用户名: 密码: 验证码:
毕赤酵母细胞展示的CALB脂肪酶的表征及非水相催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极假丝酵母脂肪酶B (Candida antarctica lipase B,CALB)在酯化、转酯、手性拆分等非水相催化反应中表现出比其他脂肪酶更出色的催化活性。利用表面展示技术将脂肪酶锚定在细胞表面,类似于酶的固定化。通过发酵得到大量细胞,冻干即可用于催化,无需酶的提取纯化,杜绝了酶在固定化过程中的损失并节省了成本。然而,关于展示脂肪酶非水相催化特性,尚未见比较系统的研究,阻碍了展示脂肪酶在非水催化领域的应用。基于上述情况,本论文选取毕赤酵母细胞展示的CALB作为研究对象,将其应用于催化多种类型的反应以研究其非水相催化特性。针对亲水酵母细胞与疏水底物接触受阻的问题,对展示脂肪酶的表面进行疏水性修饰,探讨展示脂肪酶表面性质对非水相催化特性的影响。具体研究内容及结果如下:
     (1)细胞表面展示脂肪酶的定量
     合成脂肪酶的不可逆抑制剂4-甲基伞形酮己基膦酸酯,该物质与酵母细胞展示脂肪酶的活性中心不可逆结合并释放荧光物质4-甲基伞形酮(4-MU),通过测定4-MU的含量可以计算脂肪酶的活性中心数目。该方法精确灵敏,重现性好,与酶活测定和免疫荧光反应的结果具有较好的相关性。用该方法测得毕赤酵母展示CALB的载酶量为5‰。
     (2)毕赤酵母细胞展示CALB催化合成芳香酯
     研究了毕赤酵母展示CALB的底物选择性,酵母细胞的亲水性改变了展示CALB对直链醇的选择性,而底物的空间位阻效应是影响催化效率的首要因素。考察了溶剂、温度、底物浓度和摩尔比、细胞添加量对展示脂肪酶催化合成乙酸酯反应的影响,发现其具有较好的溶剂耐受性和温度耐受性。反应动力学研究显示毕赤酵母展示CALB对乙酸的耐受程度强于商品酶Novozym435。在此基础上,设计5L搅拌式反应器并合成了10种芳香酯。为了进一步探讨绿色制造的可能性,将展示CALB应用于30L无溶剂体系合成己酸乙酯,底物转化率达到90%。
     (3)毕赤酵母细胞展示CALB催化合成生物柴油
     在毕赤酵母展示RML催化合成生物柴油的反应中,加入适量毕赤酵母展示的CALB,可以消除反应的限速步骤,提高转酯合成效率。此外,使用异辛烷-叔丁醇混合溶剂能有效地改善细胞对甘油吸附效应,促进展示脂肪酶的分散。使用包括废油在内的各种原料合成生物柴油,12h甲酯产率达到90%。连续反应20批次后,甲酯的相对产率仍在85%以上。
     (4)毕赤酵母细胞展示CALB催化区域选择性和手性选择性反应
     毕赤酵母展示CALB催化葡萄糖与月桂酸合成葡萄糖月桂酸单酯,催化果糖与月桂酸合成果糖月桂酸单酯/二酯,核磁共振检测产物的结构表明展示CALB对糖环上的伯羟基具有特异选择性。将展示CALB应用于拆分-苯乙醇,显示只有R型底物才能被催化,但不能拆分手性碳原子附近有较大空间位阻基团的底物,如药物班布特罗。
     (5)毕赤酵母细胞展示CALB的表面疏水修饰
     通过在毕赤酵母细胞表面共展示真菌疏水蛋白HFBI、吸附表面活性剂Tween80、吸附离子液体[Omin][PF6]和添加疏水性碳源四种方法分别对毕赤酵母展示CALB进行表面疏水修饰。对修饰后的酶进行表面疏水性分析以及表面基团表征,发现四种修饰方法都能不同程度地增强毕赤酵母展示CALB的疏水性,吸附Tween80和[Omin][PF6]对表面疏水性的增强程度较大。将修饰后的酶应用于合成己酸乙酯、长链脂肪酸乙酯和生物柴油,疏水性强的展示CALB催化效率较高。
     本论文通过研究毕赤酵母展示CALB催化多个反应,较为系统地阐明了展示酶作为一种特殊形式的固定化酶在非水相中的催化特性。初步探索了改善展示脂肪酶表面性质的方法,为其进一步的非水相催化应用提供基础。
Candida antarctica lipase B (CALB) exhibit better catalytic activity than the otherlipases in the esterification, hydrolysis, transesterification, as well as other types of reactions.Analogous to conventional enzyme immobilization, the display of lipases can be consideredas a type of self-immobilization on cell wall by connected to a anchoring protein. Suchlipase-displaying yeast cells can be produced during a high density fermentation, and afterlyophilization, the cells can be directly uesd as biocatalyst without enzyme purification step.So this procedure prevents the enzyme loss during immobilization process and saves cost.However, little has been known about catalytic characteristics of displayed lipases innon-aqueous phase. In this work, the CALB-displaying Pichia pastoris whole-cells were usedto catalyze various reactions. Substrate selectivity, solvent tolerance and reaction kineticswere discussed to determine the catalytic characteristics of CALB-displaying P. pastoris cellsin non-aqueous phase. The relationship between cell surface characteristics and catalyticsynthesis efficiency was also investigated by cell surface modification. Specific contents andresults are as follows:
     (1) Quantificationof the enzyme displayed on cell surface
     Lipase irreversible inhibitor4-methylumbelliferyl hexylphosphonate (4-MUHP), whichcan irreversiblely bind with the lipase activity site and release a fluorescent substance4-methylumbelliferyl (4-MU) is synthesized. By determination of4-MU amount, the number oflipase active site can be calculated. This method is accurate, sensitive and in good agreementwith hydrolysis activity and synthesis activity and is a powerful tool to evaluate thecharacteristics of CALB-displaying cells used as immobilized enzyme.
     (2) Synthesis of flavor esters catalyzed by CALB-displaying P. pastoris cells
     CALB-displaying P. pastoris cells were used to catalyze synthesis of short-chain flavoresters in non-aqueous phase. The study of substrate selectivity indicated that hindrance ofbranched and large group was the most important factor. Effects of solvent, temperature,substrate concentration, substrate molar ratio and cells dosage on esterification wereinvestigated and the results showed CALB-displaying P. pastoris cells were good tolerancefor high substrates concentration, especially strong polar substrates. Based on these results, 10flavor esters were successfully synthesized in5L stirred reactor. Solvent-free synthesis ofethyl caproate was also achieved in a50L pilot reactor and the conversion rate reached90%.
     (3) Synthesis of biodiesel catalyzed by lipase-displaying P. pastoris cells
     The combined utilization of CALB and RML, separately displayed on P. pastoris cells,to produce biodiesel in co-solvent media was investigated. The synergistic effect of the twodisplayed lipases was to elimination of the rate-limiting step. The use of tert-butanol andisooctane as the co-solvent media was found to reduce the adsorption of glycerol onto cells.Scaled-up reactions using various types of feedstock were carried out in a0.5L stirred reactorunder optimum conditions, affording methyl ester yields over90%in12h. Moreover, themethyl ester yields remained above85%after20repeated batch cycles.
     (4) Regioselective synthesis and enantioselective resolution catalyzed by CALB-displaying cells
     CALB-displaying P. pastoris cells were used to catalyze the synthesis of glucose laurateand fructose laurate (mono-ester and di-ester). NMR detection of sugar ester shoued thatCALB exhibited specific selectivity for primary hydroxyl groups. CALB-displayingP.pastoris showed excellent R-enantioselectivity to-phenylethanol. However, poor substrateand product enantiomer excess values were obtained when catalyzing enantioselectiveresolution of bambuterol.
     (5) Surface hydrophobicity modification of CALB-displaying P. pastoris cells
     Fungal hydrophobin proteins HFBI, surfactant Tween80, ionic liquid [Omin][PF6], andhydrophobic carbon source were used to modify surface hydrophobicity of CALB-displayingP. pastoris cells. The CALB loading and hydrophobicity of modified cells were detectied; thechange of cell surface groups was characterized using Fourier transform IR. It was found thatfour modification methods had enhanced hydrophobicity of cell surface, Tween80and [Omin][PF6] absorbed on cell surface showed better enhancement. The modified cells were used tosynthesis of ethyl caproate, long-chain fatty acid ethyl ester and biodiesel, the catalyticefficiency were improved, especially for Tween80and [Omin][PF6]–modified cells.
     In this work, various types of reactions catalyzed by CALB-displaying P. pastoris cellshave been investigated to illustrate the catalytic properties of this biocatalyst whichperformed as a special form of immobilized enzyme in non-aqueous phase. The method to improve the cell surface properties was development, this may provide a reference forenzyme-displaying cells’ potential applications.
引文
[1] Zaks A, Klibanov A M. Enzyme catalysis in organicmedia at100degrees [J]. Science,1984,2241(4654):1249-1251.
    [2] Klibanov A M. Enzymes that work in organic solvents[J]. Chemtech,1986,16(6):354-359.
    [3] Zaks A, Klibanov AM. Enzymatic catalysis in non-aqueous solvents [J]. J Bio Chem,1988,263(7):3194-3201.
    [4] Klibanov A.M. Improving enzymes by using them in organic solvents [J]. Nature,2001,409(6817):241-246.
    [5] Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis: solvent-freeand highly concentrated reactions[J]. Chem Rev,2007,107(6),25032545.
    [6] Cantone S, Hanefeld U, Basso A. Biocatalysis in non-conventional media-ionic liquids, supercriticalfluids and the gas phase[J]. Green Chem,2007,9(9):954-971.
    [7]刘森林,宗敏华.超临界流体中酶催化的研究进展.微生物学通报,2001,28(1):81-85.
    [8] Welton T. Room-tmperature ionic liquids-solvents for synthesis and catalysis[J]. Chem Rev,1999,99(8):2071-2083.
    [9] Kim KW, Song B, Choi M Y, et al. Biocatalysis inionic liquids: markedly enhancedenantioselectivity of lipase[J]. Org Lett,2001,3(10):1507-1509.
    [10] Zaks A, Klibanov AM. The effect of water on enzyme action in organic media[J]. J Biol Chem,1988,263(17):8017-8021.
    [11] Chin JT, Wheeler SL, Klibanov AM. Onprote insolubility in organic solvent [J]. Biotechnol Bioeng,1994,44(1):140-147.
    [12]罗贵民.酶工程[M].北京:化学工业出版社,2002:203-250.
    [13] Halling PJ. Salthydrates for water activity control with biocatalysts in organic media[J]. BiotechnolTech,1992,6(3):271-276.
    [14] Bell G, Halling PJ, Moore BD, et al. Biocatalyst behaviour in low-water systems[J]. TrendsBiotechnol,1995,13(11):468-473.
    [15] Halling PJ. Thermodynamic predictions for biocatalysis in nonconventional media: theory, test, andrecommendations for experimental design and analysis[J]. Enzyme Microb Technol,1994,16(3):178-206.
    [16]袁勤生.现代酶学[M].上海:华东理工大学出版社,2001:211-236.
    [17]郭诤.非水相系统中脂肪酶催化酯化反应的研究[D].天津:天津大学,2004年.
    [18] Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents[J].Biotechnol Bioeng,1987,30(1):81-87.
    [19] Liu Y, Zhang X, Tan H, et al. Effect of pretreatment by different organic solvents on esterificationactivity and conformation of immobilized Pseudomonas cepacia lipase[J]. Process Biochem,2010,45(7):1176-1180.
    [20] Graber M, Irague R, Rosenfeld E, et al. Solvent as a competitive inhibitor for Candida antarcticalipase B[J]. BBA-Proteins&Proteomics,2007,1774:1052-1057.
    [21] Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic soIvents[J]. Proc Natl Acad Sci,1985,82(10):3192-3196.
    [22] Jin X, Liu B, Ni Z, et al. A novel control of enzymatic enantioselectivity through the racemictemperature influenced by reaction media[J]. Enzym Microb Technol,2011,48(6):454-457.
    [23] Lindsay JP, Clark DS, Dordick JS. Combinatorial formulation of biocatalyst preparations forincreased activity in organics olvents: salt activation of penicillin amidase[J]. Biotechnol Bioeng,2004,85(5):553-560.
    [24] Morgan JA, Clark DS. Salt-activation of nonhydrolase enzymes for use in organic solvents [J].Biotechnol Bioeng,2004,85(4):456-459.
    [25] Jin X, Liu B, Ni Z, Wu Q, et al. Microwave assisted lipase catalyzed synthesis of isoamyl myristatein solvent-free system[J]. Enzym Microb Technol,2011,48(6/7):454–457
    [26] Gharat N, Rathod VK. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oilwith dimethyl carbonate[J]. Ultrason Sonochem,2013,20(3):900–905.
    [27] Singh AK, Mukhopadhyay M. Overview of fungal lipase: a review [J]. Appl Biochem Biotechnol,2012,166(2):486-520.
    [28]张树政.酶制剂工业[M].北京:科学出版社,1984:655-668
    [29]谭天伟,陈必强.脂肪酶及其在化学品合成中的应用[J].生物产业技术,2010,4(4):35-41.
    [30] Anderson EM, Larsson KM, Kirk O. One biocatalyst-many applications: the use of Candidaantarctica B-lipase in organic synthesis[J]. Biocatal. Biotransform,1998,16(3):181-04.
    [31] De Oliveira EB, Humeau C, Chebil L, et al. A molecular modelling study to rationalize theregioselectivity in acylation of flavonoid glycosides catalyzed by Candida antarctica lipase B [J]. JMol Catal B-enzym,2009,59(1–3):96-105.
    [32] Uppenberg J, Patkar S, Bergfors Tm, et al. Crystallization and preliminary X-ray studies of lipase Bfrom Candida antarctica[J]. J Mol Biol.1994,235(2):790-791.
    [33] Uppenberg J, Hansen M T, Patkar S, et al. The sequence, crystal structure determination andrefinement of two crystal forms of lipase B from Candida antarctica[J]. Structurce,1994,2(4):293-308.
    [34] Uppenberg J, Oehrner N, Norin M, et al. Crystallographic and molecular-modeling studies of lipaseB from Candida antarctica reveal a stereospecificity pocket for secondary alcohols[J]. Biochem,1995,34(51):16838–16851
    [35] Arroyo M, Sinisterra J V. High enantioselective esterification of2-arylpropionic acids catalyzed byimmobilized lipase from Candida antarctica: A mechanistic approach [J]. J Org. Chem.1994,59(16):4410-4417.
    [36] Cao L, Fischer A, Bornschener UT, et al. Lipase-catalyzed solid phase synthesis of fatty acid sugaresters [J]. Biocatal Biotransform.1997,14(4):269-283.
    [37] Cordova A, Hult K, Iversen T. Esterification of methyl glycoside mixtures by lipase catalysis [J].Biotechnol Lett.1997,19(1):15-18.
    [38] Arroyo M, Sanchez-Montero JM, Sinisterra JV. A new method to determine the aw range in whichimmobilized lipasrs display optimum activity in organic media [J]. Biotechnol Tech.1996,10(4):263-266.
    [39] Hansen TV, Waagen V, Partali V, et al. Co-solvent enhancement of enantioselectivity inlipase-catalysed hydrolysis of raceinic esters. A process for production of homochiral C-3buildingblocks using lipase B from Candida antarctica [J]. Tetrahedron: Asymmetry.1995,6(2):499-504.
    [40] Orrenius C, Norin T, Hult K, et al. The Candida antarctica lipase B catalysed kinetic resolution ofseudenol in non-aqueous media of controlled water activity [J]. Tetrahedron: Asymmetry.1995(12),6:3023-3030
    [41] Ducret A, Trani M, Lortie R. Lipase-catalyzed enantioselective esterification of ibuprofen in organicsolvents under controlled water activity [J]. Enzyme Microb Technol,1998,22(4):212-216
    [42] Larios A, García H S, Oliart R M, et al. Synthesis of flavor and fragrance esters using Candidaantarctica lipase[J]. Appl Microbiol Biotechnol,2004,65(4):373-376.
    [43] Güven A, Kapucu N, Mehmeto lu. The production of isoamyl acetate using immobilized lipasesin a solvent-free system[J]. Process Biochem,2002,38(3):379-386.
    [44] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases Enzyme[J]. MicrobTechnol,2006,39(2):235-251
    [45]刘书成,章超桦,洪鹏志.酶法制备n-3多不饱和脂肪酸甘油酯的研究进展[J].海洋水产研究,2005,26(5):98-103.
    [46] Cerdán L E, Medina A R, Giménez A G, et al. Synthesis of polyunsaturated fatty acid-enrichedtriglycerides by lipase-catalyzed esterification[J]. JAOCS,1998,75(10):1329-1337.
    [47]李相,刘云,杨江科.基于响应面设计脂肪酶Novo435催化合成甘油二酯的工艺优化[J].生物加工过程,2009,7(5):13-18.
    [48]朱启思,杨继国,曾凡逵,等.有机溶剂体系中酶法合成不饱和脂肪酸单甘酯[J].中国油脂,2010,35(4):37-40.
    [49] Hasheminejad M, Tabatabaei M, Mansourpanah Y, et al. Upstream and downstream strategies toeconomize biodiesel production[J]. Bioresour Technol,2011,102,461–468.
    [50] Du W, Xu Y, Liu D, et al. Comparative study on lipase-catalyzed transformation of soybean oil forbiodiesel production with acyl acceptors[J]. J. Mol. Catal. B: Enzym,2004,30(3/4):125-129.
    [51] Kose O, Tuter M, Aksoy H A. Immobilized Candida antarctica lipase-catalyzed alcoholysis ofcotton seed oil in a solvent-free medium [J]. Bioresource Technol,2002,83(2):125-129.
    [52] Samukawa T, Kaieda M, Matsumoto T, et al. Pretreatment of immobilized Candida antarcticalipase for biodiesel fuel production from plant oil [J]. J Biosci Bioeng,2000,90(2):180-183.
    [53] Adachi D, Hama S, Nakashima K, et al. Production of biodiesel from plant oil hydrolysates using anAspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B[J].Bioresource Technol,2012, doi: http://dx.doi.org/10.1016/j.biortech.2012.06.092.
    [54] Yan Y, Xu L, Dai M. A synergetic whole-cell biocatalyst for biodiesel production[J]. RSC Adv.,2012,2(15),6170-6173
    [55] Hari-Krishna S, Karanth NG. Lipases and lipase-catalyzed esterifcation reactions in nonaqueousmedia[J]. Catal Rev.2002,44(4):499-591.
    [56] Yadav G D, Pawar S V. Insight into microwave irradiation and enzyme catalysis in enantioselectiveresolution of dl-(±)-3-phenyllactic acid[J]. Appl Microbiol Biotechnol,2012,96(1):69-79.
    [57] Barbosa O, Ariza C, Ortiz C, et al. Kinetic resolution of (RS)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B(CAL-B)[J]. New Biotechnol,2010,27(6):844-850.
    [58] No l M, Lozano P, Vaultier M, et al. Kinetic resolution of rac-2-pentanol catalyzed by Candidaantarctica lipase B in the ionic liquid,1-butyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl]amide[J]. Biotechnol lett,2004,26(4):301-306.
    [59] To a M, Pilb k S, Moldovan P, et al. Lipase-catalyzed kinetic resolution of racemic1-heteroarylethanols experimental and QM/MM study[J]. Tetrahedron: Asymmetry,2008,19(15):1844-1852.
    [60] Cross H, Marriott R, Grogan G. Enzymatic esterification of lavandulol–a partial kinetic resolutionof (S)-lavandulol and preparation of optically enriched (R)-lavandulyl acetate[J]. Biotechnol lett,2004,26(5):457-460.
    [61] Nechab M, Azzi N, Vanthuyne N, et al. Highly selective enzymatic kinetic resolution of primaryamines at80C: a comparative study of carboxylic acids and their ethyl esters as acyl donors[J]. JOrg Chem,2007,72(18):6918-6923.
    [62] Reigada J B, Tcacenco C M, Andrade L H, et al. Chemical constituents from Piper marginatumJacq.(Piperaceae)-antifungal activities and kinetic resolution of (RS)-marginatumol by Candidaantarctica lipase (Novozym435)[J]. Tetrahedron: Asymmetry,2007,18(9):1054-1058.
    [63] Irimescu R, Saito T, Kato K. Enzymatic kinetic resolution of primary alcohols by directesterification in solvent-free system[J]. J Molec Catal B: Enzym,2004,27(2):69-73.
    [64] Kondo A., Udea M. Yeast cell-surface display-applications of molecular display [J]. Appl. Microliol.Biotechnol,2004,64(1):28-40.
    [65]郭波,谢佩蓉等.酵母表面展示系统研究进展[J].生物化学与生物物理进展,2002,29(1):19-22
    [66] Pepper LR, Cho YK, Boder ET, et al. A decade of yeast surface display technology: where are wenow?[J]. Comb Chem High Thr Screening,2008,11(2):127-134
    [67] Celik E, Calik P. Production of recombinant proteins by yeast cells [J]. Biotechnol Adv,2012,30(5):1108-1118
    [68] Morrow Jr KJ. Improving protein production processes[J]. Gen Eng News2007;27(5):50–41.
    [69] Tanaka T, Yamada R, Ogino C, et al. Recent developments in yeast cell surface display towardextended applications in biotechnology [J]. Appl Microbiol Biotechnol,2012,95(3):577-591
    [70] Matsumoto T, Fukuda H, Ueda M, et al. Construction of yeast strains with high cell surface lipaseactivity by using novel display systems based on the Flo1p flocculation functional domain[J]. Appl.Environ. Microbiol,2002,68(9):4517-4522.
    [71] Matsumoto T, Ito M, Fukuda H, et al. Enantioselective transesterification using lipase-displayingyeast whole-cell biocatalyst[J]. Appl Microbiol Biotechnol,2004,64(4):481-485.
    [72] Tanino T, Ohno T, Aoki T, et al. Development of yeast cells displaying Candida antarctica lipase Band their application to ester synthesis reaction[J]. Appl Microbiol Biotechnol,2007,75(6):1319–1325.
    [73] Han SY, Pan ZY, Huang DF, et al. Highly efficient synthesis of ethyl hexanoate catalyzed byCALB-displaying Saccharomyces cerevisiae whole cells in non-aqueous phas[J]. J. Mol. Catal. B:Enzym.59(1):168–172.
    [74] Inaba K, Maekawa K, Morisaka H, et al. Efficient synthesis of enantiomeric ethyl lactate byCandida antarctica lipase B (CALB)-displaying yeasts[J]. Appl. Microbiol. Biotechnol,2009,83(5):859–864.
    [75] Tanino T, Ohno T, Ogino C, et al. Ester synthesis reaction with CALB displaying yeast whole cellbiocatalyst: Effect of organic solvent and initial water content[J]. J Biosci Bioeng,2009,108(5):369–371
    [76] Yoshida A, Hama S, Nakashima K, et al. Water activity dependence of performance ofsurface-displayed lipase in yeast cells: A unique water requirement for enzymatic syntheticreactionin organic media[J]. Enzym Microb Technol,2011,48(4):334–338.
    [77] Han Z, Han S, Zheng S, et al. Enhancing thermostability of a Rhizomucor miehei lipase byengineering a disulfide bond and displaying on the yeast cell surface[J]. Appl Microbiol Biotechnol,2009,85(1):117-126.
    [78] Huang DF, Han SY, Han ZL, et al. Biodiesel production catalyzed by Rhizomucor mieheilipase-displaying Pichia pastoris whole cells in an isooctane system[J]. Biochem. Eng. J.63,10–14.
    [79] Su GD, Huang DF, Han SY, et al. Display of Candida antarctica lipase B on Pichia pastoris and itsapplication to flavor ester synthesis[J]. Appl Microbiol Biotechnol,86(5):1493–1501.
    [80] Rosenberg M. Basic and applied aspects of microbial adhesion at the hydrocarbon: waterinterface[J]. Crit Rev Microbiol,1991,18(2):159-168.
    [81] Hama S, Yoshida A, Nakashima K, et al. Surfactant-modified yeast whole-cell biocatalystdisplaying lipase on cell surface for enzymatic production of structured lipids in organic media[J].Appl Microbiol Biotechnol,2010,87(2):537–43.
    [82]张明露,马挺,李国强等.一株耐热石油烃降解菌的细胞疏水性及乳化润湿作用研究[J].微生物学通报,2008,35(9):1348-1352.
    [83] Liang X, Wang B, Sun Y, et al. Quantitative evaluation of Candia antarctica lipase B displayed onthe cell surface of a Pichia pastoris based on an FS anchor system[J]. Biotechnol Lett,2013,35(3):367-374.
    [84] Sun Y F, Lin Y, Zhang J H, et al. Double Candida antarctica lipase B co-display on Pichia pastoriscell surface based on a self-processing foot-and-mouth disease virus2A peptide[J]. Appl MicrobiolBiotechnology,2012,96(6):1539-1550.
    [85]韩润平,鲍改玲,朱路.酯化前后酵母菌的红外光谱比较[J].光谱学与光谱分析,2004,24(7):820-822.
    [86] Dague E, Bitar R, Ranchon H, et al. An atomic force microscopy analysis of yeast mutants defectivein cell wall architecture[J]. Yeast,2010,27(8):673–684.
    [87] Heinsman N W J T, Schro n C G P H, van der Padt A, et al. Substrate sorption into the polymermatrix of Novozym435and its effect on the enantiomeric ratio determination[J]. Tetrahedron:Asymmetry,2003,14(18):2699-2704.
    [88] Chen B, Hu J, Miller EM, et al. Candida antarctica lipase B chemically immobilized on epoxy-activated micro-and nanobeads: catalysts for polyester synthesis[J]. Biomacromolecules,2008,9(2):463-471.
    [89]吴敏,何琴,左勇刚,等.微纳尺度无机-有机杂化凝胶固定化木瓜蛋白酶研究[J].化学学报,2011,69(12):1475-1482.
    [90] Gargouri Y, Ransac S, Verger R. Covalent inhibition of digestive lipases: an in vitro study[J]. BBA,1997,1344(1):6-37.
    [91] Longhi S, Knoops-Mouthuy E, Cambillau C, et al. Crystal structure of cutinase covalently inhibitedby a triglyceride analogue[J]. Protein Sci,1997,6(2):275-286.
    [92] Rotticci D, Norin T, Hult K, et al. An active-site titration method for lipases[J]. BBA-Molecular andCell Biology of Lipids,2000,1483(1):132-140.
    [93] Fujii R, Utsunomiya Y, Hiratake J, et al. Highly sensitive active-site titration of lipase in microscaleculture media using fluorescent organophosphorus ester[J]. BBA-Molecular and Cell Biology ofLipids,2003,1631(2):197-205.
    [94] Jin Z, Ntwali J, Han SY, et al. Production of flavor esters catalyzed by CALB-displaying Pichiapastoris whole-cells in a batch reactor[J]. J Biotechnol,2012,159(1/2):108–114.
    [95] Chen B, Hu J, Miller EM, et al. Candida antarctica lipase B chemically immobilized onepoxy-activated micro-and nanobeads: catalysts for polyester synthesis[J]. Biomacromolecules,2008,9(2):463-471.
    [96] Hedfors C, Hult K, Martinelle M. Lipase chemoselectivity towards alcohol and thiol acyl acceptorsin a transacylation reaction[J]. J Mol Catal B: Enzym,2010,66(1):120-123..
    [97] Van der Vaart JM, Te Biesebeke R, Chapman JW, et al. Comparison of cell wall proteins ofSaccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins[J]. ApplEnviron Microbiol,1997,63(2):615-620.
    [98] García-Alles LF, Gotor V. Alcohol inhibition and specificity studies of lipase B from Candidaantarctica in organic solvents[J]. Biotechnol Bioeng,1998,59(2):163–170.
    [99] Orrenius C, Haeffner F, Rotticci D, et al. Chiral recognition of alcohol enantiomers in acyl transferreactions catalysed by Candida antarctica lipase B. Biocatal Biotransform,1998,16(1):115.
    [100] Torres S, BaigoríMD, Swathy SL, et al. Enzymatic synthesis of banana flavour (isoamyl acetate) byBacillus licheniformis S-86esterase[J]. Food Res Int,2009,42(4):454–460.
    [101] Kumar A, Gross R A. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects oforganic media and temperature[J]. Biomacromolecules,2000,1(1):133-138.
    [102] Lozano P, Daz M, De Diego T, et al. Ester synthesis from trimethylammonium alcohols in dryorganic media catalyzed by immobilized Candida antarctica lipase B[J]. Biotechnol Bioeng,2003,82(3):352-358.
    [103] Molinari F, Villa R, Aragozzini F. Production of geranyl acetate and other acetates by directesterification catalyzed by mycelium of Rhizopus delemar in organic solvent[J]. Biotechnol Lett,1998,20(1):41-44.
    [104] Rahman RNZRA, Baharum SN, Basri M, et al. High-yield purification of an organicsolvent-tolerant lipase from Pseudomonas sp. strain S5[J]. Anal Biochem,2005,341(2):267-274..
    [105] Takeuchi Y, Ono Y, Hisanaga N, et al. A comparative study of the toxicity of n-pentane, n-hexane,and n-heptane to the peripheral nerve of the rat[J]. Clin Toxicol,1981,18(12):1395-1402.
    [106] Kato M, Fuchimoto J, Tanino T, et al. Preparation of a whole-cell biocatalyst of mutated Candidaantarctica lipase B (mCALB) by a yeast molecular display system and its practical properties[J].Appl Microbiol Biotechnol,2007,75(3):549-555.
    [107] Romero M D, Calvo L, Alba C, et al. Enzymatic synthesis of isoamyl acetate with immobilizedCandida antarctica lipase in supercritical carbon dioxide[J]. J Supercrit Fluids,2005,33(1):77-84.
    [108] Nordblad M, Adlercreutz P. Effects of acid concentration and solvent choice on enzymaticacrylation by Candida antarctica lipase B[J]. J Biotechnol,2008,133(1):127-133.
    [109] Krishna SH, Karanth NG. Lipase-catalyzed synthesis of isoamyl butyrate: A kinetic study[J]. BBA,2001,1547(2):262-267.
    [110] Romero MD, Calvo L, Alba C, et al. Enzymatic synthesis of isoamyl acetate with immobilizedCandida antarctica lipase in n-hexane[J]. Enzym Microb Technol,2005,37(1):42-48.
    [111] Foresti M L, Ferreira M L. Solvent-free ethyl oleate synthesis mediated by lipase from Candidaantarctica B adsorbed on polypropylene powder[J]. Catal Today,2005,107:23-30.
    [112] Foresti M L, Ferreira M L. Chitosan-immobilized lipases for the catalysis of fatty acidesterifications[J]. Enzym Microb Technol,2007,40(4):769-777.
    [113] Wilke CR, Chang P. Correlation of diffusion coeffcients in dilute solutions[J]. AIChE J1955,1(2):264-270
    [114]刘国杰,贺网兴.计算正常沸点下液体摩尔体积的基团贡献法[J].化学工程.1990,18(4):62-66.
    [115]赵天涛,张丽杰,高静等.脂肪酶催化乳酸与乙醇合成乳酸乙酯的反应动力学[J].催化学报.2008,29(2):141-144.
    [116] Hari Krishna S, Manohar B, Divakar S, et al. Optimization of isoamyl acetate production by usingimmobilized lipase from Mucor miehei by response surface methodology[J]. Enzym MicrobTechnol,2000,26(2):131-136.
    [117] Krishna SH, Divakar S, Prapulla SG, et al. Enzymatic synthesis of isoamyl acetate usingimmobilized lipase from Rhizomucor miehei[J]. J Biotechnol,2001,87(3):193-201.
    [118] Chiang WD, Chang SW, Shieh CJ. Studies on the optimized lipase-catalyzed biosynthesis ofcis-3-hexen-1-yl acetate in n-hexane[J]. Process Biochem,2003,38(8):1193-1199..
    [119] Laboret F, Perraud R. Lipase-catalyzed production of short-chain acids terpenyl esters of interestto the food industry. Appl Biochem Biotechnol,1999,82,185–198.
    [120] Rodriguez-Nogales J M, Roura E, Contreras E. Biosynthesis of ethyl butyrate using immobilizedlipase: a statistical approach[J]. Process Biochem,2005,40(1):63-68.
    [121] Krishna S H, Manohar B, Divakar S, et al. Lipase-catalyzed synthesis of isoamyl butyrate:optimization by response surface methodology[J]. JAOCS,1999,76(12):1483-1488.
    [122] Chowdary G.V., Divakar S, Prapulla SG. Modelling on isoamyl isovalerate synthesis fromRhizomucor miehei lipasein organic media: optimization studies[J]. World J Microbiol Biotechnol,2002,18(3):179-185.
    [123] de Barros D P C, Fonseca L P, Fernandes P, et al. Biosynthesis of ethyl caproate and other shortethyl esters catalyzed by cutinase in organic solvent[J]. J Mol Catal B: Enzym,2009,60(3):178-185.
    [124] Adachi D, Hama S, Numata T, et al. Development of an Aspergillus oryzae whole-cell biocatalystcoexpressing triglyceride and partial glyceride lipases for biodiesel production[J]. BioresourceTechnol,2011,102(12):6723-6729..
    [125] Matsumoto T, Takahashi S, Kaieda M, et al. Yeast whole-cell biocatalyst constructed byintracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production[J].Appl Microbiol Biotechnol,2001,57(4):515-520.
    [126] Hama S, Yamaji H, Fukumizu T, et al. Biodiesel-fuel production in a packed-bed reactor usinglipase-producing Rhizopus oryzae cells immobilized within biomass support particles[J]. BiochemEng J,2007,34(3):273-278.
    [127] Fukuda H, Hama S, Tamalampudi S, et al. Whole-cell biocatalysts for biodiesel fuel production[J].Trends Biotechnol,2008,26(12):668-673.
    [128] Fu B, Vasudevan PT. Effect of solvent-co-solvent mixtures on lipase-catalyzed transesterificationof canola Oil[J]. Energy Fuels,2010,24(9):4646-4651.
    [129] Su E, Wei D. Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodieselproduction using a solvent engineering method[J]. J Mol Catal B: Enzym,2008,55(3):118-125.
    [130] Liu Y, Yan Y, Hu F, et al. Transesterification for biodiesel production catalyzed by combinedlipases: Optimization and kinetics[J]. AIChE J,2010,56(6):1659-1665.
    [131] Lou WY, Zong MH, Duan ZQ. Efficient production of biodiesel from high free fattyacid-containing waste oils using various carbohydrate-derived solid acid catalysts[J]. BioresourceTechnol,2008,99(18):8752-8758.
    [132] Türkan A, Kalay. Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phasehigh-performance liquid chromatography: elucidation of the mechanisms of lipases[J]. JChromatogr A,2006,1127(1):34-44.
    [133] Zhang H, Wang Q, Mortimer S R. Waste cooking oil as an energy resource: Review of Chinesepolicies[J]. Renew. Sust. Energ. Rev,2012,16(7):5225-5231.
    [134] Atadashi IM, Aroua MK, Abdul Aziz AR, et al. Production of biodiesel using high free fatty acidfeedstocks[J]. Renew. Sust. Energ. Rev,2012,16(5):3275-3285.
    [135] Xu Y, Du W, Zeng J, et al. Conversion of soybean oil to biodiesel fuel using Lipozyme TL IM in asolvent-free medium[J]. Biocatal Biotransform,2004,22(1),45–48.
    [136] Zheng Y, Quan J, Ning X, et al. Lipase-catalyzed transesterification of soybean oil for biodieselproduction in tert-amyl alcohol[J]. World J Microbiol Biotechnol,2009,25(1):41-46.
    [137] Wang Y, Wu H, Zong M H. Improvement of biodiesel production by lipozyme TL IM-catalyzedmethanolysis using response surface methodology and acyl migration enhancer[J]. BioresourceTechnol,2008,99(15):7232-7237..
    [138] Min JY, Lee EY. Lipase-catalyzed simultaneous biosynthesis of biodiesel and glycerol carbonatefrom corn oil in dimethyl carbonate[J]. Biotechnol Lett,2011,33(9):1789-1796.
    [139] Selmi B, Thomas D. Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-freemedium[J]. JAOCS,1998,75(6):691-695.
    [140] Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z. Enzymatic conversion of sunflower oil tobiodiesel in a solvent-free system: process optimization and the immobilized system stability[J].Bioresource Technol,2009,100(21):5146..
    [141] Azócar L, Heipieper H J, Mu oz R, et al. Improving fatty acid methyl ester production yield in alipase-catalyzed process using waste frying oils as feedstock[J]. J Biosci Bioeng,2010,109(6):609-614..
    [142] Li L, Du W, Liu D, et al. Lipase-catalyzed transesterification of rapeseed oils for biodieselproduction with a novel organic solvent as the reaction medium[J]. J Mol Catal B: Enzym,2006,43(1):58-62.
    [143] Liu Y, Yan Y, Hu F, et al. Transesterification for biodiesel production catalyzed by combinedlipases: Optimization and kinetics[J]. AIChE J,2010,56(6):1659-1665..
    [144] Zhu T, Guo M, Tang Z, et al. Efficient generation of multi-copy strains for optimizing secretoryexpression of porcine insulin precursor in yeast Pichia pastoris[J]. J Appl Microbiol,2009,107(3):954-963.
    [145] Micheelsen P O, stergaard P R, Lange L, et al. High-level expression of the native barley-amylase/subtilisin inhibitor in Pichia pastoris [J]. J Biotechnol,2008,133(4):424-432.
    [146] Yurugi-Kobayashi T, Asada H, Shiroishi M, et al. Comparison of functional non-glycosylatedGPCRs expression in Pichia pastoris [J]. Biochem. Bioph. Res. Co,2009,380(2):271-276.
    [147] V Vellanki R N, Potumarthi R, Mangamoori L N. Constitutive expression and optimization ofnutrients for streptokinase production by Pichia pastoris using statistical methods[J]. Appl BiochemBiotechnol,2009,158(1):25-40.
    [148] Yu JG, Zhang JS, Zhao A, et al. Study of glucose eater synthesis by immobilized lipase fromCandida sp.[J]. Catal Comm,2008,9(6):1369-1374.
    [149] Cao L, Bornscheuer UT, Schmid RD. Lipase-catalyzed solid-phase synthesis of sugar ester.Influence of immobilization on productivity and stability of the enzyme[J]. J Mol Catal B: Enzym,1996,6(3):279-285.
    [150] Yoshimoto K, Itatani Y, Tsuda Y.13C-nuclear magnetic resonance spectra of O-acylglucose.Additivity of shift parameters and its application to structure elucidations[J]. Chem Pharm Bull,1980,28:2065-2074.
    [151] ekero lu G, Fad lo lu S, bano lu E. Production and characterisation of enzymatically producedlauric acid esters of fructose[J]. J Sci Food Agric,2002,82(13):1516-1522.
    [152] Arcos J A, Bernabe M, Otero C. Quantitative enzymatic production of1,6-diacyl fructofuranoses[J].Enzym Microb Technol,1998,22(1):27-35.
    [153] Lozano P, de Diego T, Larnicol M, et al. Chemoenzymatic dynamic kinetic resolution ofrac-1-phenyl ethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems.Biotechnol Lett,2006,28(19):1559-1565
    [154] Habulin M, Knez. Optimization of (R,S)-1-phenylethanol kinetic resolution over Candidaantarctica lipase B in ionic liquids. J Mol Catal B: Enzym.2009,58(1/4):24–28
    [155] Martín-Matute B, Edin M, Bogár K, et al. Combined ruthenium (II) and lipase catalysis for efficientdynamic kinetic resolution of secondary alcohols. Insight into the racemization mechanism. J AmChem Soc,2005,127(24):8817–8825.
    [156] Luo W, Zhu L, Deng J, et al. Simultaneous analysis of bambuterol and its active metaboliteterbutaline enantiomers in rat plasma by chiral liquid chromatography–tandem mass spectrometry. JPharm Biomed Anal,2010,52(2):227–231.
    [157] Boros Z, Falus P, Márkus M, et al. How the mode of Candida antarctica lipase B immobilizationaffects the continuous-flow kinetic resolution of racemic amines at various temperatures. J MolCatal B: Enzym,2013,85–86:119–125.
    [158] Tweddell RJ, Kermasha S, Combes D, et al. Immobilization of lipase from Rhizopus niveus: a wayto enhance its synthetic activity in organic solvent [J]. Biocatal Biotransform,1999,16(6):411-426
    [159] Bastida A, Sabuquillo P, Armisen P, et al. A single step purification, immobilization, andhyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports [J].Biotechnol Bioeng,1998,58(5):486-493
    [160] Kery V, Haplova J, Tihlarik K, et al. Factors influencing the activity and thermostability ofimmobilized porcine pancreatic lipase [J]. J Chem Technol Biotechnol,1990,48(2):201-207
    [161] Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries [J].Nat Biotechnol,1997,15(6):553-557
    [162] Overbeeke P, Govardhan C, Khalaf N, et al. Influence of lid conformation on lipaseenantioselectivity [J]. J Mol Catal B: enzym,2000,10(4):385-393
    [163] Palomo JM, Segura RL, Fernandez-Lorente G, et al. Enzymatic resolution of (±)-glycidyl butyratein aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae viaimmobilization techniques [J]. Tetrahedron Asymmetry,2004,15(7):1157-1161
    [164] Cao L. Carrier-bound immobilized enzymes[M]. Weinheim, GmbH:Wiley-VCH Verlag,2005:169–316.
    [165] Schilke KF, Kelly C. Activation of immobilized lipase in non-aqueous systems by hydrophobicpoly-DL-tryptophan tethers. Biotechnol Bioeng,2008,101(1):9-18.
    [166] Wu J C, Zhang G F, He Z M. Enhanced activity of Candida rugosa lipase modified by polyethyleneglycol derivatives[J]. Biotechnol Lett,2001,23(3):211-214.
    [167] Forde J, Vakurov A, Gibson T D, et al. Chemical modification and immobilisation of lipase B fromCandida antarctica onto mesoporous silicates[J]. J Mol Catal B: Enzym,2010,66(1):203-209.
    [168] Chrzanowski, Bielicka-Daszkiewicz K, Owsianiak M, et al. Phenol and n-alkanes (C12and C16)utilization: influence on yeast cell surface hydrophobicity[J]. World J Microbiol Biotechnol,2008,24(9):1943-1949..
    [169] Nakari-Set l T, Azeredo J, Henriques M, et al. Expression of a fungal hydrophobin in theSaccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization [J]. ApplEnviron Microbiol,2002,68(7):3385-3391
    [170] Mata-Sandoval J C, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100on thebiodegradation of three pesticides in aqueous phase and soil slurries[J]. J Agric Food Chem,2001,49(7):3296-3303.
    [171]刘静,徐桂英.表面活性剂与蛋白质相互作用的研究进展[J].日用化学工业,2003,33(2):29-32
    [172] Huang S Y, Chang H L, Goto M. Preparation of surfactant-coated lipase for the esterification ofgeraniol and acetic acid in organic solvents[J]. Enzym Microb Technol,1998,22(7):552-557.
    [173] Sureshkumar M, Lee C K. Biocatalytic reactions in hydrophobic ionic liquids[J]. J Mol Catal B:Enzym,2009,60(1):1-12.
    [174] Sheldon RA, Lau RM, Sorgedrager MJ,et al. Biocatalysis in ionic liquids [J]. Green Chem,2002,4(2):147-151.
    [175] Kim KW, Song B, Choi MY, et al. Biocatalysisin ionic liquids: markedlyenhancedenantioselectivity of lipase [J]. Org Lett,2001,3(10):1507-1509.
    [176] Wang Z, Wang Y, Zhang D, et al. Enhancement of cell viability and alkaline polygalacturonatelyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation[J].Bioresource Technol,2010,101(4):1318-1323..
    [177]李华珍.毕赤酵母表面展示米黑根毛霉脂肪酶分批补料发酵的影响因素研究[D].广州:华南理工大学,2011.
    [178] Trodler P, Pleiss J. Modeling structure and flexibility of Candida antarctica lipase B in organicsolvents [J]. BMC Struct Biol,2008,8(1):9
    [179] de Barros D P C, Fonseca L P, Fernandes P, et al. Biosynthesis of ethyl caproate and other shortethyl esters catalyzed by cutinase in organic solvent[J]. J Mol Catal B: Enzym,2009,60(3):178-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700