用户名: 密码: 验证码:
新科斯糖的生物制备及其月桂酸酯的酶法合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新科斯糖是一种蔗果三糖族低聚果糖,具有较1F-低聚果糖更好的促益生菌能力,被称为“高效益生元”,是一种功能性甜味剂。然而,由于植物提取新科斯糖产量较低且受季节性限制,而微生物发酵法由于能产合成新科斯糖的酶(~6G-果糖苷酶)的微生物较少且产量低,不具备工业化生产潜力,因此目前尚未有商品化的新科斯糖产品问世。本研究首先开发了法夫酵母全细胞法生产新科斯糖的工艺,确立了~6G-果糖苷酶和虾青素联产发酵方式,以期降低新科斯糖的生产成本,加速其工业化生产进程。同时,研究了高纯度(P90)新科斯糖的食品加工性质,以对新科斯糖将来在食品中的应用提供理论指导。最后,对新科斯糖分子进行了酯化改性,以期进一步扩大新科斯糖的应用范围。
     通过考察法夫酵母全细胞产新科斯糖的规律,确定其最佳产糖工艺条件。法夫酵母细胞在中性pH条件下显示了最佳的果糖苷酶活力;细胞浓度与新科斯糖产量非正相关,高浓度的细胞(>80g/L)会导致合成的新科斯糖水解;蔗糖浓度的增加可以显著增加新科斯糖产量,但同时会降低新科斯糖的生产效率;提高反应温度会显著增加法夫酵母细胞的果糖苷酶活力;细胞酶活特性与其种龄密切相关,指数生长期的细胞具有较高的果糖苷酶活力,稳定期的细胞具有较高的水解酶活力。在优化的工艺条件即:细胞种龄32h,浓度80g/L,蔗糖水溶液浓度400g/L,转化温度30℃,转化时间4h,新科斯糖产量可以达到227.72g/L。
     根据法夫酵母可产虾青素作为高附加值产品的特点,优化了~6G-果糖苷酶和虾青素联产的培养基成分和发酵条件,以期降低新科斯糖的生产成本。单因素实验结果显示蔗糖和玉米浆是~6G-果糖苷酶和虾青素联产的最佳碳源和氮源;Plackett-Burman实验设计优化结果显示玉米浆和pH是影响~6G-果糖苷酶和虾青素联产的关键因素;中心组合实验结果显示玉米浆浓度为52.5mL/L,pH为7.9时,~6G-果糖苷酶和虾青素联产可以达到最佳产量,分别为242.57U/mL和5.23mg/L;在优化的培养条件下,采用全细胞生物转化工艺,新科斯糖的最大生产效率为119.06g/L/h,且成本分析显示培养基成本较优化前降低了66.3%。此研究进一步加速了新科斯糖的工业化生产进程。
     通过模拟不同的杀菌热处理条件,研究了新科斯糖的酸热稳定性,结果表明:新科斯糖在中性和碱性环境下均非常稳定性,可耐受巴氏杀菌(85℃,60min),高温短时间(100℃,30min和121℃,20min)及超高温瞬时(135℃,30s)热处理。在酸性环境下,pH为2和3的新科斯糖溶液经85℃,30min热处理,保留率分别为42.04%和78.99%;pH为4的新科斯糖溶液经100℃,30min和121℃,20min热处理,保留率分别为97.08%和89.83%。运用DSC技术,研究了新科斯糖对大米淀粉糊化及老化性质的影响,结果显示:新科斯糖可以提高大米淀粉初始糊化温度,与低聚果糖,异麦芽糖及蔗糖相比,对初始糊化温度的增加程度大小顺序为:低聚果糖>新科斯糖>异麦芽糖>蔗糖;新科斯糖可以降低淀粉糊化焓值,降低程度与新科斯糖的加入量成正相关性。新科斯糖对淀粉老化行为影响结果表明:淀粉在4℃储藏时,低浓度(10%)新科斯糖在短期内(7天)和长期内(28天)均可以显著抑制淀粉的老化;而高浓度新科斯糖(30%)在长期内可以抑制淀粉老化。淀粉储藏在25℃时,低浓度(10%)的新科斯糖在长期内(28天)会抑制淀粉老化,其他情况下对淀粉老化行为影响效果不显著。与FOS,IMO相比,新科斯糖抗淀粉老化效果优于FOS和IMO。
     采用月桂酸乙烯酯成功对新科斯糖进行了酰化改性,经LC-MS初步鉴定产物为新科斯糖月桂酸单酯。通过对新科斯糖月桂酸酯合成规律的考察,确定了最佳反应条件:反应体系为DMSO和2-甲基-2-丁醇(2:8;v/v),新科斯糖与月桂酸乙烯酯的分子摩尔比为1:12,反应温度为50℃,分子筛添加量为100g/L,Novozyme435添加量为10g/L,反应32h后,转化率达到82.38%。在对反应进程研究的基础上,制定了新科斯糖补料策略(每隔8h补新科斯糖0.01M),连续补加8次后,新科斯糖月桂酸酯的产量提高了4.47倍,达到61.35mg/mL。采用C18固相萃取色谱柱对合成的新科斯糖月桂酸酯进行了纯化,并采用1H和13C NMR,COSY和HMQC对合成的糖酯进行了结构鉴定,结果显示糖酯为新科斯糖-6-月桂酸酯。最后,采用Du Nouy吊片法测定了其CMC值,结果为352μmol/L。
Neokestose, a novel fructooligosaccharide (FOS), was reported to possess superiorprebiotic activity to commercial FOS. Such favorable functionalities may boost the marketdemand of neo-FOS. However, no commercial neo-FOS have been produced until now,mainly due to the high cost for their trace amount extraction from vegetables and fruits ortheir low microbial productivity via~6G-fructofuranosidase (~6G-FFase). The whole-cellbiotransformation process, and simultaneous production of~6G-FFase and astaxanthin byXanthophyllomyces dendrorhous were firstly developed to make neokestose practicallyfeasible for commercial production in the present study. Moreover, the properties for foodprocessing were investigated to provide theoretical guidance for the application in foodproduct. Finally, the neokestose was acylated to enlarge the application of this functionalfactor.
     The effects of production parameters on the biotransformation of sucrose wereinvestigated to enhance the yield of neokestose by Xanthophyllomyces dendrorhous. Cellsshowed optimal~6G-FFase activity at neutral pH and the yield of neokestose showed nosignificant differences between buffer and buffer-free systems. Cell concentration (>80g/L)negatively affected the maximum neokestose yield. Sucrose concentration positivelyincreased the maximum yield of neokestose. Elevating the reaction temperature to30℃, theneokestose productivity increased1.85-fold compared with that at20℃. Meanwhile, cell ageof32h enabled the biotransformation of sucrose more efficiently. In addition, free cellsexhibited a higher productivity over immobilized cells. The maximum neokestoseconcentration finally reached227.72g/L from400g/L sucrose under the optimal conditions.
     The effects of medium composition and culture conditions on the simultaneousproduction of~6G-FFase and astaxanthin were investigated to reduce the capital cost ofneokestose production by Xanthophyllomyces dendrorhous. The sucrose and corn steep liquor(CSL) were found to be the optimal carbon source and nitrogen source, respectively. CSL andinitial pH were selected as the critical factors using Plackett-Burman design. Maximum~6G-FFase242.57U/mL with5.23mg/L astaxanthin was obtained at CSL52.5mL/L and pH7.9by central composite design. Neokestose yield could reach238.12g/L under the optimizedmedium conditions. Cost analysis suggested66.3%of substrate cost was reduced comparedwith that before optimization. These results demonstrated that the optimized medium andculture conditions could significantly enhance the production of~6G-FFase and astaxanthinand remarkably decrease the substrate cost, which opened up possibilities to produceneokestose industrially.
     The heat and pH stability of neokestose was evaluated compared with commercial FOS bysimulating different thermo sterilization. The results showed that neokestose at neutral andalkaline pH displayed high heat and pH stability during pasteurization (85℃,30min), hightemperature for short time sterilization (100℃,30min and121℃,20min) and ultra hightemperature sterilization (135℃,30s). The neokestose at pH2and pH3retained42.04%and78.99%during pasteurization (85℃,30min), indicating a significant degradation. Neokestoseat pH4retained97.08%and89.83%during high temperature short time sterilization (100℃,30min and121℃,20min), suggesting a relatively high stability compared to that of FOS. Onthe other hand, the effects of neokestose on the gelatinization and retrogradation of rice starchwere studied compared with FOS, IMO and sucrose using a differential scanning calorimetry(DSC), and the results suggested that the addition of neokestose could increase thegelatinization temperature of rice starch in the order of neokestose>FOS>IMO>sucrose, andreduce the gelatinization enthalpy which showed negatively correlation with the concentrationof neokestose. Moreover, the effect of neokestose on the retrogradation of rice starch wasevaluated. The results indicated that10%of neokestose could significantly retard theretrogradation of rice starch when stored at4℃for short term (7days) and long term (28days);30%of neokestose could inhibit the retrogradation of rice starch when stored at4℃for longterm (28days);10%of neokestose could retard the retrogradation of rice starch when stored at25℃for long term (28days),30%of neokestose had no significant effect on the retragradationof rice starch when stored at25℃. Furthermore, neokestose showed better inhibition effect onthe retrogradation of rice starch compared with that of FOS and IMO at the tested conditions.
     An acylation modification of neokestose using Candida antarctica lipase B asbiocatalyst was investigated aiming to further broaden the potential application of neokestose.The process conditions were optimized, and the highest conversion rate of82.38%wasachieved under the optimized conditions:20%DMSO in2-methyl-2-butanol (v/v), molarratio of12(vinyl laurate to neokestose), temperature of50℃, molecular sieves of100g/L.Finally, a neokestose feeding strategy was developed based on the kinetics of neokestoseacylation, driving neokestose laurate yield up to61.35mg/mL. The process proposed couldmake it economically and environmentally feasible for large scale production. The neokestoselaurate was purified using C18solid phase extraction column. The structure of neokestoselaurate was determined by1H and13C NMR,COSY and HMQC, and the results showed thatthe novel chemical was6-O-laurylneokestose. Finally, CMC of6-O-laurylneokestose wasdetermined to be352μmol/L using Du Nouy plate method.
引文
1.刘婷,吴道澄.食品中使用的甜味剂[J].中国调味品,2010,35(11).
    2.詹永,杨勇.功能性甜味剂在食品中的应用[J].中国食品添加剂,2006,(4):6.
    3.《求医问药》编辑部.我国糖尿病人数突增,令人担忧[J].求医问药,2010,(6).
    4.李晓燕,姜勇,胡楠, et al.2010年我国成年人超重及肥胖流行特征[J].中华预防医学杂志,2012,46(8).
    5. Alvaro-Benito, M., M. de Abreu, F. Portillo, et al. New Insights into the Fructosyltransferase Activityof Schwanniomyces occidentalis beta-Fructofuranosidase, Emerging from Nonconventional CodonUsage and Directed Mutation[J]. Applied and Environmental Microbiology,2010,76(22):7491-7499.
    6. Vijn, I., A. van Dijken, N. Sprenger, et al. Fructan of the inulin neoseries is synthesized in transgenicchicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan6G-fructosyltransferase[J]. The Plant journal: for cell and molecular biology,1997,11(3):387-98.
    7. L Hocine, L., Z. Wang, B. Jiang, et al. Purification and partial characterization of fructosyltransferaseand invertase from Aspergillus niger AS0023[J]. Journal of Biotechnology,2000,81(1):73-84.
    8. Rehm, J., L. Willmitzer, A.G. Heyer. Production of1-kestose in transgenic yeast expressing afructosyltransferase from Aspergillus foetidus[J]. J Bacteriol,1998,180(5):1305-10.
    9. Katapodis, P., E. Kalogeris, D. Kekos, et al. Biosynthesis of fructo-oligosaccharides by Sporotrichumthermophile during submerged batch cultivation in high sucrose media[J]. Appl Microbiol Biotechnol,2004,63(4):378-82.
    10. Gutierrez-Alonso, P., L. Fernandez-Arrojo, F.J. Plou, et al. Biochemical characterization of abeta-fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity[J]. FEMSYeast Res,2009,9(5):768-73.
    11. Linde, D., I. Macias, L. Fernandez-Arrojo, et al. Molecular and biochemical characterization of abeta-fructofuranosidase from Xanthophyllomyces dendrorhous[J]. Appl Environ Microbiol,2009,75(4):1065-73.
    12. ALLEN;, P.J., J.S.D. BACON. Oligosaccharides Formed from Sucrose by Fructose-transferringEnzymes of Higher Plants[J]. Biochem J.,1956,63(2):200-206.
    13. Edelman, J., T.G. Jefford. The metabolism of fructose polymers in plants.4. Beta-fructofuranosidasesof tubers of Helianthus tuberosus L[J]. The Biochemical journal,1964,93(1):148-61.
    14. Edelman, J., A.G. Dickerson. The metabolism of fructose polymers in plants. Transfructosylation intubers of Helianthus tuberosus L[J]. The Biochemical journal,1966,98(3):787-94.
    15. Satyanarayana, M.N. Biosynthesis of oligosaccharides and fructans in Agave vera cruz: PartI--Properties of a partially purified transfructosylase[J]. Indian journal of biochemistry&biophysics,1976,13(3):261-6.
    16. Darbyshire, B., R.J. Henry. THE DISTRIBUTION OF FRUCTANS IN ONIONS[J]. New Phytologist,1978,81(1):29-34.
    17. Yamamori, A., S. Onodera, M. Kikuchi, et al. Two novel oligosaccharides formed by1(F)-fructosyltransferase purified from roots of asparagus (Asparagus officinalis L.)[J]. BioscienceBiotechnology and Biochemistry,2002,66(6):1419-1422.
    18. Agopian, R.G.D., C.A. Soares, E. Purgatto, et al. Identification of Fructooligosaccharides in DifferentBanana Cultivars[J]. Journal of Agricultural and Food Chemistry,2008,56(9):3305-3310.
    19. Pedreschi, R., D. Campos, G. Noratto, et al. Andean Yacon Root (Smallanthus sonchifolius Poepp.Endl) Fructooligosaccharides as a Potential Novel Source of Prebiotics[J]. Journal of Agricultural andFood Chemistry,2003,51(18):5278-5284.
    20. Hellwege, E.M., D. Gritscher, L. Willmitzer, et al. Transgenic potato tubers accumulate high levels of1-kestose and nystose: functional identification of a sucrose sucrose1-fructosyltransferase ofartichoke (Cynara scolymus) blossom discs[J]. The Plant journal: for cell and molecular biology,1997,12(5):1057-65.
    21. Hernandez, L., J. Arrieta, C. Menendez, et al. Isolation and enzymic properties of levansucrasesecreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane[J]. TheBiochemical journal,1995,309(Pt1):113-8.
    22. Sprenger, N., K. Bortlik, A. Brandt, et al. Purification, cloning, and functional expression ofsucrose:fructan6-fructosyltransferase, a key enzyme of fructan synthesis in barley[J]. Proceedings ofthe National Academy of Sciences of the United States of America,1995,92(25):11652-6.
    23. Su, Y.C., C.S. Sheu, J.Y. Chien, et al. Production of beta-fructofuranosidase with transfructosylatingactivity for fructooligosaccharides synthesis by Aspergillus japonicus NTU-1249[J]. Proceedings ofthe National Science Council, Republic of China. Part B, Life sciences,1991,15(3):131-9.
    24. van Hijum, S., K. Bonting, M. van der Maarel, et al. Purification of a novel fructosyltransferase fromLactobacillus reuteri strain121and characterization of the levan produced[J]. Fems MicrobiologyLetters,2001,205(2):323-328.
    25. Olivares-Illana, V., A. Lopez-Munguia, C. Olvera. Molecular characterization of inulosucrase fromLeuconostoc citreum: a fructosyltransferase within a glucosyltransferase[J]. JOURNAL OFBACTERIOLOGY,2003,185(12):3606-3612.
    26. Vandakova, M., Z. Platkova, M. Antosova, et al. Optimization of cultivation conditions for productionof fructosyltransferase by Aureobasidium pullulans[J]. Chemical Papers,2004,58(1):15-22.
    27. Kurakake, M., K. Ogawa, M. Sugie, et al. Two types of beta-fructofuranosidases from Aspergillusoryzae KB[J]. Journal of Agricultural and Food Chemistry,2008,56(2):591-596.
    28. Lateef, A., J.K. Oloke, E.B.G. Kana, et al. Rhizopus stolonifer LAU07: a novel source offructosyltransferase[J]. Chemical Papers,2008,62(6):635-638.
    29. Gori, A., G. Rizzardini, B. van't Land, et al. Specific prebiotics modulate gut microbiota and immuneactivation in HAART-naive HIV-infected adults: results of the [ldquo]COPA[rdquo] pilot randomizedtrial[J]. Mucosal Immunol,2011,4(5):554-563.
    30. Huebner, J., R.L. Wehling, R.W. Hutkins. Functional activity of commercial prebiotics[J].International Dairy Journal,2007,17(7):770-775.
    31. Pereira, D.I.A., G.R. Gibson. Effects of Consumption of Probiotics and Prebiotics on Serum LipidLevels in Humans[J]. Critical Reviews in Biochemistry and Molecular Biology,2002,37(4):259-281.
    32.曲丹.低聚果糖对原发性高血压作用效果的实验及临床试验研究[D]:[博士学位论文].上海:第二军医大学,2010
    33.刘云芳,朱永利,郑德良.低聚糖对断奶羔羊小肠黏膜免疫相关细胞的影响[J].中国草食动物,2011,31(1).
    34. Cicek, B., P. Arslan, F. Kelestimur. THE EFFECTS OF OLIGOFRUCTOSE AND POLYDEXTROSEON METABOLIC CONTROL PARAMETERS IN TYPE-2DIABETES[J]. Pakistan Journal ofMedical Sciences,2009,25(4):573-578.
    35. Yun, J.W. Fructooligosaccharides--Occurrence, preparation, and application[J]. Enzyme and MicrobialTechnology,1996,19(2):107-117.
    36. Stewart, M.L., D.A. Timm, J.L. Slavin. Fructooligosaccharides exhibit more rapid fermentation thanlong-chain inulin in an in vitro fermentation system[J]. Nutr Res,2008,28(5):329-34.
    37.王宇.低聚果糖通便作用及影响肠道矿物质和脂类吸收的研究[D]:[硕士学位论文].济南:山东大学,2008
    38. Sabater-Molina, M., E. Larqué, F. Torrella, et al. Dietary fructooligosaccharides and potential benefitson health[J]. Journal of Physiology and Biochemistry,2009,65(3):315-328.
    39. Sangeetha, P.T., M.N. Ramesh, S.G. Prapulla. Recent trends in the microbial production, analysis andapplication of Fructooligosaccharides[J]. Trends in Food Science&Technology,2005,16(10):442-457.
    40. Ikram, u.-H., S. Ali, A. Aslam, et al. Characterization of a Saccharomyces cerevisiae mutant withenhanced production of beta-D-fructofuranosidase[J]. Bioresource Technology,2008,99(1):7-12.
    41. Kurakake, M., R. Masumoto, K. Maguma, et al. Production of Fructooligosaccharides bybeta-Fructofuranosidases from Aspergillus oryzae KB[J]. Journal of Agricultural and Food Chemistry,2010,58(1):488-492.
    42. Prata, M., S. Mussatto, L. Rodrigues, et al. Fructooligosaccharide production by Penicilliumexpansum[J]. Biotechnology Letters,2010,32(6):837-840.
    43. Nguyen, Q.D., J.M. Rezessy-Szabo, M.K. Bhat, et al. Purification and some properties ofbeta-fructofuranosidase from Aspergillus niger IMI303386[J]. Process Biochemistry,2005,40(7):2461-2466.
    44. Shin, H.T., S.Y. Baig, S.W. Lee, et al. Production of fructo-oligosaccharides from molasses byAureobasidium pullulans cells[J]. Bioresource Technology,2004,93(1):59-62.
    45. Sangeetha, P.T., M.N. Ramesh, S.G. Prapulla. Maximization of fructooligosaccharide production bytwo stage continuous process and its scale up[J]. Journal of Food Engineering,2005,68(1):57-64.
    46. L'Hocine, L., Z. Wang, B. Jiang, et al. Purification and partial characterization of fructosyltransferaseand invertase from Aspergillus niger AS0023[J]. J Biotechnol,2000,81(1):73-84.
    47. Guimaraes, L.H.S., H.F. Terenzi, M. Polizeli, et al. Production and characterization of a thermostableextracellular beta-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrialresidues as carbon sources[J]. Enzyme and Microbial Technology,2007,42(1):52-57.
    48. Alvaro-Benito, M., M. de Abreu, L. Fernandez-Arrojo, et al. Characterization of abeta-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yieldingthe prebiotic6-kestose[J]. J Biotechnol,2007,132(1):75-81.
    49. Lateef, A., J.K. Oloke, S.G. Prapulla. The effect of ultrasonication on the release offructosyltransferase from Aureobasidium pullulans CFR77[J]. Enzyme and Microbial Technology,2007,40(5):1067-1070.
    50. Chiang, C.J., W.C. Lee, D.C. Sheu, et al. Immobilization of beta-fructofuranosidases from Aspergilluson methacrylamide-based polymeric beads for production of fructooligosaccharides[J]. BiotechnolProg,1997,13(5):577-82.
    51. Cheng, T.C., K.J. Duan, D.C. Sheu. Immobilization of beta-fructofuranosidase from Aspergillusjaponicus on chitosan using tris(hydroxymethyl)phosphine or glutaraldehyde as a coupling agent[J].Biotechnol Lett,2005,27(5):335-8.
    52. Ghazi, I., A.G. De Segura, L. Fernández-Arrojo, et al. Immobilisation of fructosyltransferase fromAspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides[J].Journal of Molecular Catalysis B: Enzymatic,2005,35(1–3):19-27.
    53. Mussatto, S., L. Rodrigues, J. Teixeira. β-Fructofuranosidase production by repeated batchfermentation with immobilized Aspergillus japonicus[J]. Journal of Industrial Microbiology andBiotechnology,2009,36(7):923-928.
    54. Chien, C.S., W.C. Lee, T.J. Lin. Immobilization of Aspergillus japonicus by entrapping cells in glutenfor production of fructooligosaccharides[J]. Enzyme and Microbial Technology,2001,29(4-5):252-257.
    55. Caicedo, L., E. Silva, O. Sanchez. Semibatch and continuous fructooligosaccharides production byAspergillus sp N74in a mechanically agitated airlift reactor[J]. Journal of Chemical Technology andBiotechnology,2009,84(5):650-656.
    56. Fernandez, R.C., B.G. Maresma, A. Juarez, et al. Production of fructooligosaccharides bybeta-fructofuranosidase from Aspergillus sp27H[J]. Journal of Chemical Technology andBiotechnology,2004,79(3):268-272.
    57. Kathiravan, M.N., R.K. Rani, R. Karthick, et al. Mass transfer studies on the reduction of Cr(VI) usingcalcium alginate immobilized Bacillus sp in packed bed reactor[J]. Bioresource Technology,2010,101(3):853-858.
    58. Korus, J., K. Grzelak, K. Achremowicz, et al. Influence of prebiotic additions on the quality ofgluten-free bread and on the content of inulin and fructooligosaccharides[J]. Food Science andTechnology International,2006,12(6):489-495.
    59. Courtin, C.M., K. Swennen, P. Verjans, et al. Heat and pH stability of prebioticarabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides[J]. Food Chemistry,2009,112(4):831-837.
    60. Wang, J., B. Sun, Y. Cao, et al. Enzymatic preparation of wheat bran xylooligosaccharides and theirstability during pasteurization and autoclave sterilization at low pH[J]. Carbohydrate Polymers,2009,77(4):816-821.
    61. Psimouli, V., V. Oreopoulou. The effect of alternative sweeteners on batter rheology and cakeproperties[J]. Journal of the Science of Food and Agriculture,2012,92(1):99-105.
    62. Matusek, A., B. Czukor, P. Meresz. Comparison of sucrose and fructo-oligosaccharides as osmoticagents in apple[J]. Innovative Food Science&Emerging Technologies,2008,9(3):365-373.
    63. Kilian, S.G., F.C.W. Sutherland, P.S. Meyer, et al. Transport-limited sucrose utilization and neokestoseproduction by Phaffia rhodozyma[J]. Biotechnology Letters,1996,18(8):975-980.
    64. Atiyeh, H., Z. Duvnjak. Study of the production of fructose and ethanol from sucrose media bySaccharomyces cerevisiae[J]. Appl Microbiol Biotechnol,2001,57(3):407-11.
    65. Shinohara, J.H.L.S. Reaction Route for Enzymatic Production of Neofructo-oligosaccharides fromSucrose Using Penicillium citrinum Cells[J]. The Journal of Microbiology,,2001,39(4):331-333.
    66. Kilian, S., S. Kritzinger, C. Rycroft, et al. The effects of the novel bifidogenic trisaccharide,neokestose, on the human colonic microbiota[J]. World Journal of Microbiology and Biotechnology,2002,18(7):637-644.
    67. Kritzinger, S.M., S.G. Kilian, M.A. Potgieter, et al. The effect of production parameters on thesynthesis of the prebiotic trisaccharide, neokestose, by Xanthophyllomyces dendrorhous (Phaffiarhodozyma)[J]. Enzyme and Microbial Technology,2003,32(6):728-737.
    68. Lim, J.S., S.W. Park, J.W. Lee, et al. Immobilization of Penicillium citrinum by entrapping cells incalcium alginate for the production of neo-fructooligosaccharides[J]. Journal of Microbiology andBiotechnology,2005,15(6):1317-1322.
    69. Lim, J.S., M.C. Park, J.H. Lee, et al. Optimization of culture medium and conditions forneo-fructooligosaccharides production by Penicillium citrinum[J]. European Food Research andTechnology,2005,221(5):639-644.
    70.徐学明.法夫酵母产虾青素的研究[D]:[博士学位论文].无锡:江南大学,2000
    71.张静娟.法夫酵母发酵生产新科斯糖[D]:[硕士学位论文].无锡:江南大学,2007
    72.苏丁.法夫酵母新科斯糖的鉴定及相应产糖酶的研究[D]:[硕士学位论文].无锡:江南大学,2008
    73. Chen, J., X.M. Chen, X.M. Xu, et al. Biochemical characterization of an intracellular6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production ofneo-fructooligosaccharides (neo-FOSs)[J]. Bioresource Technology,2011,102(2):1715-1721.
    74. Lee, S.C., T.J. Fang. Simultaneous extraction of carotenoids and transfructosylating enzyme fromXanthophyllomyces dendrorhous by a bead beater[J]. Biotechnology Letters,2011,33(1):109-112.
    75. Linde, D., B. Rodríguez-Colinas, M. Estévez, et al. Analysis of neofructooligosaccharides productionmediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous[J].Bioresource Technology,2012,109(0):123-130.
    76. Yoshikawa, J., S. Amachi, H. Shinoyama, et al. Production of fructooligosaccharides by crude enzymepreparations of beta-fructofuranosidase from Aureobasidium pullulans[J]. Biotechnol Lett,2008,30(3):535-9.
    77. Neta, N.d.A.S., J.C.S.d. Santos, S.d.O. Sancho, et al. Enzymatic synthesis of sugar esters and theirpotential as surface-active stabilizers of coconut milk emulsions[J]. Food Hydrocolloids,2012,27(2):324-331.
    78. Choi, S.J., E.A. Decker, L. Henson, et al. Formulation and properties of model beverage emulsionsstabilized by sucrose monopalmitate: Influence of pH and lyso-lecithin addition[J]. Food ResearchInternational,2011,44(9):3006-3012.
    79. Nobmann, P., A. Smith, J. Dunne, et al. The antimicrobial efficacy and structure activity relationshipof novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms[J].International Journal of Food Microbiology,2009,128(3):440-445.
    80. Wagh, A., S. Shen, F.A. Shen, et al. Effect of Lactose Monolaurate on Pathogenic and NonpathogenicBacteria[J]. Applied and Environmental Microbiology,2012,78(9):3465-3468.
    81. Devulapalle, K.S., A. Gómez de Segura, M. Ferrer, et al. Effect of carbohydrate fatty acid esters onStreptococcus sobrinus and glucosyltransferase activity[J]. Carbohydrate Research,2004,339(6):1029-1034.
    82. Soli, K.W., A. Yoshizumi, A. Motomatsu, et al. Decontamination of fresh produce by the use ofslightly acidic hypochlorous water following pretreatment with sucrose fatty acid ester undermicrobubble generation[J]. Food Control,2010,21(9):1240-1244.
    83. Yamauchi, N., Y. Tokuhara, Y. Ohyama, et al. Inhibitory effect of sucrose laurate ester on degreeningin Citrus nagato-yuzukichi fruit during storage[J]. Postharvest Biology and Technology,2008,47(3):333-337.
    84.王素雅,赵利,任顺成.糖酯在食品中的应用及其酶法合成[J].食品工业科技,2002,(3):2.
    85. Pérez-Victoria, I., J.C. Morales. Complementary regioselective esterification of non-reducingoligosaccharides catalyzed by different hydrolases[J]. Tetrahedron,2006,62(5):878-886.
    86. Gumel, A.M., M.S.M. Annuar, T. Heidelberg, et al. Thermo-kinetics of lipase-catalyzed synthesis of6-O-glucosyldecanoate[J]. Bioresource Technology,2011,102(19):8727-8732.
    87. Cramer, J.F., M.S. Dueholm, S.B. Nielsen, et al. Controlling the degree of esterification in lipasecatalysed synthesis of xylitol fatty acid esters[J]. Enzyme and Microbial Technology,2007,41(3):346-352.
    88. Kobayashi, T. Lipase-catalyzed syntheses of sugar esters in non-aqueous media[J]. BiotechnologyLetters,2011,33(10):1911-1919.
    89. Habulin, M., S. abeder,. Knez. Enzymatic synthesis of sugar fatty acid esters in organic solvent andin supercritical carbon dioxide and their antimicrobial activity[J]. The Journal of Supercritical Fluids,2008,45(3):338-345.
    90.高红霞,冯骉,张晓鸣等.非水相酶法合成葡萄糖月桂酸单酯[J].食品与生物技术学报,2009,28(1):5.
    91.王银珍.脂肪酶合成糖酯的催化作用研究[D]:[硕士学位论文].南宁:广西大学,2009
    92.冯雷刚.非水相脂肪酶催化合成糖酯的研究[D]:2004
    93. Ferrer, M., M.A. Cruces, M. Bernabé, et al. Lipase-catalyzed regioselective acylation of sucrose intwo-solvent mixtures[J]. Biotechnology and Bioengineering,1999,65(1):10-16.
    94. Chamouleau, F., D. Coulon, M. Girardin, et al. Influence of water activity and water content on sugaresters lipase-catalyzed synthesis in organic media[J]. Journal of Molecular Catalysis B: Enzymatic,2001,11(4–6):949-954.
    95. Ferrer, M., J. Soliveri, F.J. Plou, et al. Synthesis of sugar esters in solvent mixtures by lipases fromThermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties[J]. Enzymeand Microbial Technology,2005,36(4):391-398.
    96. Pérez-Victoria, I., J.C. Morales. Regioselectivity in acylation of oligosaccharides catalyzed by themetalloprotease thermolysin[J]. Tetrahedron,2006,62(10):2361-2369.
    97. Ha, S., N. Hiep, S. Lee, et al. Optimization of lipase-catalyzed glucose ester synthesis in ionicliquids[J]. Bioprocess and Biosystems Engineering,2010,33(1):63-70.
    98.李更更.非水相酶催化合成脂肪酸酯及其抗菌性的研究[D]:[硕士学位论文].无锡:江南大学,2008
    99.孙月娥.不饱和脂肪酸海藻糖单酯酶法合成及水相氧化研究[D]:[博士学位论文].无锡:江南大学,2009
    100. Favrelle, A., C. Boyère, P. Laurent, et al. Enzymatic synthesis and surface active properties of novelhemifluorinated mannose esters[J]. Carbohydrate Research,2011,346(9):1161-1164.
    101. Lim, J.S., J.H. Lee, S.W. Kang, et al. Studies on production and physical properties of neo-FOSproduced by co-immobilized Penicillium citrinum and neo-fructosyltransferase[J]. European FoodResearch and Technology,2007,225(3-4):457-462.
    102. Yoshikawa, J., S. Amachi, H. Shinoyama, et al. Purification and some properties ofbeta-fructofuranosidase I formed by Aureobasidium pullulans DSM2404[J]. J Biosci Bioeng,2007,103(5):491-3.
    103. Flores-Cotera, L.B., R. Martin, S. Sanchez. Citrate, a possible precursor of astaxanthin in Phaffiarhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically definedmedium[J]. Applied Microbiology and Biotechnology,2001,55(3):341-347.
    104. Onderkova, Z., J. Bryjak, K. Vankova, et al. Kinetics of thermal inactivation of free Aureobasidiumpullulans fructosyltransferase[J]. Enzyme and Microbial Technology,2010,47(4):134-139.
    105. Nemukula, A., T. Mutanda, B.S. Wilhelmi, et al. Response surface methodology: Synthesis of shortchain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus[J]. BioresourTechnol,2009,100(6):2040-5.
    106.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T23528-2009.低聚果糖[S].北京:中国标准出版社,2009.
    107. Fernandez-Arrojo, L., D. Marin, A.G. De Segura, et al. Transformation of maltose into prebioticisomaltooligosaccharides by a novel alpha-glucosidase from Xantophyllomyces dendrorhous[J].Process Biochemistry,2007,42(11):1530-1536.
    108. Mussatto, S.I., L.R. Rodrigues, J.A. Teixeira. beta-Fructofuranosidase production by repeated batchfermentation with immobilized Aspergillus japonicus[J]. J Ind Microbiol Biotechnol,2009,36(7):923-8.
    109. Mussatto, S.I., C.N. Aguilar, L.R. Rodrigues, et al. Colonization of Aspergillus japonicus on syntheticmaterials and application to the production of fructooligosaccharides[J]. Carbohydr Res,2009,344(6):795-800.
    110. Sanchez, O., F. Guio, D. Garcia, et al. Fructooligosaccharides production by Aspergillus sp N74in amechanically agitated airlift reactor[J]. Food and Bioproducts Processing,2008,86(C2):109-115.
    111. Cairns, A.J. Effects of enzyme concentration on oligofructan synthesis from sucrose[J].Phytochemistry,1995,40(3):705-708.
    112. Santos, A.M.P., F. Maugeri. Synthesis of fructooligosaccharides from sucrose using inulinase fromKluyveromyces marxianus[J]. Food Technology and Biotechnology,2007,45(2):181-186.
    113. E.J. Vandamme, W.S. Biotechnical modification of carbohydrates[J]. FEMS Microbiology Reviews,1995,16(2-3):163-186.
    114. Bonnin, E., J.F. Thibault. Galactooligosaccharide production by transfer reaction of anexogalactanase[J]. Enzyme and Microbial Technology,1996,19(2):99-106.
    115. Van den Ende, W., A. Michiels, D. Van Wonterghem, et al. Defoliation induces fructan1-exohydrolaseII in witloof chicory roots. Cloning and purification of two isoforms, fructan1-exohydrolase IIa andfructan1-exohydrolase IIb. Mass fingerprint of the fructan1-exohydrolase II enzymes[J]. PlantPhysiology,2001,126(3):1186-1195.
    116. Yoshikawa, J., S. Amachi, H. Shinoyama, et al. Multiple beta-fructofuranosidases by Aureobasidiumpullulans DSM2404and their roles in fructooligosaccharide production[J]. Fems Microbiology Letters,2006,265(2):159-163.
    117. Dorta, C., R. Cruz, P. de Oliva-Neto, et al. Sugarcane molasses and yeast powder used in theFructooligosaccharides production by Aspergillus japonicus-FCL119T and Aspergillus niger ATCC20611[J]. J Ind Microbiol Biotechnol,2006,33(12):1003-9.
    118. Rodriguez-Saiz, M., J.L. de la Fuente, J.L. Barredo. Xanthophyllomyces dendrorhous for theindustrial production of astaxanthin[J]. Applied Microbiology and Biotechnology,2010,88(3):645-658.
    119. Miki, W. Biological functions and activities of animal carotenoids[J]. Pure and Appl Chem,1991,63:141-146.
    120. Chew, B.P., J.S. Park, M.W. Wong, et al. A comparison of the anticancer activities of dietarybeta-carotene, canthaxanthin and astaxanthin in mice in vivo[J]. Anticancer research,1999,19(3A):1849-53.
    121. Hosokawa, M., T. Okada, N. Mikami, et al. Bio-functions of Marine Carotenoids[J]. Food Science andBiotechnology,2009,18(1):1-11.
    122. Walker, L.A., T. Wang, H. Xin, et al. Supplementation of Laying-Hen Feed with Palm Tocos andAlgae Astaxanthin for Egg Yolk Nutrient Enrichment[J]. Journal of Agricultural and Food Chemistry,2012,60(8):1989-1999.
    123. Rubio, M.C., A.R. Navarro. Regulation of invertase synthesis in Aspergillus niger[J]. Enzyme andMicrobial Technology,2006,39(4):601-606.
    124. Costaglioli, P., E. Meilhoc, I. Janatova, et al. Secretion of invertase from Schwanniomycesoccidentalis[J]. Biotechnology Letters,1997,19(7):623-627.
    125. Kim, J.H., S.K. Choi, Y.S. Park, et al. Effect of culture conditions on astaxanthin formation in redyeast Xanthophyllomyces dendrorhous mutant JH1[J]. Journal of Microbiology and Biotechnology,2006,16(3):438-442.
    126. Liu, Y.S., J.Y. Wu. Optimization of cell growth and carotenoid production of Xanthophyllomycesdendrorhous through statistical experiment design[J]. Biochemical Engineering Journal,2007,36(2):182-189.
    127. Park, K.M., M.W. Song, J.H. Lee. Production of carotenoids by beta-ionone-resistant mutant ofXanthophyllomyces dendrorhous using various carbon sources[J]. Biotechnology and BioprocessEngineering,2008,13(2):197-203.
    128. Ikram, u.-H., S. Ali, A. Aslam, et al. Characterization of a Saccharomyces cerevisiae mutant withenhanced production of beta-D-fructofuranosidase[J]. Bioresour Technol,2008,99(1):7-12.
    129. Mughal, M.S., S. Ali, M. Ashiq, et al. Kinetics of an extracellular exo-inulinase production from a5-flourocytosine resistant mutant of Geotrichum candidum using two-factorial design[J]. BioresourceTechnology,2009,100(14):3657-3662.
    130. Hu, Z.C., Y.G. Zheng, Z. Wang, et al. Effect of sugar-feeding strategies on astaxanthin production byXanthophyllomyces dendrorhous[J]. World Journal of Microbiology&Biotechnology,2005,21(5):771-775.
    131. Chen, W.-c., C.-h. Liu. Production of [beta]-fructofuranosidase by Aspergillus japonicus[J]. Enzymeand Microbial Technology,1996,18(2):153-160.
    132. Katapodis, P., P. Christakopoulos. Induction and partial characterization of intracellularbeta-fructofuranosidase from Thermoascus aurantiacus and its application in the synthesis of6-kestose[J]. World Journal of Microbiology&Biotechnology,2004,20(7):667-672.
    133. Salinas, M., N. Perotti. Production of fructosyltransferase by<i>Aureobasidium</i> sp.ATCC20524in batch and two-step batch cultures[J]. Journal of Industrial Microbiology&Biotechnology,2009,36(1):39-43.
    134. Pereira, F.B., P.M.R. Guimar es, J.A. Teixeira, et al. Optimization of low-cost medium for very highgravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs[J].Bioresource Technology,2010,101(20):7856-7863.
    135. Pe alva, M.A., J. Tilburn, E. Bignell, et al. Ambient pH gene regulation in fungi: makingconnections[J]. Trends in Microbiology,2008,16(6):291-300.
    136. MACCABE, A.P., M. OREJAS, J.A. PE′REZ-GONZA′LEZ. Opposite Patterns of Expression of TwoAspergillus nidulans Xylanase Genes with Respect to Ambient pH[J]. JOURNAL OFBACTERIOLOGY,1998,180(5):1331-1333.
    137. Salinas, M.A., N.I. Perotti. Production of fructosyltransferase by Aureobasidium sp. ATCC20524inbatch and two-step batch cultures[J]. J Ind Microbiol Biotechnol,2009,36(1):39-43.
    138. de la Fuente, J.L., M. Rodriguez-Saiz, C. Schleissner, et al. High-titer production of astaxanthin by thesemi-industrial fermentation of Xanthophyllomyces dendrorhous[J]. Journal of Biotechnology,2010,148(2-3):144-146.
    139. Mussatto, S.I., C.N. Aguilar, L.R. Rodrigues, et al. Fructooligosaccharides and beta-fructofuranosidaseproduction by Aspergillus Japonicus immobilized on lignocellulosic materials[J]. Journal of MolecularCatalysis B-Enzymatic,2009,59(1-3):76-81.
    140. Durán, E., A. León, B. Barber, et al. Effect of low molecular weight dextrins on gelatinization andretrogradation of starch[J]. European Food Research and Technology,2001,212(2):203-207.
    141. Baek, M.H., B. Yoo, S.T. Lim. Effects of sugars and sugar alcohols on thermal transition and coldstability of corn starch gel[J]. Food Hydrocolloids,2004,18(1):133-142.
    142. Klewicki, R. The stability of gal-polyols and oligosaccharides during pasteurization at a low pH[J].Lwt-Food Science and Technology,2007,40(7):1259-1265.
    143.段素芳,张金泽,周志桥等.热处理对功能性低聚糖稳定性的影响[J].食品与发酵工业,2009,35(3):5.
    144. Perry, P.A., A.M. Donald. The effect of sugars on the gelatinisation of starch[J]. CarbohydratePolymers,2002,49(2):155-165.
    145. Kohyama, K., K. Nishinari. Effect of soluble sugars on gelatinization and retrogradation of sweetpotato starch[J]. Journal of Agricultural and Food Chemistry,1991,39(8):1406-1410.
    146. Sikora, M., K. Pielichowski. Rheological properties of some starch-water-sugar systems[J].International Journal of Food Science&Technology,1999,34(4):371-383.
    147. Paton, D., G.M. Larocque, J. Holme. Development of cake structure: influence of ingredients on themeasurement of cohesive force during baking[J]. Cereal chemistry.,1981,58(6):527-529.
    148. Chantaro, P., R. Pongsawatmanit. Influence of sucrose on thermal and pasting properties of tapiocastarch and xanthan gum mixtures[J]. Journal of Food Engineering,2010,98(1):44-50.
    149. Juszczak, L., T. Witczak, R. Ziobro, et al. Effect of inulin on rheological and thermal properties ofgluten-free dough[J]. Carbohydrate Polymers,2012,90(1):353-360.
    150. Lai, P., C.-J. Shiau, C.-C.R. Wang. Effects of oligosaccharides on phase transition temperatures andrheological characteristics of waxy rice starch dispersion[J]. Journal of the Science of Food andAgriculture,2012,92(7):1389-1394.
    151. Babic, J., D. Subaric, B. Milicevic, et al. Influence of Trehalose, Glucose, Fructose, and Sucrose onGelatinisation and Retrogradation of Corn and Tapioca Starches[J]. Czech Journal of Food Sciences,2009,27(3):151-157.
    152. Jang, J.K., S.H. Lee, S.C. Cho, et al. Effect of Sucrose on Glass Transition, Gelatinization, andRetrogradation of Wheat Starch[J]. Cereal Chemistry Journal,2001,78(2):186-192.
    153. Baik, M.-Y., K.-J. Kim, K.-C. Cheon, et al. Recrystallization Kinetics and Glass Transition of RiceStarch Gel System[J]. Journal of Agricultural and Food Chemistry,1997,45(11):4242-4248.
    154. C. C. Seow, C., C.H. Teo;, C.K.V. Nair. A DSC STUDY OF THE EFFECTS OF SUGARS ONTHERMAL PROPERTIES OF RICE STARCH GELS BEFORE AND AFFER AGING[J]. Journal ofThermal Analysis,1996,47:1201-1212.
    155. Griffin, W.C. Classification of surface-active agents by "HLB"[J]. J Soc Cosmetic Chemists,1946,1:311-326.
    156. ekero lu, G., S. Fad lo lu, E. bano lu. Production and characterisation of enzymatically producedlauric acid esters of fructose[J]. Journal of the Science of Food and Agriculture,2002,82(13):1516-1522.
    157. Flores, M.V., K. Naraghi, J.-M. Engasser, et al. Influence of glucose solubility and dissolution rate onthe kinetics of lipase catalyzed synthesis of glucose laurate in2-methyl2-butanol[J]. Biotechnologyand Bioengineering,2002,78(7):815-821.
    158. Wang, X., S. Miao, P. Wang, et al. Highly efficient synthesis of sucrose monolaurate by alkalineprotease Protex6L[J]. Bioresource Technology,2012,109(0):7-12.
    159. ter Haar, R., H.A. Schols, L.A.M. van den Broek, et al. Molecular sieves provoke multiplesubstitutions in the enzymatic synthesis of fructose oligosaccharide–lauryl esters[J]. Journal ofMolecular Catalysis B: Enzymatic,2010,62(2):183-189.
    160. Ferrer, M., G. Perez, F.J. Plou, et al. Antitumour activity of fatty acid maltotriose esters obtained byenzymatic synthesis[J]. Biotechnology and Applied Biochemistry,2005,42(1):35-39.
    161. Zaidan, U.H., M.B.A. Rahman, S.S. Othman, et al. Biocatalytic production of lactose ester catalysedby mica-based immobilised lipase[J]. Food Chemistry,2012,131(1):199-205.
    162. Walsh, M.K., R.A. Bombyk, A. Wagh, et al. Synthesis of lactose monolaurate as influenced by variouslipases and solvents[J]. Journal of Molecular Catalysis B: Enzymatic,2009,60(3–4):171-177.
    163. Celiz, G., M. Daz. Biocatalytic preparation of alkyl esters of citrus flavanone glucoside prunin inorganic media[J]. Process Biochemistry,2011,46(1):94-100.
    164. Gumel, A.M., M.S.M. Annuar, T. Heidelberg, et al. Lipase mediated synthesis of sugar fatty acidesters[J]. Process Biochemistry,2011,46(11):2079-2090.
    165. Wang, Y., X. Cao. Enzymatic synthesis of fatty acid ethyl esters by utilizing camellia oil soapstocksand diethyl carbonate[J]. Bioresource Technology,2011,102(22):10173-10179.
    166. Cauglia, F., P. Canepa. The enzymatic synthesis of glucosylmyristate as a reaction model for generalconsiderations on sugar esters production[J]. Bioresource Technology,2008,99(10):4065-4072.
    167. Nakasako, M. Water–protein interactions from high–resolution protein crystallography[J].Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,2004,359(1448):1191-1206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700