolymphof Crassostrea virginica and Geukensia demissa. J shellfish Res,2005,24:477-482.
    [68] Yasuhara Y, Koizumi Y, Katagiri C, et al. Reexamination of properties of prophenoloxidaseisolated from larval hemolymph of the silkworm, Bombyx mori. Arch Insect Biochem Physiol,1995,32:14-23.
    [69] Chase MR, Raina K, Bruno J, et al. Purification, characterization and molecular cloning ofprophenoloxidase from Sarcophaga bullata. Insect Biochem Mol Biol,2000,30:953-967.
    [70] Gillespie JP, Khachatourians GG. Characterization of the Melanoplus sanguinipeshemolymph after infection with Beauveria bassiana or wounding. Comp Biochem Physiol B,1992,103:455-463.
    [71] Kopácek P, Weise C, G tz P. The prophenoloxidase from the wax moth Galleria mellonella:purification and characterization of the proenzyme. Insect Biochem Mol Biol,1995,25:1081-1091.
    [72] Tsukamoto T, Ishiguro M, Funatsu M. Isolation of latent phenoloxidase from prepupae of thehousfly Musca domestica. Insect Biochem,1986,16:573-581.
    [73] Teremius O, Bettencourt R, Lee SY, et al. RNA interference of hemolin causes depletion ofphenoloxidase activity in Hyalophora cecropia. Dev Comp Immunol,2007,31:571-575.
    [74] Lee MJ, Anstee JH. Phenoloxidase and its zymogen from haemolymph of larvae oflepidopteran Spodoptera littoralis (Lepidoptera: Noctuidae). Comp Biochem Physiol B,1995,110:379-384.
    [75]赵娇,戚晓玉.日本对虾的酚氧化酶特性研究.上海水产大学学报,1997,3:157-165.
    [76] Lockey TD, Qurth DD. Isolation and characterization of hemolymph phenoloxidase fromHeliothis virescens larvae. Comp Biochem Physiol B,1992,102:891-896.
    [77] Ashida M, Soderhall K. The prophenoloxidase activating system in crayfish. Comp BiochemPhysiol B,1984,77:21-26.
    [78]孙兆峰,王雷.中国明对虾(Fenneropenaeus chinensis)和凡纳滨对虾(Litopenaeusvannamei)血清酚氧化酶活性的研究.高技术通讯,2001,12:24-27.
    [79] Barret FM. Phenoloxidases from larval cuticle of the sheep blowfly, Lucilia cuprina:characterization, developmental changes, and inhibition by antiphenoloxidase antibodies.Arch Insect Biochem Physiol,1987,5:99-118.
    [80] Nagai K, Yano M, Morimoto K, et al. Tyrosinase localization in mollusc shells. CompBiochem Physiol B,2007,146:207-214.
    [81] Smith VJ, Soderhall K. A comparison of phenoloxidase activity in the blood of marineinvertebrates. Dev Comp Immunol,1991,15:251-261.
    [82] Meng FL, Zhang YZ, Kong J, et al. The research review of phenoloxidase activating systemin crustacean. Oceanologia et Limnologia Sinica,1999,30:110-115.
    [83] Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. JBiochem Mol Biol,2005,38:128-150.
    [84] Jiravanichpaisal P, Lee BL, Soderhall K. Cell-mediated immunity in arthropods:Hematopoiesis, coagulation, melanization and opsonization. Immunobiology,2006,211:213-236.
    [85] Ko CF, Chiou TT, Vaseeharan B. Cloning and characterisation of a prophenoloxidase fromthe haemocytes of mud crab Scylla serrata. Dev Comp Immunol,2007,31:12-22.
    [86] Dularay B, Lackie AM. Haemocytic encapsulation and the prophenoloxidase activationpathway in the locust Schistocerca gregaria Forsk. Insect Biochem,1985,15:827-834.
    [87] Luna-Acosta A, Rosenfeld E, Amari M, et al. First evidence of laccase activity in the Pacificoyster Crassostrea gigas. Fish Shellfish Immunol,2010,28:719-726.
    [88] Lockey TD, Ourth DD. Isolation and characterization of hemolymph phenoloxidase fromHeliothis virescens larvae. Comp Biochem Physiol B,1992,102:891-896.
    [89] Hata S, Azumi K, Yokosawa H. Ascidian phenoloxidase: its release from hemocytes,isolation, characterization and physiological roles. Comp Biochem Physiol B,1998,119:769-776.
    [90] Yang CP, Fujita S, Ashrafuzzaman M, et al. Purification and characterization of polyphenoloxidase from banana (Musa sapientum L.) pulp. J Agric Food Chem,2000,48:2732-2735.
    [91] Hartzer KL, Zhu KY, Baker JE. Phenoloxidase in larvae of Plodia interpunctella(Lepidoptera: Pyralidae): Molecular cloning of the proenzyme cDNA and enzyme activity inlarvae paralyzed and parasitized by Habrobracon hebetor (Hymenoptera: Braconidae). ArchInsect Biochem Physiol,2005,59:67-79.
    [92] Zufelato MS, Lourenco AP, Sim es ZL, et al. Phenoloxidase activity in Apis mellifera honeybee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. InsectBiochem Mol Biol,2004,34:1257-1268.
    [93] Ai HS, Liao JX, Huang XD, et al. A novel prophenoloxidase2exists in shrimp hemocytes.Dev Comp Immunol,2009,33:59-68.
    [94] Gai Y, Zhao J, Song L, et al. A prophenoloxidase from the Chinese mitten crab Eriocheirsinensis: gene cloning, expression and activity analysis. Fish Shellfish Immunol,2008,24:156-167.
    [95] Pless D, Aguilar M, Falcon A, et al. Latent phenoloxidase activity and N-terminal amino acidsequence of hemocyanin from Bathynomus giganteus, a primitive crustacean. Arch BiochemBiophys,2003,409:402-410.
    [96] Gregorio EA, Patcliffe NA. The prophenoloxidase system and in vitro interaction ofTrypanosoma rangeli with Rhodnius prolixus and Triatoma infestans haemolymph. ParasiteImmunol,1991,13:551-564.
    [97] Hagen HE, Grunewald J, Ham PJ. Induction of the prophenoloxidase-activating system ofSimulium (Diptera: Simuliidae) following Onchocerca (Nematoda: Filarioidea) infection.Parasitology,1994,109:649-655.
    [98] Sung HH, Hwang SF, Tasi FM. Responses of giant freshwater prawn (Macrobrachiumrosenbergii) to challenge by two strains of Aeromonas spp. J Invertebr Pathol,2000,76:278-284.
    [99] Song LY, Yu CI, Lien TW, et al. Haemolymph parameters of Pacific white shrimp(Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immunol,2003,14:317-331.
    [100] Hauton C, Williams JA, Hawkins LE. The effects of a live in vivo pathogenic infection onaspects of the immunocompetence of the common shore crab, Carcinus maenas (L.). J ExpMar Biol Ecol,1997,211:115-128.
    [101]刘晓云,张志峰,姜明,等.中国对虾淋巴器的酚氧化酶.水产学报,2002,26(3):285-288.
    [102]孙虎山,李光友.免疫多糖对栉孔扇贝血淋巴中氧化酶活力的影响.高技术通讯,2001,5:10-12.
    [103] Cong M, Song LS, Wang LL, et al. The enhanced immune protection of Zhikong scallopChlamys farreri on the secondary encounter with Listonella anguillarum. Comp BiochemPhysiol B,2008,151:191-196.
    [104] Newton K, Peters R, Raftos D. Phenoloxidase and QX disease resistance in Sydney rockoysters (Saccostrea glomerata). Dev Comp Immunol,2004,28:565-569.
    [105] Luna-Gonzalez A, Maeda-Mart nez AN, Vargas-Albores F, et al. Phenoloxidase activity inlarval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs. FishShellfish Immunol,2003,15:275-282.
    [106] Hong XT, Xiang LX, Shao JZ. The immunostimulating effect of bacterial genomic DNA onthe innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish ShellfishImmunol,2006,21:357-364.
    [107] Zhao PC, Li JJ, Wang Y, et al. Broad-spectrum antimicrobial activity of the reactivecompounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem Mol Biol,2007,37:952–959.
    [108] Zhao PC, Lu ZQ, Strand MQ, et al. Antiviral, anti-parasitic, and cytotoxic effects of5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insectimmune response. Insect Biochem Mol Biol,2011,41:645–652.
    [109] Cerenius L, Babu R, Soderhall K, et al. In vitro effects on bacterial growth of phenoloxidasereaction products. J Invertebr Pathol,2010,103:21-23.
    [110] Luna-Acosta A, Saulnier D, Pommier M, et al. First evidence of a potential antibacterialactivity involving a laccase-type enzyme of the phenoloxidase system in Pacific oysterCrassostrea gigas haemocytes. Fish Shellfish Immunol,2011,31:795-800.
    [111] Gregorio ED, Han SJ, Lee WJ, et al. An immune-responsive serpin regulates themelanization cascade in drosophila. Dev Cell,2002,3:581-592.
    [112] Daquinag AC, Nakamura S, Takao T, et al. Primary structure of a potent endogenousdopa-containing inhibitor of phenol oxidase from Musca domestica. Proc Natl Acad SciUSA,1995,92:2964-2968.
    [113] Lu Z, Jiang H. Regulation of phenoloxidase activity by high-and low-molecular-weightinhibitors from the larval hemolymph of Manduca sexta. Insect Biochem Mol Biol,2007,37:478-485.
    [114] Zhao M, Soderhall I, Park JW, et al. A novel43-kDa protein as a negative regulatorycomponent of phenoloxidase-induced melanin synthesis. J Biol Chem,2005,280:24744–24751.
    [115] Eleftherianos I, Boundy S, Joyce SA, et al. An antibiotic produced by an insect-pathogenicbacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad SciUSA,2007,104:2419-2424.
    [116]赵芙钗,王竹清,李八方.栉孔扇贝性腺基本营养成分分析.齐鲁渔业,2010,27(12):4-7.
    [117]王如才,王昭萍,张建中.海水贝类养殖学.青岛海洋大学出版社,1998,pp157.
    [118]张福绥.中国海湾扇贝养殖业的发展.海洋科学,1992,4:1-4.
    [119]王庆成.虾夷扇贝的引进及其在我国北方增养殖的前景.水产科学,1984,4:24-27.
    [120]任建峰,刘志鸿,杨爱国,等.扇贝血细胞胞内酶活性的细胞学观察.海洋水产研究,2004,25(5):30-34.
    [121]贺桂珍,李赟,王崇明,等.栉孔扇贝和海湾扇贝病原体感染与疾病发生关系探讨.高技术通讯,2003,3:75-79.
    [122]王运涛,相建海.栉孔扇贝大规模死亡病因的探讨.海洋与湖沼,1999,30(6):770-774.
    [123]杨秀生,王勇强,叶海斌,等.扇贝常见病害种类及其流行趋势和防控.齐鲁渔业,2008,25(9):13-15.
    [124]刘志鸿,牟海津,王清印.软体动物免疫相关酶研究进展.海洋水产研究,2003,24(3):86-90.
    [125]刘世良,麦康森.贝类免疫系统和机理的研究进展.海洋学报,2003,25(2):95-105.
    [126] Jing G, Li Y, Xie LP, et al. Metal accumulation and enzyme activities in gills and digestivegland of pearl oyster (Pinctada fucata) exposed to copper. Comp Biochem Physiol C,2006,144:184-190.
    [127] Renwrantz L, Schmalmack W, Redel R, et al. Conversion of phenoloxidase and peroxidaseindicators in individual haemocytes of Mytilus edulis specimens and isolation ofphenoloxidase from haemocyte extract. J Comp Physiol B,1996,165:647-658.
    [128] Laemmli UK. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature,1970,227:680-685.
    [129] Soderhall K. Fungal cell wall β-1,3-glucans induce clotting and phenoloxidase attachment toforeign surfaces of crayfish haemocyte lysate. Dev Comp Immunol,1981,5:565-573.
    [130] Bradford M. A rapid and sensitive method for the quantification of microgram quantities ofprotein utilizing the principle of dye binding. Anal Biochem,1976,72:248-254.
    [131] Ittop G, George KC, George RM, et al. Modulation of selected hemolymph factors in theIndian edible oyster Crassostrea madrasensis (Preston) upon challenge by Vibrioalginolyticus. Indian J Fish,2010,57:55-60.
    [132] Guo SD, Mao WJ, Han Y, et al. Structural characteristics and antioxidant activities of theextracellular polysaccharides produced by marine bacterium Edwardsiella tarda.Bioresource Technology,2010,101:4729-4732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700