用户名: 密码: 验证码:
谷胱甘肽过氧化物纳米酶模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽过氧化物酶(GPx)最早发现的含硒酶,其重要的抗氧化作用引起人们极大的关注。为了获得高效稳定的GPx模拟物,科学家付出了巨大努力。而如何简捷方便地构建一个具有高催化活性、专一底物结合能力和良好水溶性的GPx模拟酶是我们的目标。而实现这一目标的关键是,在充分考虑底物结合的同时,如何实现催化中心和结合位点在酶模型中空间位置的匹配,以及如何实现对模拟物的催化活性进行调控。
     纳米科学和超分子科学的发展,给我们搭建了一个很好的平台,使得设计催化中心与结合位点空间匹配以及设计活性可调控的酶模拟物得以实现。本文基于天然酶GPx催化中心的结构及对催化机制的理解,开展了对GPx模拟物的分子设计工作:
     I.小分子胶束硒酶模型分子设计:设计合成了以苯硒酸作为催化中心的胶束酶模型。选用表面活性剂CTAB作为构筑单元,在水溶液中自组装成胶束,由于胶束为催化反应提供了有利的微环境,使得该酶模型展现出较高的催化活性和底物专一性。实验结果表明,胶束是一个理想的构建GPx模拟物的骨架。
     II.聚合胶束硒酶模型分子设计:为进一步提高上述胶束酶模型的稳定性,进而对其酶学性质进行研究,我们设计合成了一端带有双键的表面活性剂分子,通过聚合,构建了聚合胶束酶模拟物。此酶模型保持了原有小分子胶束模拟物的酶学性质,而且催化活性也有了进一步提高。对其催化中心和结合位点在空间的匹配对于酶活性的影响进行了研究,结果表明,当催化中心位于其胶束表面时,人工酶展现出最大的催化效率。
     III.表面印迹纳米硒酶模型的构建:为使催化中心和结合位点更好地在空间上匹配,我们利用分子印迹的方法,构建了表面印迹聚苯乙烯纳米粒子酶模型,该模型展现了较高的催化活性和底物专一性,实验进一步证实:催化中心和结合位点在空间上更好的匹配对提高酶活性起着重要作用。
     IV.智能硒酶模型的构建:为实现对酶活性的调控,选用具有温度响应的N-异丙基丙烯酰胺为构筑基元,合成了具有温度响应的水凝胶纳米酶模型。实验表明温度的改变使水凝胶内部三维结构的大小和疏水性改变,对酶活性的调控起到重要作用。
Enzyme is a highly efficient biocatalyst which can catalyze chemical reactions with substrate stereoselectivities and specificities under mild conditions. The design and synthesis of artificial catalysts with natural enzyme performance and the understanding of enzyme catalytic mechanism is one of the goals which a great many scientists are always pursuing. Glutathione peroxidases (GPx) are the well-known antioxidant selenoenzymes in organisms which can clear up several harmful hydroperoxides (ROOH) and then maintain the metabolic balance of reactive oxygen species (ROS) in vivo, thus protecting the biomembranes and other cellular components against oxidative damage. In certain pathogenic states, the production of ROS is enhanced and the excess ROS give a damage to various biomacromolecules such as RNA, DNA, protein, sugar and lipid, and therefore results in ROS-mediated diseases, including reperfusion injury, inflammatory process, age-related diseases neuronal apoptosis, cancer and cataract and so on. Therefore, GPx could be a candidate for antioxidant drugs. Unfortunately, scientists could not fully understand the structures of GPx as well as its catalytic mechanism in vivo at present. Fabrication of GPx models offers an ideal alternative for elucidating the origin of substrate binding interaction and catalytic mechanism of enzyme.
     By far, based on the knowledge of the structure of natural glutathione peroxidase and the understanding of the essence of enzyme catalysis (substrate binding and intermolecular catalysis), a great many of mimics have been successfully prepared by chemical and biological strategies, such as, 2,2′-Ditellurobis(2-deoxy-β-cyclodextrin), tellruo-subtilisin and telluro-GST and so on, all of which demonstrate excellent enzyme performance. However, during enzyme catalyzing, the binding for substrates and the forming enzyme-substrate comlplex and transition state is a dynamic process, then how to match the positions of the catalytic center and binding site in the enzyme model to facilitate the reaction proceed directionally, is our a new challenge for designing the enzyme model. Furthermore, for the GPx mimics with high catalytic activity, how to modulate the activity is another goal that we are pursuing.
     The flourishing development in nano and supramolecular science brings a new field in the design of artificial enzyme. Based on nano-scale materials, a great number of nanoenzyme models have been reported. Herein, based on the understanding of the structure of nature enzyme, we first choose micelle as a scaffold to construct a micellar enzyme model by supramolecular self-assembly. By studying its catalytic activity, the relationship between the catalytic center and binding site was well elucidated. Further, to better design an enzyme model in which the catalytic center and binding site were well matched, a surface imprinted polystyrene nanoparticle was constructed by molecular imprinting. As anticipated, the imprinted nanoenzyme model demonstrated high catalytic activity and substrate specificity. Finally, a temperature smart nanogel enzyme model was constructed by employing a temperature responsive N-isopropylacrylamide as a monomer. With the change of the temperature, the change of pore size and hydrophobicity play an important role in modulating the catalytic activity.
     1. Small molecular micelle enzyme model
     Micelle has a self-assembly three-dimensional nanostructure and two distinct region─the hydrophobic interior core and hydrophilic charged surface. Its similarity to the structure of nature GPx catalytic center has attracted great attention. It was applied as a nanoreactor in hydrolysis and formation of double carbon-carbon bond has been widely reported. However, it have not been reported as GPx mimics yet. Herein, based on the structure of nature GPx, we synthesized a benzeneseleninic acid as a catalytic center and positive changed hexadecyltrimethylammonium bromide (CTAB) as a surfactant. In aqueous solution, they could self-assemble to form a micellar enzyme model. The catalytic activities were evaluated in both TNB and coupled reductase assayed system. It demonstrated high catalytic activity and substrate specificity. The experiments indicated that micelle is a good scaffold for constructing the GPx mimic and its hydrophobic interior core and positive charged surface played an important role for accelerating the enzyme-like reaction. Using this supramolecuar strategy to construct GPx mimic, considering the simple procedure and easy modulation, it is supposed to provide a new method to construct enzyme model.
     2. Polymeric micellar enzyme model
     Previous works have well demonstrated that the micelle enzyme model was a good GPx mimic. However, for small molecular micelle, normally it keeps a balance in aqueous solution. The weak stability dramatically limits its further application and the study of enzyme properties. So the double carbon carbon bond was introduced into the surfactant and catalytic center, and the micellar structure stability was enhanced by polymerizing. The obtained polymeric micellar enzyme model maintained the original micellar structure and demonstrated high catalytic activity and substrate specificity. In TNB assay system, using CUOOH as the other substrate, its catalytic activity is about 634000-fold enhancement compared with diphenlydiselenide. Furthermore, a serials of catalytic center monomers with various length were constructed. By polymerization, they were incorporated into various positions in the micelle. By comparising of their enzyme properties, we concluded that the match of the catalytic center and binding site played an important role in enhancing the catalytic activity. The enzyme model demonstrates the highest catalytic activity. when the catalytic center was designed on the rim of the micelle.
     3. Surface imprinted polystyrene nanoparticle enzyme model
     To make the catalytic center and binding site well match in a model and demonstrate high catalytic activity, molecular imprinting technique was employed and a surface imprinted polystyrene nanoparticle enzyme model was constructed. Based on the knowledge of natural GPx structure, a tellurium-containing compound and an arginine derivative were designed as catalytic center and binding site respectively in the model. As anticipated, this model demonstrated high catalytic activity. Through the study of the enzyme property, some conclusions are as follows: (1) for the design of the enzyme model, substrate binding is necessary, but the position match of the catalytic center and binding site is another important factor; (2) molecular imprinting is an effective technique for constructing enzyme model; (3) using intermediate of enzyme cycle as a template molecule reduces the imprinting procedure largely, and the surface imprinting overcomes the disadvantages of traditional imprinting, such as the transmogrification of the imprinted structure after removing the templates and the bad substrate permeation and so on.
     4. Nanogel enzyme model with temperature responsive catalytic activity
     To realize the modulation of the catalytic activity and also the double control of the function of ROS, a temperature responsive nanogel enzyme model was constructed for the first time. The temperature responsive N-isopropylacrylamide (NIPAAm) was employed as a functional monomer, and a synthesized telluro-containing compound served both as catalytic center and cross-linker. By microemulsion polymerizing, the enzyme model was obtained. The three dimensional netlike structure of the nanogel interior core played a key role for the high catalytic activity. In TNS assay system, it demonstrated the highest catalytic activity at 32°C, and when the temperature was above 50°C, the nanogel nearly lost its catalytic activity. The experiment confirmed that the change of the pore size and the hydrophobicity of the nanogel interior core with the increased temperature played an important role in modulating the catalytic activity.
引文
[1] Fischer, E. Ber. Deutsch. Chem .Ges. 1894, 27, 2985–2993.
    [2] Michaelis, L.; Menten, M. Die Kinetik der Invertinwirkung. Biochem. Z. 1913, 49, 333–369.
    [3] Cech, T. R.; Bass, B. L. Biological Catalysis by RNA. Ann. Rev. Biochem. 1986, 55, 599–629.
    [4]邹承鲁《酶活性部位的柔性》2004年05月第1版.
    [5] Pauling, L. Molecular Architecture and Biological Reaction. Chem. Eng. News 1946, 24, 1375–1377.
    [6] Mader, M. M.; Bartlett, P. A. Binding energy and eatalysis: the implications for transition-state analogs and catalytic antibodies. Chem. Rev. 1997, 97, 1281–1301.
    [7] Fersht, A. Enzyme Structure and Mechanism, 2nd ed.; W. Freeman and Co.: New York, 1985.
    [8] Lemieux, R. U. How water provides the impetus for molecular recognition in aqueous solution. Acc. Chem. Res. 1996, 29, 373–380.
    [9] Dunitz, J. D. The Entropic Cost of Bound Water in Crystal and Biomolecules. Science 1994, 264, 670–671.
    [10] Kirby, A. J. Efficiency of Proton Transfer Catalysis in Models and Enzymes. Acc. Chem. Res. 1997, 30, 290–296.
    [11] Villiers, A. Discovery of Cyclodextrins. Compt. Rend. Acad. Sci. Paris 1891, 112, 536–538.
    [12] Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754.
    [13] Wenz, G. Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units. Angew. Chem., Int. Ed. Engl. 1994, 33, 803–822.
    [14] Comprehensive Supramolecular Chemistry, Atwood, J. L.; Davis, J. E. D.; MacNicol, D. D.; V?gtle, F.; Lehn, J.-M; Eds.; Pergamon: Oxford, 1996,Vol. 3.
    [15] Breslow, R.; Dong, S. D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98, 1997–2012.
    [16] Breslow, R.; Schmuck, C. Goodness of Fit in Complexes between Substrates and Ribonuclease Mimics: Effects on Binding, Catalytic Rate Constants, and Regiochemistry. J. Am. Chem. Soc. 1996, 118, 6601–6605.
    [17] Breslow, R.; Anslyn, E. Proton Inventory of a Bifunctional Ribonuclease Model. J. Am. Chem. Soc. 1989, 111, 8931–8932.
    [18] Ortega-Caballero, F.; Rousseau, C.; Christensen, B.; Elleb?k Petersen, T.; Bols, M. Remarkable Supramolecular Catalysis of Glycoside Hydrolysis by a Cyclodextrin Cyanohydrin. J. Am. Chem. Soc. 2005, 127, 3238–3239.
    [19] Ortega-Caballero, F.; Bjerre, J.; Laustsen, L. S.; Bols, M. Four Orders of Magnitude RateIncrease in Artificial Enzyme-Catalyzed Aryl Glycoside Hydrolysis. J. Org. Chem. 2005, 70, 7217–7226.
    [20] Liu, Y.; Li, B.; Li, L.; Zhang, H. Y. Synthesis of Organoselenium-Modifiedβ-Cyclodextrins Possessing a 1, 2-Benzisoselenazol-3(2H)-one Moiety and Their Enzyme-Mimic Study. Helv. Chim. Acta. 2002, 85, 9–18.
    [21] Tastan, P.; Akkaya, E. U. A Novel Cyclodextrin Homodimer with Dual-Mode Substrate Binding and Esterase activity. J. Mol. Cat. A: Chemical 2000, 157, 261–263.
    [22] Zhang, B. L.; Breslow, R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997, 119, 1676-1681.
    [23] Breslow, R.; Zhang, X.; Huang, Y. Selective Catalytic Hydroxylation of a Steroid by an Artificial Cytochrome P-450 Enzyme. J. Am. Chem. Soc. 1997, 119, 4535–4536.
    [24] Breslow, R.; Brown, A. B.; McCullogh, R. D.; White, P. W. Substrate Selectivity in Epoxidation by Metalloporphyrin and Metallosalen Catalysts Carrying Binding Groups. J. Am. Chem. Soc. 1989, 111, 4517–4518.
    [25] Breslow, R.; Zhang, X.; Xu, R.; Maletic, M. Selective Catalytic Oxidation of Substrates That Bind to Metalloporphyrin Enzyme Mimics Carrying Two or Four Cyclodextrin groups and Related Metallosalens. J. Am. Chem. Soc. 1996, 118, 11678–11679.
    [26] Breslow, R.; Huang, Y.; Zhang, X.; Yang, J. An Artificial Cytochrome P450 That Hydroxylates Unactivated Carbons with Regio- and Stereoselectivity and Useful Catalytic Turnovers. Proc. Natl. Acad. Sci. USA. 1997, 94, 11156–11158.
    [27] Peterson, B. R.; Mordasini-Denti, T.; Diederich, F. Cavity Depth and Width Effects on Cyclophane-Steroid Recognition: Molecular Complexation of Cholesterol and Progesterone in Aqueous Solution. Chemistry & Biolog. 1995, 2, 139–l46.
    [28] Diederich, F.; Habicher, T. Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-Cyclophanes. Helv. Chim. Acta. 1999, 82, 1066–1095.
    [29] F. Diederich, P. Mattei, Catalytic Cyclophanes. Helv. Chim. Acta. 1997, 80, 1555–1588.
    [30] Asfari, Z.; B?hmer, V.; Harrowfield, J. M.; Vicens, J. Calixarenes, Kluwer, New York, 2001.
    [31] Liu, Y.; You, C. C.; Zhang, H. Y. Supromolecular chemistry molecular Recognition and Assembly of Synthetic Receptors, Nakai University Press, Tianjin, 2001 (in Chinese). (刘育,尤长城,张衡益,超分子化学-合成受体的分子识别与组装,南开大学出版社,天津, 2001.)
    [32] Rondelez, Y.; Bertho, G.; Reinaud, O. The First Water-Soluble Copper(I) Calix[6]arene Complex Presenting a Hydrophobic Ligand Binding Pocket: A Remarkable Model forActive Sites in Metalloenzymes. Angew. Chem. Int. Ed. 2002, 41, 1044–1046.
    [33] Buhleier, E.; Wehner, W.; V?gtle, F. Cascade-Chain-Like and Nonskid-Chain-Like Syntheses of Molecular Cavity Topologies. Synthesis-Stuttgart 1978, 2, 155–158.
    [34] Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers-Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132.
    [35] Newkome, G. R.; Yao, Z. G.; Baker, G. R.; Gupta,V. K. Micelles. Part 1. Cascade Molecules -A New Approach to Micelles–A [27]-Arborol. J. Org. Chem. 1985, 50, 2003–2004.
    [36] Brunner, H.; Altmann, S. Optically Active Nitrogen Ligands with Dendrimeric Structure. Chem. Ber. 1994, 127, 2285–2296.
    [37] Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leeuwen, P. W. N. M.; Wijkens, P.; Grove, D. M.; van Koten, G. Homogeneous Catalysts Based on Silane Dendrimers Functionalized with Arylnickel(II) Complexes. Nature 1994, 372, 659–663.
    [38] Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Peptide and Amide Bond-Containing Dendrimers. Chem. Rev. 2005, 105, 1663–1681.
    [39] Twyman, L. J.; King, A. S. H.; Martin, I. K. Catalysis inside Dendrimers. Chem. Soc. Rev. 2002, 31, 69–82.
    [40] Brunner, H. Dendrizymes: Expanded Ligands for Enantioselective Catalysis. J. Organomet. Chem. 1995, 500, 39–46.
    [41] Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. Dendrimermetalloporphyrins: Synthesis and Catalysis. J. Am. Chem. Soc. 1996, 118, 5708–5711.
    [42] Chow, H. F.; Mak, C. C. Dendritic Bis(oxazoline)copper(II) Catalysts: 2. Synthesis, Reactivity, and Substrate Selectivity. J. Org. Chem. 1997, 62, 5116–5127.
    [43] Yang, B. Y.; Chen, Y. M.; Deng, G. J.; Zhang, Y. L.; Fan, Q. H. Chrial Dendritic Bix(oxazoline) Copper(II) Complexes as Lewis Acid Catalysts for Enantioselective Aldol Reactions in Aqueous Media. Tetrahedron Lett. 2003, 44, 3535–3538.
    [44] Astruc, D.; Heuzé, K.; Gatard, S.; Méry, D.; Nlate, S.; Plault, L. Metallodendritic Catalysis for Redox and Carbon-Carbon Bond Formation Reactions: a Step towards Green Chemistry. Adv. Synth. Catal. 2005, 347, 329–338.
    [45] Scott, R. W. J.; Datye, A. K.; Crooks, R. M. Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc. 2003, 125, 3708–3709.
    [46] Scott, R. W. J.; Wilson, O. M.; Oh, S.-K.; Kenik, E. A.; Crooks, R. M. Bimetallic Palladium-Gold Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc. 2004, 126,15583–15591.
    [47] Sadler, K.; Tams, J. P. Peptide Dendrimers: Applications and Synthesis. Rev. Mol. Biotechnol. 2002, 90, 195–229.
    [48] Clouet, A.; Darbre, T.; Reymond J. L. A Combinatorial Approach to Catalytic Peptide Dendrimers. Angew. Chem., Int. Ed. Engl. 2004, 43, 4612–4615.
    [49] Delort, E.; Darbre, T.; Reymond, J. L. A Strong Positive Dendritic Effect in a Peptide Dendrimer-Catalyzed Ester Hydrolysis Reaction. J. Am. Chem. Soc. 2004, 126, 15642–15643.
    [50] Lehn, J. M. Supramolecular Chemistry-Concept and Perspectives. Germany: VCH, 1995, 1–9.
    [51]张希,沈家骢.超分子科学:认识物质世界的新层面.科学通报2003, 14, 1477–1478.
    [52] Menger, F. M. The Structure of Micelles. Acc. Chem. Res. 1979, 12, 111–117.
    [53] Gunnarsson, G.; Joensson, B.; Wennerstroem, H. Surfactant Association into Micelles. An Electrostatic Approach. J. Phys. Chem. 1980, 84, 3114–3121.
    [54] Bravo, C.; Leis, J. R.; Pena, M. E. Effect of Alcohols on Catalysis by Dodecyl Sulfate Micelles. J. Phys. Chem. 1992, 96, 1957–1961.
    [55] Mukerjee, P.; Cardinal, J. R.; Desai, N. R. Micellization,Solubilization and Mocromulsions, Plenum Press, New York, 1977, Vol.1, pp.241.
    [56] Fromherz, P. Micelle Structure: A Surfactant Block Model. Chem. Phys. Lett. 1981, 77, 460–466.
    [57] Scrimin, P.; Tellica, P.; Tonellato, U. Supramolecular Metallocatalysts for the Cleavage of Amino Acid Esters. J. Phys. Org. Chem. 1992, 5, 619–627.
    [58] Menger, F. M.; Gan, L. H.; Johnson, E.; Durst, D. H. Phosphate Ester Hydrolysis Catalyzed by Metallomicelles. J. Am. Chem. Soc. 1987, 109, 2800–2803.
    [59] Hay, R. W.; Govan, N.; Parchment, K. A Metallomicelle Catalysed Hydrolysis of a Phosphate Triester, a Phosphonate Diester and O-Isopropyl Methylfluorophosphonate (Sarin). Inorg. Chem. Commun. 1998, 1, 228–231.
    [60] Scrimin, P.; Ghirlanda, G.; Tecilla, P.; Moss, R. A. Comparative Reactivities of Phosphate Ester Cleavages by Metallomicelles. Langmuir 1996, 12, 6235–6241.
    [61] Fornasier, R. F.; Milani, D.; Scrimin, P.; Tonellato, U. Functional Micellar Catalysis. Part 8. Catalysis of the Hydrolysis of p-Nitrophenyl Picolinate by Metal-Chelating Micelles Containing Copper(II) or Zinc(II). J. Chem. Soc. Perkin Trans.II. 1986, 233–237.
    [62] Mancin, F.; Tecilla, P.; Tonellato, U. Metallomicelles Made of Ni(II) and Zn(II) Complexes of 2-Pyridinealdoxime-Based Ligands as Catalyst of the Cleavage of Carboxylic Acid Esters.Langmuir 2000, 16, 227–233.
    [63] Liou, J. Y.; Huang, T. M.; Chang, G. G. Reverse Micelles as a Catalyst for the Nucleophilic Aromatic Substitution between Glutathione and 2,4-Dinitrochlorobenzene. J. Chem. Soc., Perkin Trans. 2 1999, 2171–2176.
    [64] Jaeger, D. A.; Ippoliti, J. T. Effect of Inverse Micelles on the Competition between Lactonization and Polymerization Reactions of an Omega.-Hydroxy Carboxylic Acid. J. Org. Chem. 1981, 46, 4964–4968.
    [65] Rico, I.; Halvorsen, K.; Dubrule, C.; Lattes, A. Effect of Micelles on Cyclization Reactions: the Use of N-Hexadecyl-2-Chloropyridinium iodide as an Amphiphilic Carboxyl-Activating Agent in Lactonization and Lactamization. J. Org. Chem. 1994, 59, 415–420.
    [66] Ranganathan, D.; Singh, G. P.; Ranganathan, S. Peptide Bond Formation at the Micellar interface. J. Am. Chem. Soc. 1989, 111, 1144–1145.
    [67] Kunishima, M.; Imada, H.; Kikuchi, K.; Hioki, K.; Nishida, J.; Tani, S. Unusual Rate Enhancement of Bimolecular Dehydrocondensation To Form Amides at the Interface of Micelles of Fatty Acid Salts. Angew. Chem. Int. Ed. 2005, 44, 7254–7257.
    [68] Manabe, K.; Sun, X. M.; Kobayashi, S. Dehydration Reactions in Water. Surfactant-Type Br?nsted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System. J. Am. Chem. Soc. 2001, 123, 10101–10102.
    [69]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2001.
    [70] Halperin, W. P. Quantum Size Effects in Metal Particles. Rev of Modern. Phys. 1986, 58, 533–606.
    [71] Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169.
    [72] Li, X. Q.; Qi, Z. H.; Liang, K.; Bai, X. L.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. An Artificial Supramolecular Nanozyme Based onβ-Cyclodextrin-modified Gold Nanoparticles. Catalysis Letters 2008, 124, 413–417.
    [73] Zhang, Z. M.; Fu, Q. A.; Li, X. Q.; Huang, X.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Self-assembled Gold Nanocrystal Micelles Act as an Excellent Artificial Nanozyme with Ribonuclease Activity. Journal of Biological Inorganic Chemistry 2009, DOI: 10.1007/s00775-009-0478-8. [74 ] Wulff, G. Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem. Rev. 2002, 102, 1–28.
    [75] Wulff, G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. 1995, 34,Langmuir 2000, 16, 227–233.
    [63] Liou, J. Y.; Huang, T. M.; Chang, G. G. Reverse Micelles as a Catalyst for the Nucleophilic Aromatic Substitution between Glutathione and 2,4-Dinitrochlorobenzene. J. Chem. Soc., Perkin Trans. 2 1999, 2171–2176.
    [64] Jaeger, D. A.; Ippoliti, J. T. Effect of Inverse Micelles on the Competition between Lactonization and Polymerization Reactions of an Omega.-Hydroxy Carboxylic Acid. J. Org. Chem. 1981, 46, 4964–4968.
    [65] Rico, I.; Halvorsen, K.; Dubrule, C.; Lattes, A. Effect of Micelles on Cyclization Reactions: the Use of N-Hexadecyl-2-Chloropyridinium iodide as an Amphiphilic Carboxyl-Activating Agent in Lactonization and Lactamization. J. Org. Chem. 1994, 59, 415–420.
    [66] Ranganathan, D.; Singh, G. P.; Ranganathan, S. Peptide Bond Formation at the Micellar interface. J. Am. Chem. Soc. 1989, 111, 1144–1145.
    [67] Kunishima, M.; Imada, H.; Kikuchi, K.; Hioki, K.; Nishida, J.; Tani, S. Unusual Rate Enhancement of Bimolecular Dehydrocondensation To Form Amides at the Interface of Micelles of Fatty Acid Salts. Angew. Chem. Int. Ed. 2005, 44, 7254–7257.
    [68] Manabe, K.; Sun, X. M.; Kobayashi, S. Dehydration Reactions in Water. Surfactant-Type Br?nsted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System. J. Am. Chem. Soc. 2001, 123, 10101–10102.
    [69]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2001.
    [70] Halperin, W. P. Quantum Size Effects in Metal Particles. Rev of Modern. Phys. 1986, 58, 533–606.
    [71] Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169.
    [72] Li, X. Q.; Qi, Z. H.; Liang, K.; Bai, X. L.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. An Artificial Supramolecular Nanozyme Based onβ-Cyclodextrin-modified Gold Nanoparticles. Catalysis Letters 2008, 124, 413–417.
    [73] Zhang, Z. M.; Fu, Q. A.; Li, X. Q.; Huang, X.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Self-assembled Gold Nanocrystal Micelles Act as an Excellent Artificial Nanozyme with Ribonuclease Activity. Journal of Biological Inorganic Chemistry 2009, DOI: 10.1007/s00775-009-0478-8. [74 ] Wulff, G. Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem. Rev. 2002, 102, 1–28.
    [75] Wulff, G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. 1995, 34,2004, 126, 7452–7453.
    [89] Liu, J. Q.; Wulff, G. Molecularly Imprinted Polymers with Strong Carboxypeptidase A-Like Activity: Combination of an Amidinium Function with a Zinc-Ion Binding Site in Transition-State Imprinted Cavities. Angew. Chem. Int. Ed. Engl. 2004, 43, 1287–1290.
    [90] Liu, J. Q.; Wulff, G. Functional Mimicry of Carboxypeptidase A by a Combination of Transition State Stabilization and a Defined Orientation of Catalytic Moieties in Molecularly Imprinted Polymers. J. Am. Chem. Soc. 2008, 130, 8044–8054.
    [91] Tramontano, A.; Janda, K. D.; Lerner, R. A. Catalytic Antibodies. Science 1986, 234, 1566–1570.
    [92] Pollack, S. J.; Jacobs, J. W.; Schultz, P. G. Selective Chemical Catalysis by an Antibody. Science 1986, 234, 1570–1573.
    [93] Stevenson, J. D.; Thomas, N. R. Catalytic Antibodies and Other Biomimetic Catalysts. Nat. Prod. Rep. 2000, 17, 535–577.
    [94] Murikami, Y.; Kikuchi, J. I.; Hisaeda, Y.; Hayashida, O. Artificial Enzymes. Chem. Rev. 1996, 96, 721–758.
    [95] Liu, D. R.; Schultz, P. G. Generating New Molecular Function: A Lesson From Nature. Angew. Chem., Int. Ed. Engl. 1999, 38, 37–54.
    [96] Zhang, K.; Zang, T. Z.; Yang, W.; Sun, Y.; Mu, Y.; Liu, J. Q.; Shen, J. C.; Luo, G. M. Single-Chain Antibody Displays Glutathione S-Transferase Activity. J. Biol. Chem. 2006, 281, 12516–12520.
    [97] Ren, X. J. Construction of Artificial Enzymes with GPx Activity on the Basis of Molecular Recognition. PhD Thesis, Jilin University, 2002.
    [98] Reetz, M. T.; Zonta, A.; Shimossek, K.; Liebeton, K.; Jaeger, K.-E. Creation of Enantioselective Biocatalysts for Organic Chemistry by in Vitro Evolution. Angew. Chem., Int. Ed. Engl. 1997, 36, 2830–2831.
    [99] Joo, H.; Lin, Z.; Arnold, F. H. Laboratory Evolution of Peroxide-Mediated Cytochrome P450 Hydroxylation. Nature 1999, 399, 670–673.
    [100] Hynes, T. R.; Kautz, R. A.; Goodman, M. A.; Gill, J. F.; Fox, R. O. Transfer of a beta-Turn Structure to a New Protein Context. Nature 1989, 339, 73–76.
    [101] Kim, Y. G.; Chandrasegaran, S. Hybrid Restriction Enzymes: Zinc Finger Fusions to Fok I Cleavage Domain. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 1156–1160.
    [102] Flohé, L.; Günzler, W. A.; Schock, H. H. Glutathione Peroxidase: a Selenoenzyme. FEBS Letts. 1973, 32, 132–134.
    [103] Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the SelenoenzymeGlutathione Peroxidase at 0.2-nm Resolution. Eur. J. Biochem. 1983, 133, 51–69.
    [104] Ren, B.; Huang, W.; ?kesson, B.; Ladenstein, R. The Crystal Structure of Seleno-Glutathione Peroxidase from Human Plasma at 2.9 ? Resolution. J. Mol. Biol. 1997, 268, 869–885.
    [105] Luo, G. M.; Ren, X. J.; Liu, J. Q.; Mu, Y.; Shen J. C. Towards More Efficient Glutathione Peroxidase Mimics: Substrate Recognition and Catalytic Group Assembly. Curr. Med. Chem. 2003, 10, 1151–1183.
    [106] Mugesh, G.; du Mont, W. W.; Sies, H. Chemistry of Biologically Important Synthetic Organoselenium Compounds. Chem. Rev. 2001, 101, 2125–2179.
    [107] Mugesh, G.; Singh, H. B. Heteroatom-Directed Aromatic Lithiation: A Versatile Route to the Synthesis of Organochalcogen (Se, Te) Compounds. Acc. Chem. Res. 2002, 35, 226–236.
    [108] Mills, G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an Erythrocyte Enzyme which Protects Hemoglobinfrom Oxidase Breakdown. J. Biol. Chem. 1957, 229, 189–197.
    [109] Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, P.; Hoekstra, W. G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590.
    [110] Roveri, A.; Maiorino, M.; Nissii, C.; Ursini, F. Purification and Characterization of Phospholipid Hydroperoxide Glutathione Peroxidase from Rat Testis Mitochondrial Membranes. Biochem. Biophys. Acta. 1994, 1208, 211–221.
    [111] Yamamato, Y.; Takahashi, K. Glutathione Peroxidase Isolated Plasma Reduces Phospholipid Hydroperoxides. Arch. Biochem. Biophys. 1993, 305, 541–545.
    [112] Akasaka, M.; Mizoguchi, J.; Takahashi, K. A Human cDNA Sequence of a Novel Glutathione Peroxidase-Related Protein. Nucleic. Acids Res. 1990, 15, 4619–4625.
    [113] Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution. Eur. J. Biochem. 1983, 133, 51–69.
    [114] Ren, B.; Huang, W.; ?kesson, B.; Ladenstein, R. The Crystal Structure of Seleno-Glutathione Peroxidase from Human Plasma at 2.9 A Resolution. J. Mol. Biol. 1997, 268, 869–873.
    [115] Flohé, L.; Loschen, G.; Günzler, W. A.; Eichele, E. Glutathione Peroxidase, V the Kinetic Mechanism. Hoppe-Seyler's Z Physiol. Chem. 1972, 353, 987–999.
    [116] Flohé, L. Glutathione Peroxidase. Basic. Life. Sci.1988, 49, 663–668.
    [117] Segel, I. H. Enzyme Kinetics, John Wiley and Sons, New York, 1995, 607.
    [118] Carsol, M. A.; Pouliquen-Sonaglia, I.; Lesgards, G.; Marchis-Mouren, G.; Puigserver, A.;Santimone, M. A New Kinetic Model for the Mode of Sction of Soluble and Membrane-Immobilized Glutathione Peroxidase from Bovine Erythrocytes--Effects of Selenium. Eur. J. Biochem. 1997, 247, 248–255.
    [119] Sies, H.; Masumoto, H. Ebselen as a Glutathione Peroxidase Mimic and as a Scavenger of Peroxynitrite. Adv. Pharmacol. 1997, 38, 229–246.
    [120] Ostrovidov, S.; Franck, P.; Joseph, D.; Martarello, L.; Kirsch, G.; Belleville, F.; Nabet, P.; Dousset, B. Screening of New Antioxidant Molecules Using Flow Cytometry. J. Med. Chem. 2000, 43, 1762–1769.
    [121] Nishibayashi, Y.; Singh, J. D.; Uemura, S.; Fukuzawa, S. Synthesis of [R,S;R,S]-and [S,R;S,R]-Bis[2-[1-(dimethylamino)ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. J. Org. Chem. 1995, 60, 4114–4120.
    [122] Iwaoka, M.; Tomoda, S. A Model Study on the Effect of an Amino Group on the Antioxidant Activity of Glutathione Peroxidase. J. Am. Chem. Soc. 1994, 116, 2557–2561.
    [123] Back, T. G.; Kuzma, D.; Parvez, M. Aromatic Derivatives and Tellurium Analogues of Cyclic Seleninate Esters and Spirodioxyselenuranes That Act as Glutathione Peroxidase Mimetics. J. Org. Chem. 2005, 70, 9230–9236.
    [124] Zade, S. S.; Panda, S.; Singh, H. B.; Sunoj, R. B.; Butcher, R. J. Intramolecular Interactions between Chalcogen Atoms: Organoseleniums Derived from 1-Bromo-4-tert-butyl-2,6-di(formyl)benzene. J. Org. Chem. 2005, 70, 3693–3704.
    [125] Szabo, K. J.; Frisell, H.; Engman, L.; Piatek, M.; Oleksyn, B.; Sliwinski, J.α-(Phenylselenenyl)ketones―Structure, Molecular Modelling and Rationalization of Their Glutathione Peroxidase-Like Activity. J. Mol. Struct. 1998, 448, 21–28.
    [126] Engman, L.; Stern, D.; Cotgrware, I. A.; Andersson, C. M. Thiol Peroxidase Activity of Diaryl Ditellurides as Determined by a 1H NMR Method. J. Am. Chem. Soc. 1992, 114, 9737–9743.
    [127] Kanda, T.; Engman, L.; Cotgreave, I. A.; Powis, G. Novel Water-Soluble Diorganyl Tellurides with Thiol Peroxidase and Antioxidant Activity. J. Org. Chem. 1999, 64, 8161–8169.
    [128] McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I. A. Cyclodextrin-Derived Diorganyl Tellurides as Glutathione Peroxidase Mimics and Inhibitors of Thioredoxin Reductase and Cancer Cell Growth. J. Med. Chem. 2004, 47, 233–239.
    [129] Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J.C. Aryl Thiol Substrate 3-Carboxy-4-nitrobenzenethiol Strongly Stimulating Thiol Peroxidase Activity of Glutathione Peroxidase Mimic 2, 2'-Ditellurobis(2-deoxy-β-cyclodextrin), J. Am. Chem. Soc. 2004, 126, 16395–16404.
    [130] Zhang, X.; Xu, H. P.; Dong, Z. Y.; Wang, Y. P.; Liu, J. Q.; Shen, J. C. Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. J. Am. Chem. Soc. 2004, 126, 10556–10557.
    [131] Xu, H. P.; Gao, J.; Wang, Y. P.; Wang, Z. Q.; Smet, M.; Dehaen, W.; Zhang, X. Hyperbranched Polyselenides as Glutathione Peroxidase Mimics. Chem. Commun. 2006, 796–798.
    [132] Bell, I. M.; Hilvert, D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin. Biochemistry 1993, 32, 13969–13973.
    [133] Mao, S. Z.; Dong, Z. Y.; Liu, J. Q.; Li, X. Q.; Liu, X. M.; Luo, G. M.; Shen, J. C. Semisynthetic Tellurosubtilisin with Glutathione Peroxidase Activity J. Am. Chem. Soc. 2005, 127, 11588–11589.
    [134] Liu, J.; Luo, G. M.; Gao, S.; Zhang, K; Chen, X.; Shen, J. C. Generation of Glutathione Peroxidase-Like Mimic by Using Bioimprinting and Chemical Mutation. Chem. Commun. 1999, 199–200.
    [135] Liu, L.; Mao, S. Z.; Liu, X. M.; Huang, X.; Xu, J. Y.; Liu, J. Q.; Luo, G. M.; Shen, J. C. Functional Mimicry of the Active Site of Glutathione Peroxidase by Glutathione Imprinted Selenium-Containing Protein. Biomacromolecules 2008, 9, 363–368.
    [136] Ding, L.; Liu, Z.; Zhu, Z. Q.; Luo, G. M.; Zhao, D. Q.; and Ni, J. Z. Biochemical Characterization of Selenium-Containing Catalytic Antibody as a Cytosolic Glutathione Peroxidase mimic. Biochem. J. 1998, 332, 251–255.
    [137] Su, D.; You, D. L.; Ren, X. J.; Luo, G. M.; Mu, Y.; Yan, G. L.; Xue, Y.; Shen, J. C. Kinetics Study of a Selenium-Containing scFv Catalytic Antibody That Mimics Glutathione Peroxidase. Biochem. Biophys. Res. Commun. 2001, 285, 702–707.
    [138] Ge, Y.; Qi, Z.; Wang, Y.; Liu, X.; Li, J.; Xu, J.; Liu, J.; Shen, J. Engineered Selenium-Containing Glutaredoxin Displays Strong Glutathione Peroxidase Activity Rivaling Natural Enzyme. Int J Biochem Cell Biol. 2009, 41, 900–906.
    [139] Liu, X. M.; Silks, L.; Liu, C. P,; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G. M; Hou, Y. M.; Liu, J. Q.; Shen, J. C. Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency Angew. Chem. Int. Ed. 2009, 48, 2020–2023.
    [1] Flohé, L.; Loschen, G.; Günzler, W. A.; Eichele, E. Glutathione Peroxidase, V. The Kinetic Mechanism. Hoppe–Seyler’s Z. Physiol. Chem. 1972, 353, 987–999.
    [2] Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution. Eur. J. Biochem. 1983, 133, 51–69.
    [3] Luo, G.; Ren, X.; Liu, J. Q.; Mu, Y.; Shen, J. Towards More Efficient Glutathione Peroxidase Mimics: Substrate Recognition and Catalytic Group Assembly. Curr. Med. Chem. 2003, 10, 1151–1183.
    [4] Mao, S. Z.; Dong, Z. Y.; Liu, J. Q.; Li, X. Q.; Liu, X. M.; Luo, G. M.; Shen, J. C. Semisynthetic Tellurosubtilisin with Glutathione Peroxidase Activity. J. Am. Chem. Soc. 2005, 127, 11588–11589.
    [5] Liu, X. M.; Silks, L. A.; Liu, C. P.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G. M.; Hou, Y. M.; Liu, J. Q.; Shen, J. C. Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency. Angew. Chem. Int. Ed. 2009, 48, 2020–2023.
    [6] Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Luo, G. M.; Shen, J. C. Aryl Thiol Substrate 3-Carboxy-4-nitrobenzenethiol Strongly Stimulating Thiol Peroxidase Activity of Glutathione Peroxidase Mimic 2, 2'-Ditellurobis(2-deoxy-β-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395–16404.
    [7] Mugesh, G.; du Mont, W. W.; Sies, H. Chemistry of Biologically Important Synthetic Organoselenium Compounds. Chem.Rev. 2001, 101, 2125–2179.
    [8] Menger, F. M.; Shi, L. Exposure of Self-Assembly Interiors to External Elements. A Kinetic Approach. J. Am. Chem. Soc. 2006, 128, 9338–9339.
    [9] Menger, F. M. The Structure of Micelles. Acc. Chem. Rsc. 1997, 12, 111–117.
    [10] Menger, F. M.; Dell, D. W. J. On the Structure of Micelles. J. Am. Chem. Soc. 1984, 106, 1109–1113.
    [11] Menger, F. M. Molecular Conformations in Surfactant Micelles. Nature 1985, 313, 603–606.
    [12] Scrimin, P.; Tonellato, U. Mittel, K. L.; Shah, D.; Plenum, D. Surfactants in Solution, Press: New York, 1991, Vol. 11.
    [13] Vriezema, D. M.; Comellas, A. M.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Self-Assembled Nanoreactors. Chem. Rev. 2005, 105, 1445–1490.
    [14] Mccullough, J. D.; Gould, E. S. The Dissociation Constants of Some Mono-substituted Benzeneseleninic Acids. J. Am. Chem. Soc. 1949, 71, 674–676.
    [15] Silver, M. Thin-layer Chromatography of Lipoic Acid, Lipoamide, and Their Persulfides.Methods Enzymol. 1979, 62D, 135–137.
    [16] Wilson, S. R.; Zucker, P. A.; Huang, R. R. C.; Spector, A. Development of Synthetic Compounds with Glutathione Peroxidase Activity. J. Am. Chem. Soc. 1989, 111, 5936–5939.
    [17] Wu, Z. P.; Hilvert, D. Selenosubtilisin as a Glutathione Peroxidase Mimic. J. Am. Chem. Soc. 1990, 112, 5647–5648.
    [18] Bell, J. M.; Fisher, M. L.; Wu, Z. P.; Hilvert, D. Kinetic Studies on the Peroxidase Activity of Selenosubtilisin. Biochemistry 1993, 32, 3754–3762.
    [19] Bell, I. M.; Hilvert, D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin. Biochemistry 1993, 32, 13969–13973.
    [20] Ru, Q. H.; Luo, G. A.; Wang, Z. B.; Liu, J. Y. Enzymatic Activity Measurement of Phospholipids Hydroperoxide Glutathione Peroxidase by Capillary Electrophoresis. Analyst 2000, 125, 1924–1927.
    [21] Giles, G. I.; Tasker, K. M.; Johnson, R. J. K.; Jacob, C.; Peersb, C.; Green K. N. Electrochemistry of Chalcogen Compounds: Prediction of Antioxidant Activity. Chem. Commun. 2001, 2490–2491.
    [22] Iwaoka, M.; Tomoda, S. A Model Study on the Effect of an Amino Group on the Antioxidant Activity of Glutathione Peroxidase. J. Am. Chem. Soc. 1994, 116, 2557–2561.
    [1] Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Xu, J. Y.; Luo, G. M.; Shen, J. C. Selenium-Mediated Micellar Catalyst: An Efficient Enzyme Model for Glutathione Peroxidase-like Catalysis. Langmuir 2007, 23, 1518–1522.
    [2] Clint, J. H. Surfactant Aggregation Chapman and Hall: New York, 1992; chapter 5.
    [3] Tanford, C. Micelle Shape and Size. J. Phys. Chem. 1972, 76, 3020–3024.
    [4] Pazo-Llorente, R.; Bravo-Díaz, C.; González-Romero, E. Monitoring Micelle Breakdown by Chemical Trapping. Langmuir 2003, 19, 9142–9146.
    [5] Leibner, J. E.; Jacobus, J. Charged Micelle Shape and Size. J. Phys. Chem. 1977, 81, 130–135.
    [6] Zhang, X.; Wang, M. F.; Wu, T.; Jiang, S. C.; Wang, Z. Q. In Situ Gamma Ray-Initiated Polymerization To Stabilize Surface Micelles. J. Am. Chem. Soc. 2004, 126, 6572–6573
    [7] Li, H.; Qi, W.; Li, W.; Sun, H.; Bu, W.; Wu, L. A Highly Transparent and Luminescent Hybrid Based on the Copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate. Adv. Mater. 2005, 17, 2688–2692.
    [8] Ren, X. J. Construction of Artificial Enzymes with GPx Activity on the Basis of Molecular Recognition. PhD Thesis, Jilin University, 2002.
    [9] Daniel, L. K.; Griffin, T. S. Reaction of Selenium with Sodium Borohydride in Protic Solvents. A Facile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem. Soc. 1973, 95, 197–199.
    [10] Wu, Z. P.; Hilvert, D. Selenosubtilisin as a Glutathione Peroxidase Mimic. J. Am. Chem. Soc. 1990, 112, 5647–5648.
    [11] Bell, J. M.; Fisher, M. L.; Wu, Z. P.; Hilvert, D. Kinetic Studies on the Peroxidase Activity of Selenosubtilisin. Biochemistry 1993, 32, 3754–3762.
    [12] Bell, I. M.; Hilvert, D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin. Biochemistry 1993, 32, 13969–13973.
    [13] Dong, Z. Y.; Huang, X.; Mao, S. Z.; Liang, K.; Liu, J. Q.; Luo, G. M.; Shen, J. C. Cyclodextrin-Derived Mimic of Glutathione Peroxidase Exhibiting Enzymatic Specificity and High Catalytic Efficiency. Chem. Eur. J. 2006, 12, 3575–3579.
    [14] Liu, J. Q.; Shi, C. B.; Luo, G. M; Liu, Z.; Zhang, G. L.; Shen, J. C. An Fv Catalytic Antibody with High Glutathione Peroxidase Activity. Materials Science and Enginerring C. 1999, 10, 131–134.
    [15] Ren, X.; Gao, S.; You, D.; Huang, H.; Liu, Z.; Mu, Y.; Liu, J. Q.; Zhang, Y.; Yan, G.; Luo, G.M.; Yang, T.; Shen, J. C. Cloning and Expression of a Single-chain Catalytic Antibody that Acts as a Glutathione Peroxidase Mimic with High Catalytic Efficiency. Biochem. J. 2001, 359, 369–374.
    [16] Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Luo, G. M.; Shen, J. C. Aryl Thiol Substrate 3-Carboxy-4-nitrobenzenethiol Strongly Stimulating Thiol Peroxidase Activity of Glutathione Peroxidase Mimic 2, 2'-Ditellurobis(2-deoxy-β-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395–16404.
    [17] Liu, X. M.; Silks, L. A.; Liu, C. P.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G. M.; Hou, Y. M.; Liu, J. Q.; Shen, J. C. Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency. Angew. Chem. Int. Ed. 2009, 48, 2020–2023.
    [18] Mao, S. Z.; Dong, Z. Y.; Liu, J. Q.; Li, X. Q.; Liu, X. M.; Luo, G. M.; Shen, J. C. Semisynthetic Tellurosubtilisin with Glutathione Peroxidase Activity. J. Am. Chem. Soc. 2005, 127, 11588–11589.
    [1] Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A Novel Biologically Active Seleno-organic Compound--I. Glutathione Peroxidase-like Activity in Vitro and Antioxidant Capacity of PZ 51 (Ebselen). Biochem. Pharmacol. 1984, 33, 3235–3239.
    [2] Sies, H. Ebselen, a Selenoorganic Compound as Glutathione Peroxidase Mimic. Free Radic. Biol. Med. 1993, 14, 313–323.
    [3] Sies, H. Ebselen: a Glutathione Peroxidase Mimic. Methods Enzymol. 1994, 234, 476–482.
    [4] Sies, H. Ebselen as a Glutathione Peroxidase Mimic and as a Scavenger of Peroxynitrite. Adv. Pharmacol. 1997, 38, 229–246.
    [5] Wulff, G. Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem. Rev. 2002, 102, 1–28.
    [6] Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000, 100, 2495–2504.
    [7] Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O’Mahony, J.; Whitcombe, M. J. Molecular Imprinting Science and Technology: a Survey of the Literature for the Years up to and Including 2003. J. Mol. Recognit. 2006, 19, 106–180.
    [8] Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo, G. M.; Shen, J. C.; Tellurium-Based Polymeric Surfactants as a Novel Seleno-Enzyme Model with High Activity. Macromol. Rapid Commun. 2006, 27, 2101–2106.
    [9] Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution. Eur. J. Biochem. 1983, 133, 51–69.
    [10] Atik, S. S.; Thomas, J. K. Polymerized Microemulsions. J. Am. Chem. Soc. 1981, 103, 4279–4280.
    [11] Antonietti, M.; Bremser, W.; Müschenborn, D.; Rosenauer, C.; Schupp, B. Synthesis and Size Control of Polystyrene Latices via Polymerization in Microemulsion. Macromolecules 1991, 24, 6636–6643.
    [12] Dahman, Y.; Puskas, J. E.; Margaritis, A.; Merali, Z.; Cunningham, M. Novel Thymine-Functionalized Polystyrenes for Applications in Biotechnology. Polymer Synthesis and Characterization. Macromolecules 2003, 36, 2198–2205.
    [13] Lee, C. F.; Young, T. H.; Chiu, W. Y. Synthesis and Properties of Polymer Latex with Carboxylic Acid Functional Groups for Immunological Studies. Polymer 2000, 41,8565–8571.
    [14] Wulff, G.; Gross, T.; Sch?nfeld, R. Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity. Angew. Chem., Int. Ed. Engl. 1997, 36, 1962–1964.
    [15] Kim, H.; Spivak, D. A. New Insight into Modeling Non-Covalently Imprinted Polymers. J. Am. Chem. Soc. 2003, 125, 11269–11275.
    [16] Jang, B. B.; Lee, K. P.; Min, D. H.; Suh, J. Immobile Artificial Metalloproteinase Containing Both Catalytic and Binding Groups. J. Am. Chem. Soc. 1998, 120, 12008–12016.
    [17] Vessman, K.; Ekstrom, M.; Andersson, C. M.; Engman, L. Catalytic Antioxidant Activity of Diaryl Tellurides in a Two-Phase Lipid Peroxidation Model. J. Org. Chem. 1995, 60, 4461–4467.
    [18] You, Y.; Ahsan, K.; Detty, M. Mechanistic Studies of the Tellurium(II)/Tellurium(IV) Redox Cycle in Thiol Peroxidase-like Reactions of Diorganotellurides in Methanol. J. Am. Chem. Soc. 2003, 125, 4918–4927.
    [19] Engman, L.; Stern, D.; Cotgreave, I. A.; Andersson, C. M. Thiol Peroxidase Activity of Diaryl Ditellurides as Determined by a Proton NMR Method. J. Am. Chem. Soc. 1992, 114, 9737–9742.
    [20] Kirby, A. J. Enzyme Mechanisms, Models, and Mimics. Angew. Chem., Int. Ed. Engl. 1996, 35, 707–724.
    [21] D’souza, V. T.; Bender, M. L. Miniature Organic Models of Enzymes. Acc. Chem. Res. 1987, 20, 146–152.
    [22] Bell, I. M.; Hilvert, D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin. Biochemistry 1993, 32, 13969–13973.
    [1] Kim, J.; Nayak, S.; Lyon, L. A. Bioresponsive Hydrogel Microlenses. J. Am. Chem. Soc. 2005, 127, 9588–9592.
    [2] Shen, Y.; Kuang, M.; Shen, Z.; Nieberle, J.; Duan, H.; Frey, H. Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors. Angew. Chem. Int. Ed. 2008, 47, 2227–2230.
    [3] Chiu, H. C.; Lin, Y. W.; Huang, Y. F.; Chuang, C. K.; Chern, C. S. Polymer Vesicles Containing Small Vesicles within Interior Aqueous Compartments and pH-Responsive Transmembrane Channels. Angew. Chem. Int. Ed. 2008, 47, 1875–1878.
    [4] Yan, H.; Frielinghaus, H.; Nykanen, A.; Ruokolainen, J.; Saianid, A.; Miller, A. F. Thermoreversible Lysozyme Hydrogels: Properties and an Insight into the Gelation Pathway. Soft Matter 2008, 4, 1313–1325.
    [5] Jonathan, V. M. W.; Richard, T. W.; Brodyck, J. L. R.; Paul, H. F.; Andrew, I. C.; Steven, P. R. pH-Responsive Branched Polymer Nanoparticles. Soft Matter 2008, 4, 985–992.
    [6] Nerapusri, V.; Keddie, J. L.; Vincent, B.; Bushnak, I. A. Salt-Induced Homoaggregation of Poly(N-isopropylacrylamide) Microgels. Langmuir 2006, 22, 5036–5041.
    [7] Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chem. Int. Ed. 2006, 45, 813–816.
    [8] Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core?Shell Microgels. Chem. Mater. 2007, 19, 1062–1069.
    [9] Ballauff, M. Nanoscopic Polymer Particles with a Well-Defined Surface: Synthesis, Characterization, and Properties. Macromol. Chem. Phys., 2003, 204, 220–234.
    [10] Ballauff, M.; Lu, Y.“Smart”nanoparticles: Preparation, Characterization and Applications. Polymer 2007, 48, 1815–1823.
    [11] Pelton, R. Unresolved Issues in the Preparation and Characterization of Thermoresponsive Microgels. Macromol. Symp. 2004, 207, 57–66.
    [12] Saunders, B. R.; Vincent, B. Microgel Particles as Model Colloids: Theory, Properties and Applications. Adv. Colloid. Interface. Sci., 1999, 80, 1–28.
    [13]. Gao, J.; Frisken, B. J. Influence of Reaction Conditions on the Synthesis of Self-Cross-Linked N-Isopropylacrylamide Microgels. Langmuir, 2003, 19, 5217–5222.
    [14] Dingenouts, N.; Norhausen, Ch.; Ballauff, M. Observation of the Volume Transition in Thermosensitive Core?Shell Latex Particles by Small-Angle X-ray Scattering.Macromolecule, 1998, 31, 8912–8917.
    [15] Senff, H.; Richtering, W.; Norhausen, Ch.; Weiss, A.; Ballauff, M. Rheology of a Temperature Sensitive Core?Shell Latex. Langmuir, 1999, 15, 102–106.
    [16] Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo, G. M.; Shen, J. C.; Tellurium-Based Polymeric Surfactants as a Novel Seleno-Enzyme Model with High Activity. Macromol. Rapid Commun. 2006, 27, 2101–2106.
    [17] Ichikawa, H.; Arimoto, M.; Fukumori, Y.; Design of microcapsules with hydrogel as a membrane component and their preparation by a spouted bed. Powder Technology 2003, 130, 189–192.
    [18] Hoffman, A. S.; Stayton, P. S. Bioconjugates of smart polymers and p roteins: synthesis and applications. Macromol. Symp. 2004, 207, 139–151.
    [19] Hoare, T.; Pelton, R. Titrametric Characterization of pH-Induced Phase Transitions in Functionalized Microgels. Langmuir 2006, 22, 7342–7350.
    [20] Hoare, T.; Pelton, R. Highly pH and Temperature Responsive Microgels Functionalized with Vinylacetic Acid. Macromolecules 2004, 37, 2544–2550.
    [21] Xu, J.; Liu, S. Y. Polymeric Nanocarriers Possessing Thermoresponsive Coronas. Soft Matter 2008, 4, 1745–1749.
    [22] Morris, G. E.; Vincent, B.; Snowden, M. J. Adsorption of Lead Ions onto N-isopropylacrylamide and Acrylic Acid Copolymer Microgels. J. Colloid Interface Sci. 1997, 190, 198–205.
    [23] Dowding, P. J.; Vincent, B.; Williams, E. Preparation and Swelling Properties of Poly(NIPAM) Minigel Particles Prepared by Inverse Suspension Polymerisation. J. Colloid Interface Sci. 2000, 221, 268–272.
    [24] Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 1983, 133, 51–69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700