用户名: 密码: 验证码:
壳聚糖共价接枝碳纳米管复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管/壳聚糖复合材料是一种具有生物和光电双重性能的复合材料。壳聚糖具有良好的生物相容性、可降解性及低毒性,在生物领域具有广泛的应用。将壳聚糖与碳纳米管制备成复合材料,不仅有望利用生物大分子的亲水性来改善碳纳米管的分散性,更有可能赋予碳纳米管某些生物学的性质,为碳纳米管在生物医学领域的应用提供了途径。
     通过壳聚糖共价接枝在碳纳米管表面的方法制备一种新型的碳纳米管/壳聚糖复合材料。通过红外光谱分析,证明了壳聚糖与碳纳米管之间通过共价键连接。紫外光谱分析表明碳纳米管在265 nm处出现吸收峰,且吸收峰的强度与碳纳米管的浓度成正比,满足Lambert-Beer定律。透射电子显微镜表明壳聚糖共价接枝碳纳米管为芯-皮结构,碳纳米管被厚厚的一层聚合物链包裹。热失重分析为碳纳米管表面接枝壳聚糖提供了定量的分析。共价接枝方法提高了碳纳米管与壳聚糖两相之间的结合力,使碳纳米管在一些稀的有机弱酸(甲酸、苯甲酸、乙酸等)中产生了稳定的分散性。
     为了表征壳聚糖共价接枝碳纳米管复合材料的电化学性质,我们用电化学沉积的方法对其沉积到金电极表面。扫描电子显微镜显示接枝产物在电极表面为多孔结构,与壳聚糖非共价修饰碳纳米管不同。所制备的壳聚糖共价接枝碳纳米管修饰电极对过氧化氢有良好的电催化能力,因此可以应用于氧化类的生物传感器。作为一个例子,葡萄糖氧化酶通过戊二醛交联法固定于修饰电极表面,构筑成葡萄糖生物传感器。由于接枝产物的特殊结构,电极表面与葡萄糖氧化酶活性中心之间的电子传递更加容易。与壳聚糖非共价修饰的碳纳米管相比,壳聚糖共价接枝修饰碳纳米管的生物传感器具有更高的响应电流、更宽的线性响应范围。
     将壳聚糖共价接枝碳纳米管分散于聚乙烯醇基体中进行静电纺丝,得平均直径为232±85 nm的电纺纤维。拉曼光谱证明的纤维中碳纳米管的存在,并且吸收峰的强度与碳纳米管的浓度有关。扫描电子显微镜观察了壳聚糖共价接枝碳纳米管/聚乙烯醇电纺纤维的微观形貌,并与壳聚糖非共价修饰碳纳米管/聚乙烯醇电纺纤维进行比较,结果表明该电纺纤维具有更均匀的直径分布,说明壳聚糖共价接枝碳纳米管在聚乙烯醇中具有良好可纺性。此外由于该电纺纤维具有高的比表面积,它的电化学性能也很好,有望在生物传感器等领域得到的应用。
Carbon nanotubes/chitosan (CNT/CS) composite has biologic and optoelectronic function. Based on attractive biocompatibility, biodegradability and non-toxicity of CS, many researchers explored the possibility of CS as platforms in biological field. CNT/CS composites not only are hopeful to improve the dispersibility and solubility of CNT by the hydrophilicity of biopolymer, but also could endue some biologic ability for CNT that can provide an approach for the application of CNT.
     A novel Chitosan-grafted multiwalled carbon nanotubes (CS-g-MWCNT) was prepared through covalently grafting a biocompatible polymer CS onto the surfaces of MWCNT. On the basis of Fourier transform infrared spectroscopy (FT-IR), we can conclude that the CS was covalently grafted onto MWCNT. Ultraviolet-visible spectroscopy (UV-vis) shows a sharp absorption peak in about 265 nm appeared which can be attributed to the characteristic absorption of MWCNT. Interestingly, the observed absorption peak in CS-g-MWCNT solution depends on the solution concentrations in a linear fashion, obeying the Lambert-Beer’s law. A core-shell nanostructure can be observed by transmission electron microscopy (TEM), indicating that the nanotubes were coated with polymer chains. Thermogravimetry analysis (TGA) data furnish quantitative information on the degree of functionalization. The covalent modification overcomes the issues of poor interfacial bonding and results in stable dispersibility of MWCNT in some diluted organic acid (formic, benzoic, acetic, etc.).
     The electrochemical properties of the CS-g-MWCNT were characterized by an electrodeposition method that involves depositing it on an Au electrode. The porous microstructure of the CS-g-MWCNT modified electrode was observed by scanning electron microscopy (SEM) which is contrast to the non-covalent modification of MWCNTs with CS (CS/MWCNT). The excellent electrocatalytic ability of the CS-g-MWCNT modified electrode towards hydrogen peroxide is applicable to the development of oxidase-based amperometric biosensors. As an example, an amperometric glucose biosensor based on the enzyme electrode with CS-g-MWCNT modified electrode was fabricated. The glucose oxidase (GOD) was cross-linked and immobilized on the electrode surface by the use of glutaraldehyde. The electron could transfer more easily between electrode surface and bioactive center of GOD because of the special structure of CS-g-MWCNT. The CS-g-MWCNT biosensor has higher sensitivity and wider linear response range than the CS/MWCNT biosensor.
     The CS-g-MWCNT in poly(vinyl alcohol) (PVA) matrix was electrospun into nanofibers with a mean diameter of 232±85 nm. Raman spectroscopy shows the existence of MWCNT and the absorption peak in CS-g-MWCNT/PVA electrospun nanofibers depends on the concentrations of CS-g-MWCNT. Scanning electron microscopy (SEM) was used to characterize the morphologies of the CS-g-MWCNT nanofibers and the results show that the CS-g-MWCNT/PVA nanofibers have uniform diameter distribution in contrast to CS/MWCNT/PVA nanofibers. The excellent electrochemical properties of the CS-g-MWCNT/PVA nanofibers attribute to high surface/volume ratio which is applicable to the development of biosensors.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [2] Walters D A, Ericson L M, Casavant M J, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999, 74(25): 3803-3805
    [3] Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 1996, 104(5): 2089-2092
    [4] Dikey E C, Grmies C A, Jain M K, et al. Visible photoluminescence from ruthenium-doped multiwall carbon nanotubes. Applied Physics Letters, 2001, 79(24): 4022-4024
    [5] Sun W X, Huang Z P, Zhang L, et al. Luminescence from multi-walled carbon nanotubes and the Eu(III)/multi-walled carbon nanotube composite. Carbon, 2002, 41(8): 1685-1687
    [6] 赵铁强,国立秋,董申. 纳米管原子力显微镜探针的生物学应用. 生物化学与生物物理进展,2002,29(2):176-179
    [7] Ma R Z, Liang J, Wei B Q, et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes. Journal of Power Sources, 1999, 34: 126-129
    [8] Chen P, Wu X, Sun X, et al. Electronic structure and optical limiting behavior of carbon nanotubes. Physical Review Letters, 1999, 82 (12): 2548-2551
    [9] Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386: 377-379
    [10] Luo J Z, Gao L Z, Leung Y L, et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs. Catalysis Letters, 2000, 66(1-2): 91-97
    [11] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode. Electrochemistry Communications, 2003, 5: 689-694
    [12] Besteman K, Lee J, Wiertz F, et al. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters, 2003, 3(6): 727-730
    [13] Wang S G, Zhang Q, Wang R L, et al. A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochemical and Biophysical Research Communications, 2003, 311(5): 572-576
    [14] Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection atcarbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002, 4: 743-746
    [15] Davis J J, Coles R J, Hill A O. Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 1997, 40: 279-282
    [16] Davis J J, Green M L H, Hill A O, et al. The immobilization of proteins in carbon nanotubes. Inorganica Chimica Acta, 1998, 272: 261-266
    [17] Yu X, Chattopadhyay D, Galeska I, et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochemistry Communications, 2003, 5: 408-411
    [18] Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors and Actuator B: Chemical, 2002, 168-172
    [19] Guiseppi-Elie A, Lei C H, Baughman R H. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 2002, 13: 559-564
    [20] Kong J, Franklin N R, Chapline M C, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622-625
    [21] Tsang S C, Chen Y K, Green M L H, et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159-162
    [22] Lago R M, Tsang S C, Green M L H, et al. Filling carbon nanotubes with small palladium metal crystallites-the effect of surface acid groups. Journal of the Chemical Society, Chemical Communications, 1995(13): 1355-1356
    [23] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95-98
    [24] Curran S A, Ajayan P M, Blau W J, et al. A composite from poly (m-pyenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Advanced Materials, 1998, 10(14): 1091-1093
    [25] Coleman J N, Dalton A B, Curran S A, et al. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Advanced Materials, 2000, 12(3): 213-216
    [26] Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition, 2001, 40(9): 1721-1725
    [27] Jurewicz K, Delpeux S, Bertagna V, et al. Supercapacitors fromnanotubes/polypyrrole composites. Chemical Physics Letters, 2001, 347(1-3): 36-40
    [28] Frackowiak E, Jurewicz K, Delpeux S, et al. Nanotubular materials for supercapacitors. Journal of Power Sources, 2001, 97-8: 822-825
    [29] Balavoine F, Schultz P, Richard C, et al. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angewandte Chemie International Edition, 1999, 38(13-14): 1912-1915
    [30] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of American Chemical Society, 2001, 123(16): 3838-3839
    [31] Pederson M R, Broughton J Q. Nanocapillarity in fullerene tubules. Physical Review Letters, 1992, 69: 2689-2692
    [32] Ugarte D, Chatelain A, Heer de W A. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274: 1897-1899
    [33] Ajayan P M, Sumil Iijima. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361: 333-334
    [34] Ajayan P M, Stephan O, Redlich Ph, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375: 564-567
    [35] Haggenmueller R, Gmommans H H, Rinzler A G, et al. Aligned single-walled carbon nanotubes in composites by melt processing methods. Chemical Physics Letters, 2000, 330: 219-225
    [36] Kumar S, Doshi H, Srinivasarao M, et al. Fibers from polypropylene/nano carbon fiber composites. Polymer, 2002, 43(5): 1701-1703
    [37] Gong X Y, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials, 2000, 12(4): 1049-1053
    [38] Shaffer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials, 1999, 11(11): 937-941
    [39] Feng W, Bai X D, Lian Y Q, et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon, 2003, 41(8): 1551-1557
    [40] Wood J R, Wagner H D. Mechanical respinse of carbon nanotubes under molecular and mechanical pressures. Journal of Physical Chemistry B, 1999, 103:10388-10397
    [41] Musa I, Baxendale M, Amaratunga G A J, et al. Properties of regioregular poly(3-octylthiphene)/multiwall carbon nanotube composites. Synthetic Metals, 1999, 102: 1250-1252
    [42] Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40: 5967-5971
    [43] Jin Z X, Huang L, Goh S H, et al. Characterization and nonlinear optical properties of a poly(acrylic acid)-surfactant-multi-walled carbon nanotube complex. Chemical Physics Letters, 2000, 332(5-6): 461-466
    [44] Wood J R, Zhao Q, Wanger H D. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy. Composites Part A-Applied Science and Manufacturing, 2001, 32(3-4):391-399
    [45] Curran S, Davey A P, Coleman J, et al. Evolution and evaluation of the polymer nanotube composite. Synthetic Metals, 1999, 103(1-3): 2559-2562
    [46] Dalton A B, Coleman J N, Panhuis M i h, et al. Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144: 31-41
    [47] Woo H S, Czerw R, Webster S, et al. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer. Synthetic Metals, 2001, 116(1-3): 369-372
    [48] 宋心琦. 导电聚合物和 2000 年诺贝尔化学奖. 国外科技动态,2000, 11:7-10
    [49] Crini G. Recent developments in polysaccharide-based materials used as absorbents in wastewater treatment. Progress in Polymer Science, 2005, 30 (1): 38-70
    [50] Park S I, Zhao Y Y. Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 2004, 52 (7): 1933-1939
    [51] Park Y J, Lee Y M, Park S N. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials, 2000, 21(2): 153-159
    [52] Hu Y, Jiang X Q, Ding Y, et al. Core-template-free strategy for preparing hollow nanospheres. Advanced Materials, 2004, 16(11): 933-937
    [53] Chen L Y, Tian Z G, Du Y M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004, 25 (17): 3725-3732
    [54] Ding Y, Hu Y, Jiang X Q, et al. Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres. Angewandte Chemie International Edition, 2004, 43(46): 6369-6372
    [55] Jenkins D W, Hudson S M. Heterogeneous chloroacetylation of chitosan powder in the presence of sodium bicarbonate. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(23): 4174-4181
    [56] Badawy M E, Rabea E I, Rogge T M, et al. Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules, 2004, 5: 589-595
    [57] Grant S, Blair H S, Mckay G. Water-soluble derivatives of chitosan. Polymer Communications, 1988, 29(11): 342-344
    [58] Badawy M E I, Rabea E I, Rogge T M, et al. Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polymer Bulletin, 2005, 54(4-5): 279-289
    [59] Hirano S, Yagi Y. The effects of N-substitution of chitosan and the physical form of the products on the rate of hydrolysis by chitinase from Streptomyces griseus. Carbohydrate Research, 1980, 83(1): 103-108
    [60] 董炎明,吴玉松,王勉. 邻苯二甲酰化壳聚糖的合成与溶致液晶表征. 物理化学学报,2002,18(7):636-639
    [61] Miyazaki T, Matsushima Y. Studies on the substrate specificity of egg white lysozyme.II. Mode of the enzymatic action on partially-O-carboxymethylated chitin. Bulletin of Chemical Society of Japan, 1968, 41(11): 2754-2757
    [62] Yamada H, Imoto T. A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydrate Research, 1981, 92(1): 160-162
    [63] Tokura S, Nishi N, Tsutsumi A, et al. Studies on chitin. VIII: Some properties of water soluble chitin derivatives. Polymer Journal, 1983, 15(6): 485-489
    [64] Muzzarelli Riccardo A A, Tanfani F. The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydrate Polymers, 1985, 5(4): 297-307
    [65] Wang S F, Shen L, Zhang W D, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 2005, 6(6): 3067-3072
    [66] Luo X L, Xu J J, Wang J L, et al. Electrochemically deposited nanocomposite ofchitosan and carbon nanotubes for biosensor application. Chemical Communications, 2005, (16): 2169-2171
    [67] Xu Z A, Gao N, Chen H J, et al. Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11. Langmuir, 2005, 21(23): 10808-10813
    [68] Ge J J, Hou H Q, Li Q, et al. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: Electrospun composite nanofiber sheets. Journal of American Chemical Society, 2004, 126(48): 15754-15761
    [69] Sen R, Zhao B, Perea D, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Letters, 2004, 4(3): 459-464
    [70] Ohkawa K, Cha D I, Kim H, et al. Electrospinning of chitosan. Macromolecular Rapid Communications, 2004, 25(18): 1600-1605
    [71] 封伟,袁晓燕,冯奕钰等. 壳聚糖/碳纳米管静电纺丝膜的制备方法. 中国发明专利,专利号:ZL200510014826.4
    [72] Wang G, Xu J J, Chen H Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosensors and Bioelectronics, 2003, 18 (4): 335-343
    [73] 谭学才,王健伟,徐健君等. 固载葡萄糖氧化酶的壳聚糖二氧化硅杂化膜的制备及表征. 中山大学学报(自然科学版),2004,43(4):50-53
    [74] Tan X C, Li M J, Cai P X, et al. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite. Analytical Biochemistry, 2005, 337: 111-120
    [75] Liu Y Y, Tang J, Chen X Q, et al. Decoration of carbon nanotubes with chitosan. Carbon, 2005, 43(15): 3178-3180
    [76] Tsang S C, Chen Y K, Green M L H, et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159-162
    [77] Feng W, Zhou F, Wang X G, et al. Water-soluble multi-walled nanotube and its film characteristics. Chinese Physics Letters, 2003, 20(5): 752-755
    [78] Feng W, Zhou F, Wang X G et al. Fabrication of composite films by controlling molecular doping processes between polyaniline and soluble multiwalled nanotubes and their optical characteristics. Japanese Journal of Applied Physics, 2003, 42(9A): 5726-5730
    [79] Feng W, Yi W H, Wu H C, et al. Enhancement of third-order optical nonlinearities by conjugated polymer-bonded carbon nanotubes. Journal of Applied Physics, 2005, 98(3): 0343011-7
    [80] Wu Z G, Feng W, Feng Y Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon, accept
    [81] Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050
    [82] Zhang M G, Gorski W. Electrochemical sensing based on redox mediation at carbon naotubes. Analytical Chemistry, 2005, 77(13): 3960-3965
    [83] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Journal of American Chemical Society, 2005, 127(7): 2058-2059
    [84] Zhang M G, Mullens C, Gorski W. Insulin oxidation and determination at carbon electrodes. Analytical Chemistry, 2005, 77(19): 6396-6401
    [85] Lu G H, Jiang L Y, Song F, et al. Determination of uric acid and norepinephrine by chitosan-multiwall carbon nanotube modified electrode. Electroanalysis, 2005, 17(10): 901-905
    [86] Jiang L Y, Liu C Y, Jiang L P, et al. A multiwall carbon nanotube-chitosan modified electrode for selective detection of dopamine in the presence of ascorbic acid. Chinese Chemical Letters, 2005, 16(2): 229-232
    [87] Jiang L Y, Liu CY, Jiang LP, et al. A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Analytical Sciences, 2004, 20 (7): 1055-1059
    [88] Jiang L Y, Wang R X, Li X M, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communications, 2005, 7(6): 597-601
    [89] Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors & Bioelectronics, 2005, 21(6): 984-988
    [90] Li J, Liu Q, Liu Y J, et al. DNA biosensor based on chitosan film doped with carbon nanotubes. Analytical Biochemistry, 2005, 346(1): 107-114
    [91] Zhang Y J, Li J, Shen Y F, et al. Poly-L-lysine functionalization of single-walledcarbon nanotubes. Journal of Physical Chemistry B, 2004,108 (39):15343-15346
    [92] Okuyama K, Noguchi K, Miyazawa R, et al. Molecular and crystal structure of hydrated chitosan. Macromolecules, 1997, 30(19): 5849-5855
    [93] Miya M, Iwamoto R, Yoshikawa S, et al. IR spectroscopic determination of amide (CONH) content in highly deacetylated chitosan. International Journal of Biological Macromolecules, 1980, 2(5): 323-324
    [94] Zhao B, Hu H, Haddon R C. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Advanced Functional Materials, 2004, 14(1): 71-76
    [95] Lin Y, Rao A M, Sadanadan B, et al. Functionalizing multiple-walled carbon nanotubes with aminopolymers. Journal of Physical Chemistry B, 2002, 106(6): 1294-1298
    [96] Czerw R, Guo Z X, Ajayan P M, et al. Organization of polymers onto carbon nanotubes: A route to nanoscale assembly. Nano Letters, 2001, 1(8): 423-427
    [97] Sun Y P, Huang W J, Lin Y, et al. Soluble dendron-functionalized carbon nanotubes: preparation, characterization and properties. Chemistry of Materials, 2001, 13(9): 2864-2869
    [98] O’Connel M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342(3-4): 265-271
    [99] 晋圣松,石岩,徐学诚. 聚苯乙烯接枝修饰碳纳米管. 化学研究与应用,2006,18(8):943-946
    [100] Baskaran D, Mays J W, Bratcher M S. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angewandte Chemi-International Edition, 2004, 43(16): 2138-2142
    [101] Xu Y Y, Gao C, Kong H, et al. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules, 2004, 37: 8846-8853
    [102] Gao C, Vo C D, Jin Y Z, et al. Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules, 2005, 38: 8834-8848
    [103] 蒋挺大. 壳聚糖. 北京:化学工业出版社,2001:22
    [104] Fu K, Huang W, Lin Y, et al. Defunctionalization of functionalized carbon nanotubes. Nano Letters, 2001, 1: 439-441
    [105] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Letters, 2004, 2: 369-373
    [106] Kurusu F, Koide S, Karube I, et al. Electrocatalytic activity of bamboo-structured carbon nanotubes paste electrode toward hydrogen peroxide. Analytical Letters, 2006, 39(5): 903-11
    [107] Guiseppi-Elie A, Lei C H, Baughman R H. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 2002, 13(5): 559-564
    [108] Fernandes R, Wu L Q, Chen T H, et al. Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir, 2003, 19: 4058-4062
    [109] Katarzyna S, Perena G, et al. Electrospun biocomposite nanofibers for urea biosensing. Sensors and Actuators, 2005, 108: 585-588
    [110] Wu L L, Yuan X Y, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. 2005, 250: 167-173
    [111] 许鑫华,任光雷,刘强等. 聚乙烯醇静电纺丝法固定葡萄糖氧化酶. 天津大学学报,2006,7:857-860
    [112] 张园园,静电纺丝制备壳聚糖/聚乙烯醇超细纤维及性能研究:[硕士学位论文],天津;天津大学,2005
    [113] Tsai Y C, Huang J D. Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis. Electrochemistry Communications. 2006, 8: 956-960
    [114] Patel A C, Li S X, Yuan J M, et al. In Situ Encapsulation of Horseradish Peroxidase in Electrospun Porous Silica Fibers for Potential Biosensor Applications. Nano Letters. 2006, 6: 1042-1046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700