用户名: 密码: 验证码:
化学酶法一锅制备嵌段、接枝共聚物自组装及结晶行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别采用原子转移自由基聚合和酶促开环聚合,以及酶促开环聚合与点击化学相结合的化学酶法同时一锅合成功能性嵌段共聚物并研究了其结构与性质。化学酶法同时一锅合成技术的发展推进了化学酶合成方法的应用,为合成功能性的嵌段聚合物提供了更为简单、方便的新技术新方法。本论文成功地引入了双官能度引发剂2,2,2-三氯乙醇,它是一种常用的工业原料,可直接获得。在一锅合成过程中同时引发己内酯的开环聚合反应和甲基丙烯酸二甲氨基乙酯的原子转移自由基聚合反应,同时一锅合成了两嵌段共聚物:聚己内酯/聚甲基丙烯酸二甲氨基乙酯(PCL-b-PDMAEMA)。随后,对该嵌段共聚物的自组装行为进行了研究。发现随着亲水链段PDMAEMA比例增大其CMC逐渐变大。利用POM及DSC对该共聚物的结晶行为进行了研究,该共聚物的结晶形态为球晶,研究了该共聚物的等温结晶动力学,通过Avrami方程进行拟合。在化学酶法一锅合成中采用可引发聚合反应的单体,以甲基丙烯酸羟基乙酯作为原子转移自由基聚合单体,而其同时引发己内酯的酶促开环聚合进而同时一锅合成接枝共聚物聚甲基丙烯酸羟乙酯接枝聚己内酯(PHEMA-g-PCL)。我们研究了刷型共聚物PHEMA-g-PCL在水溶液中的自组装行为发现随着刷型共聚物接枝度的增大,疏水链段比例提高,其CMC逐渐变小。利用POM及DSC对该共聚物的结晶行为进行了研究,该共聚物的结晶形态为球晶。研究了该刷型共聚物的非等温结晶动力学,利用Ozawa模型对其进行拟合。我们合成了多官能度大分子引发剂PHAZPMA并用于酶促聚合与点击化学相结合的化学酶法一锅合成体系中,合成了刷型共聚物PHAZPMA-g-(PCL)(PEG)。通过对该聚合物的水溶液中的自组装行为研究发现,共聚物聚集时先形成球型胶束,随着溶液的挥发球型粒子逐渐融合形成树枝状图案,进而形成球型与树枝状聚集形态共存的体系,随着体系内PEG含量的增大其CMC值逐渐升高。利用POM及DSC研究了刷型共聚物PHAZPMA-g-(PCL)(PEG)热性能及结晶性能。发现当PEG含量低的时候不能够结晶,该共聚物的结晶为PCL球型结晶。通过Jeziorny理论对该接枝共聚物的非等温结晶动力学进行了分析。我们所合成的聚合物具有生物相容性、两亲性等功能性,在生物医学领域具有潜在的应用价值。
One-pot chemoenzymatic synthesis of combining the enzymatic polymerization(eROP) reaction features of mild conditions, the green, the product has excellentoptical rotation, biodegradable and biocompatible advantages and atom transferradical polymerization (ATRP) and click chemistry advantages of controllable, lots offunctional monomers, themolecular chain segments can be designed; and also one-potsynthesis process simplified, energy efficient, and avoiding the separation andpurification of the intermediate compounds in multi-step operation, reducing thepollution caused by the solvent and the production cost. One-pot chemoenzymaticsynthesis technology promote the application of chemical enzyme synthesis methodsprovide a more simple, convenient, new technologies and new methods for thesynthesis of functional block polymers.
     In chapter2, we were successfully use of2,2,2-trichloroethanol triggered as abifunctional agent combination of eROP and ATRP in one-pot synthesis of thediblock copolymers PCL-b-PDMAEMA. By hydrolysis to remove the PCL segment.The success of the diblock copolymer PCL-b-PDMAEMA in one-pot bychemoenzymatic synthesis was proved by the NMR, GPC, WXRD technologies. Weuse pyrene as a fluorescent probe to study the critical micelle concentration (CMC) ofdifferent proportion of hydrophilic and hydrophobic segments copolymerPCL-b-PDMAEMA. With the rise of hydrophilic segments of PDMAEMA proportion,the CMC gradually decreases, which is due to the hydrophilic segments increasing.Then, we take advantage of tapping mode atomic force microscopy (tapping moldAFM) test morphology and size of the micelles dry state, the diameter is about150nm; and dynamic light scattering (DLS) investigated the hydrodynamic diameter of themicelles in aqueous solution is about335nm, which is fully extended in the swollenstate in aqueous solution. We use the POM and DSC to study the diblock copolymerPCL-b-PDMAEMA thermal performance and crystalline properties. We found withthe decreases of crystallized segment PCL in block copolymer PCL-b-PDMAEMA, ablock copolymer secondary melting temperature Tmdecreased gradually, graduallyincreased its crystallization temperature Tc, the crystallization enthalpy ΔHcgraduallyreduced, melting enthalpy ΔHmis gradually reduced, the apparent undercooling ΔTgradually reduced, the crystallinity Xcof the block copolymer is gradually decreased.PCL-b-PDMAEMA crystalline form under the polarizing microscope having a blackcross extinction phenomenon, the crystalline is spherulite, the growth rate is about16.6nm/s. We use DSC to study the PCL-b-PDMAEMA-1isothermal crystallizationkinetics, Avrami exponent n is about2, which is caused due to the copolymerPCL-b-PDMAEMA The non-crystalline segment PDMAEMA move for the the PCLcrystallization process of the crystalline segment PCL segment rearrangement play arole in obstructing the crystal growth space is compressed the dimension of the crystalgrowth is restricted. The crystallization activation energy was calculated by Arrheniusequation is about73.7KJ/mol.
     In chapter3.2-ethyl bromoisobutyrate was used as the initiator of ATRP, HEMAas the monomer of the ATRP reaction. The HEMA with its hydroxyl group was as theinitiator of eROP of ε-CL in one-pot chemoenzymatic system to synthesis brush typegraft copolymer PHEMA-g-PCL. By hydrolysis to remove the PCL segment usingNMR, GPC, to identified the polymer structure. We studied the brush-typecopolymers PHEMA-g-PCL self-assembly behavior in aqueous solution. we usedpyrene as a fluorescent probe by fluorescence spectrophotometric determination of theCMC of different proportion of graft copolymer PHEMA-g-PCL, we found that theCMC decreased with the improvement of the degree of grafting, This is due to theside chain of the copolymer of the brush type for the hydrophobic segment PCL grafthigh increase the proportion of hydrophobic segments, to make it easier to form micelles in a higher polymer concentration. Then, we take advantage of AFM testmorphology and size of the micelles dry state, and DLS investigated thehydrodynamic diameter of the micelles in aqueous solution. After analysis, we foundthat the particle size of the micelles formed by grafting a copolymer of high than lowdegree of grafting of the polymer to form a large particle size of the micelles, which isdue to graft the polymer of high hydrophobic segment. We use the POM and DSCstudy of the thermal and crystalline properties of the brush-type copolymersPHEMA-g-PCL. We found that the PHEMA-g-PCL-1and PHEMA-g-PCL-2thedegree of grafting is too small, the crystallization ratio of the components is small,and failed to form a crystalline copolymer. We found that in the study of thecopolymer PHEMA-g-PCL-3, its crystallization under a polarization microscopehaving a black cross extinction phenomenon, crystal type of spherulites the growthrate is about4.6nm/s. We use DSC to study of the copolymer PHEMA-g-PCL-3non-isothermal crystallization kinetics. Choosing the crystallization temperature of14-19℃, with Ozawa exponent m of the reduction of the crystallization temperatureis reduced from the close about3to about2for the polymer begins to crystallize isthree dimensional growth manner, crystal growth in the crystalline final restricted.The crystallization activation energy was calculated by Kissinger equation is about105.37KJ/mol.
     In chapter4.2-ethylbromoisobutyrate was used as ATRP initiator and GMA asthe ATRP monomer to synthesis PGMA. Sodium azide was used for ring-openingepoxy group to synthesis multifunctional macromoleculeinitiator PHAZPMA.Combined eROP and click reaction in one-pot chemoenzymatic to synthesisamphiphilic brush copolymer PHAZPMA-g-(PCL)(PEG) which were proved by useof IR, NMR, GPC. We studied the brush copolymer PHAZPMA-g-(PCL)(PEG)self-assembly behavior in aqueous solution. we used pyrene as a fluorescent probe byfluorescence spectrophotometric determination of a different proportion of graft brushcopolymer PHAZPMA-g-(PCL)(PEG) CMC. We found as the PEG content increasedthe CMC is gradually increased. Because of the side chain of the copolymer hydrophobic segments were PCL, the proportion of hydrophilic segments were PEG.it must be formed in a higher CMC to form micelles for more hydrophilic segments.Then, we use the AFM tests the morphology and particle size of the micelles dry state.After analysis, we found that the change in morphology from spherical to dendriticmorphology with the PEG content increased the morphology of the copolymer system.After analysis, we think that may be the first gathered in the copolymer to formspherical micelles, formation of dendritic pattern of gradual integration with thesolution of volatile spherical particles, and thus the formation of the system ofball-type dendritic morphology of the aggregates coexist. We used POM and DSCthermal properties and crystallization properties of the the brush type copolymerPHAZPMA-g-(PCL)(PEG). Through research, we found that crystalline PEG contentin the sample PHAZPMA-g-(PCL)(PEG)-1is small can not be formed. We foundonly the PCL crystallization which having a black cross extinction phenomenon,crystal type of spherulites the growth rate is about18.4nm/s. We take advantage ofDSC to study the copolymer PHAZPMA-g-(PCL)(PEG)-1non-isothermalcrystallization kinetics. By Jeziorny model fitting, the copolymer materialcrystallization process is divided into two sections of the primary crystallizationprocess and secondary crystallization process. We found that gradually increases asthe cooling rate increases crystallization rate constant Zt, Jeziorny crystallization rateconstant is almost unchanged, the average value of about1.1. Two crystalline phaseapparent Avrami exponent were1.06and2.52, nonisothermal crystallization processshows that the polymer is mainly in the primary crystalline phase nuclei formationand growth in the secondary crystallization process three-dimensional growthgradually formed spherulites. The Kissinger equation obtained crystallizationactivation energy for218.08KJ/mol.
引文
[1] Enzyme Nomenclature, Academic Press, New York, NY, USA,1979.
    [2] ZaksA., KlibanovA. M., Science,1984,224,1249.
    [3] KlibanovA. M., Chemtech,1986,16,354.
    [4] KlibanovA. M., Tibtech,1989,14,141.
    [5] Gupta M. N., Eur. J. Biochem,1992,203,25.
    [6] Dordick J. S., Enzyme Microb.Technol,1989,11,194.
    [7] Wescott C. R., KlibanovA. M., Biochim. Biophs.Acta,1994,10,1206.
    [8] Sakurai T., Margolin A. L., Resell A. J., Klibanov A. M., J. Am. Chem. Soc,1988,110,7236.
    [9] Dewar M. J. S., Storch D. M., Proc. Natl.Acad. Sci. USA,1985,82,2225.
    [10] Gubicza L., Kelemen H. I., J. Mol. Catalysis,1993,84,127.
    [11] KlibanovA. M., Nature,2001,409,241.
    [12] Carra G, Riva S.,Angew Chem. Int. Ed.,2000,39,2226.
    [13] Haring D, Schreier P., Naturwissenschaften,1999,86,307.
    [14] Khmelnisky Y. L., Pich J. O., Curr. Opin. Chem. Biol.,1999,3,47.
    [15] Tuena M, Gomez P.A., Crit. Rev. Biochem. Mol. Biol.,1998,33,53.
    [16] KlibanovA. M., Trends. Biotechnol.,1997,15,97.
    [17] Mishra P, Griebenow K, KlibanovA. M., Biotech. and Boeng.,1996,52,609.
    [18] Stahl M, Jeppsson W. U., Mansson M. O., J.Am. Chem. Soc.,1991,113,9366.
    [19] Jaeger K. E., Reetz M. T., Curr. Opin. Chem. Biol.,2000,4,68.
    [20] Shu G. C., Xiu G. G., Zhang Z., J. Org. Chem.,1996,61,2158.
    [21] KlibanovA. M., Tibtch.,1997,15,97.
    [22] Bru R., et al., J. Biochem.,1990,268,679.
    [23] Van T. J., BertA., et al., Biocatal. Biotransf.,1995,12,99.
    [24] Van T. J., BertA.,et al., Biocatal. Biotransf.,1995,12,119.
    [25] Tram M, DucretA, Pepir P, Biotech. Lett.,1995,17,1095.
    [26] Ana G, Del C. C., Sinistena J. Biotech. lett.,1996,18,85.
    [27] Akita H, Chang Y. C., Uchida K, Tetrahedron,1995,6,2131.
    [28] GutmanA. L., Zuobl K., Bravdo T., J. Org. Chem.,1990,55,3546.
    [29] Kauzmann W, Ady.Protein Chem,1959,14,1.
    [30] ZaksA, KlibanovA. M., J. Biol. Chem.,1988,263,17,8017.
    [31] Matsumuto M, Odachi D, Kondo K, Biochem Bioeng.,1999,4,73.
    [32] Dong H, Gui C. S, Li Z. Q., Han S. P, You D. L, Shen J. C., J. Polym. Sci., PartA:, Polym. Chem.,1999,37,1265.
    [33] Kwon D. Y., Hong Y. J., Yoon S. H., J. Food Chem.,2000,48,524.
    [34]朱洁,刘洪湖,胡英,许建和,曹淑桂,分子催化,1998,12(5),323.
    [35] Sha K; Li D. S, Wang J. Y, Polymer Bulletin,2005,55,349.
    [36] Sha K; Li D. S, Wang J. Y, Polymer,2006,47,4292.
    [37] Sha K; Li D. S, Wang J. Y, Macromolecules,2008,41,361.
    [38] Zhang B, Li Y. P, Sha K, J. Polym. SCI. PartA:, Polym. Chem.,2009,47,5509.
    [39] Zhang B, Li Y. P, Zhao Y. L, Polym. Int.,2009,58,752.
    [40] Zhang B, Li Y. P, Wang J.Y, Polym. Bulletin,2009,62,643.
    [41] Kato M, Sawamoto M, Macromolecules,1995,28,1721.
    [42] Wang J. S., Matyjaszewski K, J.Am. Che. Soc.,1995,117,5614.
    [43] Percec V, Barboiu B, Macromolecules,1995,28,7970.
    [44] Matyjaszewski K, Coca S, Gaynor S. G., Wei M. L., Macromolecules,1997,30(23),7348.
    [45] Jakubowski W, Min K, Macromolecules,2006,39(1),39.
    [46] Pietrasik J, Dong H. C., Matyjaszewski K, Macromolecules,2006,39(19),6384.
    [47] Jakubowski W, Matyjaszewski K,Angew. Chem. Int. Ed.,2006,45(27),4482.
    [48] Gromada J, Matyjaszewski K, Macromolecules,2001,34(22),7664.
    [49] Matyjaszewski K,223rdACS National Meeting,2007,25.
    [50] Averick S,SimakovaA, Matyjaszewski K, ACS Macro. Lett.,2012,1,6.
    [51] Nese A, Li Y. C, Sergei S, Sheiko, Matyjaszewski K, ACS Macro. Lett.,2012,1(8),991.
    [52] Xia J. H, Paik H, Matyjaszewski K, Macromolecules,1999,32(25),8310.
    [53] Teodorescu M, Scott G. G, Matyjaszewski K, Macromolecules.,000,33(7),2335.
    [54] Moineau G, Minet M, Dubois P, Macromolecules,1999,32(1),27.
    [55] Lecomte P, Drapter J, Dubois P, etal, Macromolecules,1997,30(24),7631.
    [56] Kolb H. C., Finn M. G., Sharpless K. B., J. Angew. Chem. Int. Ed,2001,40,2004.
    [57] Killops K. L., Campos L. M., Hawker C. J., J. Am. Chem. Soc.,2008,130,5062.
    [58] Urbani C. N., Bell C. A., Whittaker M. R., Monteiro M. J.,Macromol.,2008,41,1057.
    [59] Sumerlin B. S., Tsarevsky N. V., Louche G, Matyjaszewski K, Macromol.,2005,38,7540.
    [60] Gao H, Louche G, Sumerlin B. S., Jahed N, Golas P, Matyjaszewski K,Macromol.,2005,38,8979.
    [61] Englert B. C., Bakbak S, Bunz U. H. F., Macromol.,2005,38,5868.
    [62] Kolb H. C., Sharpless K. B.. Drug Discovery Today,2003,8,1128.
    [63] Bonnet D, Hien B, Galzi J. L., Antheaune C, Hibert M, Bioconjugate Chem.,2006,17,1618.
    [64] Meyer U, Palmans A. R., Loontjens T, Heise A, Macromolecules,2002,35,2873.
    [65] Christopher J, Duxbury, Wang W. X, Geus M. D., Heise A, Steven M, J. AM.CHEM. SOC.,2005,127,2384.
    [66] Geus M. D., Schormans L, Anja R. A, Palmans, Koning Cor E., Heise A,Journal of Polymer Science, Part A: Polymer Chemistry,2006,44,4290.
    [67] Geus M. D., Peeters J, Wolffs M, Hermans T, Anja R. A, Palmans, Cor E.Koning Cor E.,Heise A, Macromolecules,2005,38,4220.
    [68] Naolou T, Busse K, Kressler J, Biomacromolecules,2010,11,3660.
    [69] Zhang L. F., Eisenberg A, Science,1995,268,1728.
    [70] Discher D.E., EisenbergA, Polymer Vesicles Science,2002,297,967.
    [71] Riess G, Polym. Sci.,2003,28,1107.
    [72] Halperin A, Macromolecules,1987,20,2943.
    [73] Noolandi J, Hong K. M., Macromolecules,1983,16,1443.
    [74] Yuan X. F., Masters A. J., Price C, Macromolecules,1992,25,6876.
    [75] Zhang L, Barlow R. J., Eisenberg A, Macromolecules,1995,28,6055.
    [76] Whitmore M. D., Noolandi J, Macromolecules,1985,18,657.
    [77] Li G. Y, Shi L. Q,An Y. H, Zhang W. Q, Ma R. J, Polymer,2006,47,4581.
    [78] KhanalA, Inoue Y, Mitsunori, J.Am. Chem. Soc.,2007,129,1534.
    [79] Philippova O. E, Hourdet D,Audebert R, Macromolecules,1997,30,8278.
    [80] Torres-Lugo M, Peppas N, Macromolecules,1999,32,6646.
    [81] Martin T. J., Prochazka K, Munk P, Macromolecules,1996,29,6071.
    [82] Raez J, Manners I, Winnik M, Langmuir,2002,18,7229.
    [83] Raez J, TOMBA J. P, Manners I, Winnik M, J. Am. Chem. Soc.,2003,125,9546.
    [84] Wang X, Wang H, Frankowski D. J., Lam P. G., Welch P. M.,Winnik M,Hartmann J, Manners I, Spontak R. J, Adv. Mater.,2007,19,2279.
    [85] Adriana M, Mihut, Drechsler M, Moller M, Macromol Rapid Commun,2009,30,1000.
    [86] Riessg, Prog. Polym. Sci.,2003,28,1107.
    [87] Hoffman J. D, Davis G. T, Lauritzen J. I, Plenum:New York,1976,3,497.
    [88] KellerA, Disc. Faraday Discuss. R. Soc. Chem.,1979,68,145.
    [89] Phillips P. J., Polymer crystals, Rep. Prog. Phys.,1990,53,549.
    [90] Armistead K, Goldbeck-Wood G,Adv. Polym. Sci.,1992,100,219.
    [91] Lauritzen J. I, Hoffman J. D, J. Res. Nat. Bur. Std.,1960,64(A),73.
    [92] Strobl G, Eur. Phys. J. E.,2000,3,165.
    [93] Lotz B, Eur. Phys. J. E.,2000,3,185.
    [94] Cheng S, Li C, Zhu L, Eur. Phys. J. E.,2000,3,195.
    [95]刘凤岐.高分子物理[M].吉林:吉林大学出版社,1995.
    [96]何曼君.高分子物理[M].上海:复旦大学出版社,1983.
    [97] Bechev C, Chapoy L, Mishinev J, European Conference on MacromolecularPhysics.,1985,39.
    [1] Gabrielson L, Edirisinghe. J. J. Mater.Sci.Lett.,1996,15,1105.
    [2] Ellsworth MW, Novak BM. J. Am. Chem. Soc.,1991,113,2756.
    [3] Meyer U, Palmans ARA, Loontjens T, etal Macromolecules,2002,35,2873.
    [4] Peeters J, Palmans, ARA, Veld M, Scheijen F, Heise A, Meijer E.W.Biomacromolecules,2004,5,1862.
    [5] Zhang B, Li Y, ZhaoY. Polym. Int.,2009,58,752.
    [6] Sha K,Li D,Wang J. Polym. Sci. PartA:Poly. Chem.,2006,44,3393.
    [7] VanAs, B.A.C.,Thomassen, P.;Kalra, B.,Gross, R.A., Meijer, E.W., Palmans,A.R.A.,Heise. A. Macromolecules,2004,37,8973.
    [8] Meyer U, Palmans, ARA, Loontjens T, Heise A. Macromolecules,2002,35,2873.
    [9] De Geus M, Peeters J, Wolffs M, Hermans T, Heise A. Macromolecules,2005,38,4220.
    [10]沙柯,博士论文,酶促聚合方法和ATRP方法结合制备新型功能嵌段共聚物及其自组装行为研究.2007.吉林大学.
    [11]张宝,博士论文,化学酶法合成非线型嵌段共聚物及其自组装行为研究.2009.吉林大学.
    [12] Sha K, Li D,Wang J. Y. Polymer,2006,47(12),4292.
    [13] Sha K, Li D, Wang J.J. Polym. Sci. PartA: Polym. Chem.,2007,45(22),5037.
    [14] Sha K, Li D, Wang J. Macromolecules,2008,41,361.
    [15] Toy AA, Reinicke S, Schmalz H. Macromolecules,2007,40,5241.
    [16] Jing R, Wang G, Zhang Y, Huang J. Macromolecules,2011,44,805.
    [17] Gordin C, Delaite C, Medlej H, Josien-Lefebvre D,Hariri K, Rus M. Polym.Bull.,2009,63,789.
    [18] Zhang Y, Li C, Liu S. J. Polym. Sci.: PartA: Polym. Chem.,2009,47,3066.
    [19] Meyer U,PalmansARA,LoontjensT,HeiseA.Macromolecules.2002,35,2873.
    [20] Peeters J, Palmans ARA, Veld M, Scheijen F, Heise A, Meijer EW.Biomacromolecules,2004,5,1862.
    [21] DeGeus M, Schormans L, Palmans ARA, Koning CE, Heise A. J. Polym.Sci.: Part A: Polym. Chem.,2006,44,4290.
    [22] Duxbury CJ, WangW, DeGeus M, Heise A, Howdle SM. J. Am. Chem. Soc.,2005,127,2384.
    [23] Zhou J, Villarroya S, Wang W, Wyatt MF, Duxbury CJ, Thurecht KJ, HowdleSM. Macromolecules,2006,39,5352.
    [24] Villarroya S, Zhou J, Duxbury CJ, Heise A, Howdle SM. Macromolecule,2006,39,633.
    [25] Zhou J, Villarroya S, Wang W, Wyatt MF, Duxbury CJ, Thurecht KJ, HowdleSM. Macromolecules,2006,39,5352.
    [26] Wolf FF, Friedemann N, Frey H. Macromolecules,2009,42,5622.
    [27] Sha K, Li D, Wang S, etal. Polym. Bull.2005,55(5),349.
    [28] Sha K, Li D, Li Y, Liu X, Wang S, Wang J. Polym. Int.,2008,57,211.
    [29] Sha K, Li D,Li Y,Ai P,Liu X,Wang W,etal. Polym. Sci. Polym. Chem.2006,44(10),3393.
    [30] Li M,Wang W, Pan S,Zhang B,Wang J. Polym.Int.,2008,57,1377.
    [31] Katrien V, Bernaerts,Filip E,DuPrez. Prog. Polym. Sci.,2006,31,671.
    [32] Zhang LF, Eisenberg A. Science.,1995,268,1728.
    [33] Discher DE, Eisenberg A. Polymer Vesicles Science,2002,297,967.
    [34] Riess G. Polym. Sci.,2003,28,1107.
    [35] Halperin A. Macromolecules,1987,20,2943.
    [36] Noolandi J, Hong KM. Macromolecules,1983,16,1443.
    [37] Yuan XF, MastersA J, Price C. Macromolecules,1992,25,6876.
    [38]Zhang L, Barlow RJ, Eisenberg A. Macromolecules,1995,28,6055.
    [39] Whitmore MD, Noolandi J. Macromolecules,1985,18,657.
    [40]Kwon GS, Okano T. Adv. Drug Deliv. Rev.,1996,21,107.
    [41] Jones MC, Leroux JC. Eur. J. Pharm. Biopharm.,1999,48,101.
    [42] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev.,2001,47,113.
    [43] Jerome C, Lecomte P. Adv. Drug Deliv. Rev.,2008,60,1056.
    [1] Beers K. L., Gaynor S. G., Matyjaszewski, K., Sheiko S. S., Moeller M.,Macromolecules,1998,31,9413.
    [2] Dziezok P., Sheiko S. S., Fischer K., Schmidt M., Moller M.Angew. Chem. Int.Ed,1997,36,2812.
    [3] Ishizu K., Polym,2004,36,775.
    [4] Wintermantel M., Gerle M., Fischer K., Schmidt M., Wataoka I., Urakawa H.,Kajiwara K., Tsukahara Y., Macromolecules,1996,29,978.
    [5] Zhang M., MuellerA. H. E.. J, Polym. Sci. PartA: Polym. Chem,2005,43,3461.
    [6] Sheiko Sergei, S.; Sun Frank C., RandallA., Shirvanyants, D., Rubinstein, M.,Lee H. i., Matyjaszewski K, Nature (London),2006,440,191.
    [7] Djalali R., Li S.-Y., Schmidt M., Macromolecules,2002,35,4282.
    [8] Zhang M., Estournes C., Bietsch W., MuellerA. H. E.,Adv. Funct. Mater.,2004,14,871.
    [9] Zhang M., Teissier P., Krekhova M., Cabuil V., MuellerA. H. E., Prog. Colloid.Polym. Sci.,2004,126,35.
    [10] Neugebauer D., Zhang Y., Pakula T., Sheiko S. S., Matyjaszewski, K,Macromolecules,2003,36,6746.
    [11] Pakula T.,Zhang Y., Matyjaszewski K., Lee H. i., Boerner H., Qin S., Berry G.C., Polymer,2006,47,7198.
    [12] Matyjaszewski K., Xia,J. Chem. Re.,2001,101,2921.
    [13] Wang J. S., Matyjaszewski K.,J.Am. Chem. Soc.,1995,117,5614.
    [14] Matyjaszewski K., Davis T. P., Eds., Handbook of Radical Polymerization,Wiley: Hoboken, NJ,2002.
    [15] Matyjaszewski K., Prog. Polym. Sci,2005,30,858.
    [16] Braunecker W. A., Matyjaszewski K., Prog. Polym. Sci.,2007,32,93.
    [17] Matyjaszewski K., Ed. Controlled/Living Radical Polymerization. FromSynthesis to Materials, ACS Symp. Ser.944,American Chemical Society:Washington, DC,2006.
    [18] Matyjaszewski K., Qin S., Boyce J. R., Shirvanyants D., Sheiko S. S.,Macromolecules,2003,36,1843.
    [19] Boyce J. R., Shirvanyants D., Sheiko S. S., Ivanov D.A., Qin S., Boerner H.,Matyjaszewski K., Langmuir,2004,20,6005.
    [20] Ishizu K., Satoh J., SogabeA., J. Colloid Interface Sci.,2004,274,472.
    [21] Mecerreyes D., Jerome R., Dubois P.,Ad.Polym. Sci.,1999,147,1.
    [22] Hashimoto K., Prog. Polym. Sci.,2000,25,1411.
    [23] Stridsberg K. M., Ryner M.,AlbertssonA. C.,Ad. Polym. Sci.,2002,157,41.
    [24] Yamada K., Miyazaki M., Ohno K., Fukuda T., Minoda M., Macromolecules,1999,32,290.
    [25] Schappacher M., DeffieuxA., Macromolecules,2000,33,7371.
    [26] Neugebauer D., Theis M., Pakula T., Wegner G., Matyjaszewski K.,Macromolecules,2006,39,584.
    [27] Neugebauer D., Zhang Y., Pakula T., Matyjaszewski K., Macromolecules,2005,38,8687.
    [28] Neugebauer D., Zhang Y., Pakula T., Matyjaszewski K., Polymer,2003,44,6863.
    [29] Neugebauer D., Sumerlin B. S., Matyjaszewski K., Goodhart B., Sheiko S. S.,Polymer,2004,45,8173.
    [30] Pietrasik J., Sumerlin B. S., Lee R. Y., Matyjaszewski K., Macromol. Chem.Phys.,2007,208,30.
    [1] Ponsart S., Coudane J., Vert M., Biomacromolecules,2000,1,275.
    [2] Saulnier B., Ponsart S., Coudane J., Garreau H., Vert M., Macromol. Biosci.,2004,4,232.
    [3] Huang M., Coudane J., Li S., Vert M., J. Polym. Sci. Part A: Polym. Chem.,2005,43,4196.
    [4] Habnouni S., E. Darcos V., Coudane, J. Macromol. Rapid Commun,2009,30,165.
    [5] Parrish B., Breitenkamp R. B., Emrick T., J. Am. Chem. Soc.,2005,127,7404.
    [6] Xu N., Wang R., Du F., Li Z., J. Polym. Sci. Part A: Polym. Chem.,2009,47,3583.
    [7] Cooper B. M., Chan-Seng D., Samanta D., Zhang X., Parelkar S., Emrick T.,Chem. Commun.,2009,815.
    [8] Cooper B. M., Emrick T., J. Polym. Sci. Part A: Polym. Chem.,2009,47,7054.
    [9] Billiet L., Fournier D., Du Prez F., J. Polym. Sci. Part A: Polym. Chem.,2008,46,6552.
    [10]Kato M., Toshima K., Matsumura S., Biomacromolecules,2009,10,366.
    [11]Torn e C. W., Christensen C., Meldal M., J. Org. Chem.,2002,67,3057.
    [12]Rostovtsev V. V., Green L. G., Fokin V. V., Sharpless K. B., Angew. Chem.,Int. Ed.,2002,2596.
    [13]Ishizu K., Satoh J., SogabeA., J. Colloid Interface Sci.,2004,274,472.
    [14]Lee H. I,Matyjaszewski K, Sherryl Y. S., Sergei S. Sheiko.,Macromolecules,2008,41,6073.
    [15]Abuchowski A., van Es. T., Palczuk N. C., Davis F. F., J. Biol. Chem.,1977,252,3578.
    [16]Gombotz W. R., Guanghui W., Hoffman A. S., J. Appl. Polym. Sci.,1990,37,91.
    [17]Desai N. P., HubbellA., J. Biomed. Mater. Res.,1991,25,829.
    [18]Fuerteges F.,AbuchowskiA., J. Controlled Release,1990,11,139.
    [19]Rashkov I., Manolova N., Li S. M., Espartero J. L., Vert M.,Macromolecules,1996,29(1),50.
    [20]Li Y. X., Thomas K, Polymer,1998,39(18),4421.
    [21]Ozawa, Polymer,1971,12,150.
    [22]莫志深,高分子学报,2008,7,656.
    [23]JeziornyA., Polymer,1978,19,1142.
    [24]Kissinger H. E., Journal of Research National Bureau Standards,1956,57,217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700