用户名: 密码: 验证码:
模型有机分子调控的碳酸钙仿生矿化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿物在形成过程中由于受到生物生长和生物大分子的调控作用而具有独特的形貌和复杂的组装超结构。本文分别以非离子三嵌段聚醚共聚物F68、含多羧基的柠檬酸钠和卵磷脂为矿化调节剂,通过仿生矿化方法,研究了这些模型矿化调节剂对碳酸钙矿物变体选择和形貌的影响。另外,通过选择合适的有机添加剂,合成了花状球霰石枝晶。其主要成果归纳如下:
     1.利用三嵌段聚醚共聚物F68作为模型有机添加剂,通过仿生矿化方法,研究模型有机大分子对碳酸钙矿物结晶和生长过程的影响。结果显示,模型有机大分子F68不仅优先作用于方解石的某些特定晶面,使之形成拉长的微晶,而且诱导这些微晶沿着结晶学c轴方向取向聚集,形成方解石柱,即形成所谓的介晶结构方解石。此外,一系列时间过程矿化实验显示,在模型有机添加剂存在下,起始矿化产物是不稳定的非晶碳酸钙(Amorphous calcium carbonate, ACC);随着矿化时间的延长,这种暂时稳定的非晶前驱相通过一种介观尺度的转变(Mesoscale transformation)过程,最终转变成具有介晶结构的方解石柱,展现了与生物碳酸钙矿化过程相同的矿化序列和特征。尽管模型有机大分子F68仅含有大量醚氧基和端羟基官能团,但其在调控碳酸钙结晶过程中发挥的作用却类似于与生物矿化相关的糖基化蛋白等生物大分子。此外,以乙二醇替代F68的一系列控制实验结果显示,即使矿化体系中的乙二醇体积比高达20%,其矿化产物仍为菱面体方解石,指示着羟基对方解石特定形貌形成没有影响。因此,我们的实验结果可能暗示,在生物矿化过程中,除了极性羧基(COO-)外,与生物矿化相关的生物大分子糖蛋白中的非离子化的-C-O-C-基团(醚基或糖苷基)不仅影响着生物矿物的形成过程,而且对生物碳酸钙特定形貌的形成也有贡献。这些结果为更深刻地理解生物矿化的机制提供了新的途径。
     2.选用含有多羧基的柠檬酸钠作为有机酸模型分子,进行了碳酸钙矿物的矿化模拟。结果表明,当柠檬酸钠浓度较低时,矿化体系中最初形成了纳米颗粒状含水的非晶碳酸钙(ACC),并暂时得到稳定,随后转化为棒状形貌的方解石,这种方解石棒最终演变成半球聚集体或球体。当柠檬酸钠浓度较高时,能够较长时间地稳定体系中形成的ACC,随着矿化时间的延长,ACC逐渐转变成由非晶核和棒形方解石壳构成的球。使用酒石酸钠替代柠檬酸钠进行的实验同样表明,较高浓度下,酒石酸钠在矿化的开始阶段同样诱导形成ACC。这些结果暗示着,在生物矿物形成过程中,与矿化相关的生物大分子中的一些极性基团如羧基可能也贡献了生物矿物非晶前驱体相的形成,并在非晶前驱体相后续转变成晶体矿物的过程中对矿物的特定形貌形成具有显著的影响。这些实验结果有助于深入理解与生物矿化过程紧密相关的酸性蛋白质在矿物形成过程中的调控作用。
     3.利用卵磷脂作为影响矿物矿化过程的调节剂,在水溶液中仿生合成碳酸钙。结果表明,卵磷脂可以诱导形成不常见的无水ACC,并影响这种ACC后续转变形成的方解石的形貌。当溶液中卵磷脂浓度较低时,不足以稳定溶液中形成的ACC,以致于没有观察到ACC的存在;但卵磷脂形成的胶束利用极性磷酸酯基作用于形成的方解石的晶体表面,使之形成多孔的形貌。而当卵磷脂浓度较高时,卵磷脂在溶液中能够诱导形成并暂时稳定不含结构水的ACC;且在ACC后续转变为方解石的过程中影响着方解石的形貌。这些结果指示,卵磷脂对碳酸钙非晶前驱体相的形成和后续转变形成的矿物形貌产生了明显的影响。由于大部分生物矿物都经历了由无定形态前驱体到结晶相的转变过程,卵磷脂在合适的浓度条件下可以诱导形成并暂时稳定无水ACC,并影响后续转变而成的碳酸钙晶体的形貌,这一点对我们理解生物体内不常见的无水ACC和特殊形貌的矿物的形成过程具有重要的意义。
     4.利用微波快速加热的方式合成了花状的球霰石枝晶。球霰石是碳酸钙矿物的热力学不稳定相,其形成过程往往受动力学因素控制。最近有关生物碳酸钙矿化研究显示,许多生物过程能产生稳定的球霰石,这就指示生物大分子可能稳定不稳定球霰石;此外,微波快速加热能使被加热物质的温度在很短的时间内迅速升高且没有温度梯度,往往有利于亚稳相,即动力学控制相的形成。基于这样思想,我们通过微波快速加热和有机添加剂协调作用过程,成功地制备了纯的花状球霰石枝晶。实验结果显示,在以去离子水为溶剂时,得到了菱面体状方解石;但在反应体系中加入少量的乙二醇后得到了方解石和少量扁平盘状球霰石的混合相。在体系中加入2-萘基氧乙酸作为有机添加剂,尽管2-萘基氧乙酸有助于形成球霰石,但由于其在水中的溶解性较差,也获得了方解石和球霰石的混合相。而在体系中加入少量的乙二醇溶解2-萘基氧乙酸后,获得了纯的花状球霰石枝晶。在球霰石的形成过程中,2-萘基氧乙酸利用羧基的负电性有效地中和了其高能(001)面的电荷,降低了该晶面的能量,使得球霰石沿着平行于该晶面的方向生长,形成了花状球霰石枝晶。实验成功合成了花状形貌的球霰石枝晶,同时对这种花状形貌晶体形成机制进行了探讨。
Biogenetic minerals possess unique morphologies and complex architectures due to the precise regulation in the mineralization by the biomacromolecules in vivo and the growth of organisms. In this dissertation, nonionic pluronic triblock copolymer of F68, carboxylate-enriched sodium citrate and phosphatidylcholine(PC) were respectively served as model mineralized modifiers to study the effects of these modifiers on the polymorph selection and the formation of morphology of calcium carbonate via a biomimetic mineralization method. In addition, flower-shaped vaterite dendrites were successfully prepared by selecting suitable organic additives as the modifiers. Some important results were summarized as follows:
     1. A pluronic triblock copolymer of F68 was selected as model organic additive to influence the crystallization and growth of calcium carbonate by a biomimetic mineralization process. The results demonstrated that the model organic macromolecule of F68 not only preferentially interacted with the particular faces of calcite crystals to form elongated microcrystals, but also induced the oriented aggregation of these microcrystals along the crystallographic c direction into calcite prisms, i.e., forming mesocrystal architectures. In addition, a series of time-resolved experiments showed that the initial precipitate in the presence of higher concentration of F68 was unstable amorphous calcium carbonate(ACC), and this transient precursor phase eventually transformed into prismatic mesocrystals of calcite via a mesoscale transformation process, which displays the same biomineralized sequence and features with the biomineralized process of biogenetic CaCO3. Although F68 only contains mass of ether-oxygen groups and a terminal hydroxyl group, its role played in the regulation of calcium carbonate crystallization process is considered analogous to an array of biomineralization-associated biomacromolecules such as some glycosylated proteins. Furthermore, the results of a series of control experiments via the replacement of F68 by ethylene glycol displayed that the minerallized products were calcitic rhombohedra even though the volume ratio of ethylene glycol was increased to 20% in the mineralized system. This indicated that the hydroxyl groups had no effect on the formation of the particular morphology of calcite. Hence, our experimental results suggest that apart from the polar carboxyl, nonionic -C-O-C- group (ether or glycosidic group) in the biomineralization-associated biomacromolecules of glycosidoproteins may not only influence the formation process but also contribute to the special morphogenesis of the biominerals. As such, these results provide another pathway towards a deeper insight into biomineralization mechanism.
     2. Multi-carboxylic sodium citrate was applied as the model acidic molecule to influence the mineralization of calcium carbonate. The results showed that with a low concentration of sodium citrate in the mineralized system, ACC nanoparticles were first formed and temporarily stabilized in the mineralized system, and then these ACC nanoparticles transformed into calcite with rod-like morphology. These calcite rods aggregated and finally evolved into hemispheres or spheres. With a high concentration, sodium citrate could stabilize the ACC nanoparticles for a long time and simultaneously made ACC nanoparticles assembly into spherical particles. In the following mineralization process, ACC nanoparticles gradually transformed into spheres with nuclear-shell structures, and the nuclei were composed of ACC nanoparticles while slim calcitic rods constituted the shells. The similar experiment by using of sodium tartrate to replace sodium citrate also show that sodium tartrate with a high concentration was capble of inducing the formation of ACC in the initial stage of mineralization as well. These results indicate that in biomineral formation process, some polar groups such as carboxyls in the biomineralization-associated biomacromolecules may not only contribute to the formation of amorphous precursor phases of the biominerals but also to the influence of the morphogenesis of the crystalline biominerals which transform from the amorphous precursor phases. These results provide us a deeper insight into the significances of the acidic proteins in vivo in the regulation of the formation process of biominerals.
     3. By use of phosphatidylcholine(PC) as the modifier of mineralization process, CaCO_3 was biomimetically synthesized in aqueous solution. The results showed that PC is capable of inducing the formation of the unusal anhydrous ACC and influencing the morphology of calcite which tansformed from ACC in the follow-up mineralization process. With a lower concentration of PC in solution, PC was insufficient to stabilize transient ACC which formed in the initial stage of mineralization, therefore, ACC was not detected in the as-obtained products. However, PC was capable of making calcitic crystals to form porous surface morphologies by the interaction between the polar phosphoric ester groups and the surfaces of calcite. With a higher concentration of PC in solution, PC can induce the formation of ACC and temporarily stablize this transient phase of calcium carbonate using the negatively charged phosphoric ester groups and affect the morphology of the mineral in the follow-up process of ACC transformed into calcite.These results indicate that PC is able to induce the formation of transient anhydrous ACC and influence the morphology of calcite which from the transformation of ACC. Since the great mass of biominerals undergo phase transitions from amorphous precursors into crystalline states, PC can stabilize ACC with certain concentration and affect the morphogenesis of CaCO_3
     4. Flower-shaped vaterite dendrites were successfully synthesized by a rapid microwave-assisted heating method. Vaterite is a thermodynamically unstable phase of calcium carbonate, so its formation is often controlled by kinetic factors. Recent studies of the mineralization of biogenetic calcium carbonate show that a large number of biological processes are capable of forming stable vaterite, which may indicate that the biological macromolecules can stabilize metastable vaterite. In addition, rapid microwave heating enables the temperature of the heated material to increase rapidly in a very short period of time without temperature gradient, which tends to favor the formation of the metastable phase, namely the kinetics control phase. Based on these thoughts, we successfully prepared pure flower-shaped vaterite dendrites through the coordinating process of by rapid microwave heating and suitable organic additives. The results showed that the rhombohedral calcite was the exclusive product when deionized water was applyed as the solvent; however, rhombohedral calcite and a spot of vaterite with planular discoid morphology were obtained by adding a small amount of ethylene glycol in the reaction system. With the introduction of 2-naphthyl oxygen acetic acid as an organic additive which contributes to the formation of metastable vaterite into the reaction system, the mixed phases which were composed of rhombohedral calcite, ball and flower-shaped vaterite were obtained in aqueous solution because of 2-naphthyl oxygen acetic acid poor solubility in water. However, with adding a small amount of ethylene glycol into the reaction system to resolve 2-naphthyl oxygen acetic acid, flower-shaped vaterite dendrites were obtained. In the formation process of metastable vaterite, 2-naphthyl oxygen acetic acid can apply the electronegativity of the polar carboxyl to effectively neutralize the charge of the high-energy (001) surface of vaterite and reduce the crystal surface energy. This results in the vaterite growth oriented along parallel to the , which is of great importance for the comprehension of the formation process of ACC and calcium carbonate with special morphologies in vivo. (001) plane and the formation of flower-shaped vaterite dendrites. Flower-like vaterite dendrites were successfully synthesized in this work and the formation mechanism of these dentrites were investigated as well.
引文
崔福斋, 2006.生物矿化[M].北京:清华大学出版社.
    戴永定, 1994.生物成因矿物学[M].北京:石油工业出版社.
    郭中满,王荔军,陈霞,王策,李铁津, 2000.生物矿化合成纳米针状SiO2[J].高等学校化学学报, 21, 847-848.
    倪杰, 2008.脂膜调控下碳酸钙矿物体系的矿化过程研究[D].合肥:中国科学技术大学地球和空间科学学院。
    倪杰,周根陶,曲晓飞, 2007.卵磷脂与双甘氨肽对碳酸钙变体和表面微结构的影响[J].高校地质学报, 13(4), 644-650.
    欧阳健明, 2006.生物矿化的基质调控及其仿生应用[M].化学工业出版社(北京),第一版.
    王静梅,姚松年, 2001.壳聚糖-氨基酸体系中碳酸钙模拟生物矿化的研究[J].无机化学学报, 17(2), 202-208.
    王夔, 1998.生物无机化学[M].北京:清华大学出版社.
    王荔军,李敏,李铁津,王运华,张福锁,2001.植物体中的纳米结构SiO2 [J].科学通报, 46,625-632.
    肖宇鹏, 2009.以氨基酸为有机质仿生合成碳酸钙[D].吉林:吉林大学化学学院.
    徐旭荣,蔡安华,刘睿,潘海华,唐睿康, 2008.生物矿化中的无定形碳酸钙[J].化学进展, 20, 54-59.
    姚松年,王春林,1997.卵磷脂-水有序结构对CaCO3晶型的影响[J].物理化学学报, 13,270-273.
    赵瑶兴,孙祥玉, 2003.有机分子结构光谱鉴定[M].北京:科学出版社.
    周根陶,郑永飞, 2000.碳酸钙矿物低温化学合成及同质多象转变矿物学机理研究[J].地质科学, 35(3), 325-335.
    潘永信,邓成龙,刘青松, Peterson N.,朱日祥, 2004.趋磁细菌磁小体的生物矿物作用和磁学性质研究进展[M].科学通报, 49, 2505-2510.
    Addadi, L., Joester, D., Nudelman, F., Weiner, S. (2006) Mollusk shell formation: A source of new concepts for understanding biomineralization processes[J]. Chem. Eur. J., 12, 980-987.
    Addadi, L., Raz, S., Weiner, S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization[J]. Adv. Mater., 15, 959-970.
    Addadi, L., Weiner, S. (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization[J]. Proc. Natl. Acad. Sci. USA., 82, 4110-4114.
    Addadi, L., Weiner, S. (1992) Control and design principles in biological mineralization[J]. Angew.Chem. Int. Ed., 31, 153-169.
    Addadi, L., Weiner, S. (1997) Design strategies in mineralized biological materials[J]. J. Mater. Chem., 7, 689-702.
    Addadi, L., Weiner, S. (2001). Biomineralization-Crystals, asymmetry and life[J]. Nature, 411, 753-755.
    Aizenberg, A.L., Lambert, G., Addadi, L., Weiner, S. (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates[J]. Adv. Mater., 8, 222-226.
    Aizenberg, J., Albeck, S., Weiner, S., Addadi, L. (1994) Crystal - protein interactions studied by overgrowth of calcite on biogenic skeletal elements[J]. J. Cryst. Growth, 142, 156-164.
    Aizenberg, J., Black, A.J., Whitesides, G.M. (1999a). Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver[J]. J. Am. Chem. Soc., 121, 4500-4509.
    Aizenberg, J., Black, A.J., Whitesides, G.M. (1999b) Control of crystal nucleation by patterned self-assembled monolayers[J]. Nature, 398, 495-498.
    Aizenberg, J., Hanson, J., Ilan, M., Leiserowitz, L., Koetzle, T.F., Addadi L., Weiner S. (1995) Morphogenesis of calcitic sponge spicules-a role for specialized proteins interacting with growing crystals[J]. FASEB Journal, 9, 262-268.
    Aizenberg, J., Hanson, J., Koetzle, T.F., Weiner, S., Addadi, L. (1997) Control of macromolecule distribution within synthetic and biogenic single calcite crystals[J]. J. Am. Chem. Soc. 119, 881-886.
    Aizenberg, J., Lambert, G., Weiner, S., Addadi, L. (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton[J]. J. Am. Chem. Soc., 124, 32-39.
    Aizenberg, J., Muller, D.A., Grazul, J.L., Hamann, D.R. (2003a) Direct fabrication of large micropatterned single crystals[J]. Science, 299, 1205-1208.
    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., Hendler, G. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars[J]. Nature, 41, 819-822.
    Aizenberg, J., Weiner, S., Addadi, L. (2003b) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues[J]. Connect. Tissue Res., 44, 20-25. Aksay, I.A., Traus, M., Mann, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M.,
    Gruner, S.M. (1996) Biominetic pathways for assembling inorganic thin films[J]. Science, 273, 892-898.
    Albeck, S., Addadi, L., Weiner, S. (1996a) Regulation of calcite crystal morphology byintracrystalline acidic proteins and glycoproteins[J]. Connect. Tissue Res., 35, 419-424.
    Albeck, S., Aizenberg, J., Addadi, L., Weiner, S. (1993) Interactions of various skeletal intracrystalline components with calcite crystals[J]. J. Am. Chem. Soc., 115, 11691-11697.
    Albeck, S., Weiner, S., Addadi, L. (1996b) Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro[J]. Chem. Eur. J., 2, 278-284.
    Andersen, F.A., Bre?evi?, L. (1991) Infrared spectra of amorphous and crystalline calcium carbonate[J]. Acta Chemica Scandinavica, 45, 1018-1024.
    Andreassen, J.P., Hounslow, M.J. (2004) Growth and aggregation of vaterite in seeded-batch experiments[J]. AIChE J., 50, 2772-2782.
    Archibald, D.D., Qadri, S.B., Gaber, B.P. (1996) Modified Calcite Deposition Due to Ultrathin Organic Films on Silicon Substrates[J]. Langmuir, 12, 538-546.
    Arias, J.L., Fernández, M.S. (2003) Biomimetic processes through the study of mineralized shells[J]. Mater. Character., 50,189-195. Austin, S.R. (1924) Academic[M]. London.
    Banifield, J.F., Zhang, H. (2001) Nanoparticles in the environment[J]. Rev. Mineral. Geochem., 44, 1-58.
    B?uerlein, E. (2003) Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano- and Microstructures[J ]. Angew. Chem. Int. Ed., 42, 614-641.
    Bazylinski, D.A., Moskowitz, B.M. (1997) Microbial biomineralization of magnetic iron minerals[J]. In Mineralogical Society of America Reviews in Mineralogy, 35, 181-223.
    Becker, A., Bismayer, U., Epple, M., Fabritius, H., Hasse, B., Shi, J., Ziegler, A. (2003) Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber[J]. Dalton Trans., 551-555.
    Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, E.D. (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins[J]. Nature, 381, 56-58.
    Beniash, E., Addadi, L. Weiner, S. (1999) Cellular Control Over Spicule Formation in Sea Urchin Embryos: A Structural Approach[J]. J. Struct. Biol., 125, 50-62.
    Beniash, E., Aizenberg, J., Addadi, L. Weiner, S. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth[J]. Proc. R. Soc. B: Biological Sciences, 264,461-465.
    Berman, A., Addadi, L., Kvick, (?)., Leiserowitz, L., Nelson, M., Weiner, S. (1990) Intercalation of Sea Urchin Proteins in Calcite: Study of a Crystalline Composite Material[J]. Science, 250,664-667.
    Berman, A., Addadi, L., Weiner, S. (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals-a study of intrastalline proteins[J]. Nature, 331, 546-548. Berman, A., Ahn, D.J., Lio, A., Salmeron, M., Eichert, A.R., Charych, D. (1995) Total alignment of calcite at acidic polydiacetylene films: Cooperativity at the organic-inorganic interface[J]. Science, 269, 515-518.
    Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T.F., Weiner, S., Addadi, L. (1993) Crystal- protein interactions: controlled anisotropic changes in crystal microtexture[J]. J. Phys. Chem., 97, 5162-5170.
    Beveridge, T.J. (1989) Role of cellular design in bacterial metal accumulation and interlization[J]. Annu. Rev Microbiol, 43, 147-171.
    Bggild, O.B. (1930) The shell structure of the mollusks[J]. Nature, 9, 233-326.
    Blackemore, R.P. (1975) Magnetotactic bacteria[J]. Science, 190, 377-379.
    Boettcher A.L, Wyllie P.J. (1968) The calcite-aragonite transition measured in the system CaO-CO_2-H_2O[J]. Jour. Geol., 76, 314-330.
    Boskey, A.L. (2003) Biomineralization: an overview[J]. Connect. Tissue Res., 4, 5-9.
    Boskey, A.L. (2007) Mineralization of bones and teeth[J]. Elements, 3, 385-391.
    Bre(?)evi(?), L., Noethig-Laslo, V., Kralk, D., Popevic, S. (1996) Effect of divalent cations on the formation and structure of calcium carbonate polymorphs[J]. J. Chem. Soc. Faraday Trans., 92, 1017-1022.
    Browen, C.E., Tang, H. (1996) Conchiolin-protein in aragonite shell of mollusks[J]. Comp Biochem Physiol., 115A, 269-75.
    Cao, M.H., Liu, T.F., Gao, S., Sun, G.B., Wu, X.L., Hu, C.W., Wang, Z.L. (2005) Single-Crystal Dendritic Micro-Pines of Magneticα-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties[J]. Angew. Chem. Int. Ed., 44, 4197-4201.
    Cazalbou, S., Combes, C., Eichert, D., Rey, C. (2004) Adaptative physic-chemistry of bio-related calcium phosphates[J]. J. Mater. Chem., 14, 2148-2153.
    Chakraborty, D., Bhatia, S.K. (1996) Formation and aggregation of polymorphs in continuous precipitation. 2. kinetics of CaCO_3 precipitation[J]. Ind. Eng. Chem. Res., 35, 1995-2006.
    
    Chen, S.F., Yu, S.H., Wang, T.X., Jiang, J., C?lfen, H., Hu, B., Yu, B. (2005) Polymer-directed formation of unusual CaCO3 pancakes with controlled surfaces structures[J]. Adv. Mater., 17, 1461-1465.
    C(?)lfen, H. Antonietti, M. (1998) Crystal design of calcium carbonate microparticles using double-hydrophilic block copolyers[J]. Langmuir, 14, 582-599.
    C(?)lfen, H., Antonietti, M. (2005) Mesocrystals: Inorganic Superstructures Made by Highly Par- allel Crystallization and Controlled Alignment[J]. Angew. Chem. Int. Ed., 44, 5576-5591.
    C?lfen, H., Mann, S. (2003) Higher-order organization by mesoscale self-assembly and trans- formation of hybrid nanostructures[J]. Angew. Chem. Int. Ed., 42, 2350-2365.
    C(?)lfen, H., Qi, L.M. (2001) A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer[J]. Chem. Eur. J., 7, 106-116.
    Collier, J.H., Messersmith, P.B (2001) Phospholipid strategies in biomineralization and biomaterials research[J]. Ann. Rev. Mater. Res., 31, 237-263.
    Collins, M.J, Westbroek, P.M.G. (1992) Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons[J]. Geochim. Cosmochim. Acta, 56, 1539-1544.
    Cui, F.Z., Ge, J. (2007). New observations of the hierarchical structure of human enamel, from nanoscale to microscale[J]. J. Tissue Eng. Regen. Med., 1, 185-191.
    Cui, F.Z., Wen, H.B., Zhang, H.B., Li, H.D. (1994) Anisotropy of micro indentation and morphology in natural ivory[J]. J. Mater. Sci. Lett., 12, 87-89.
    Currey, J.D. (1976) Further-studies on mechanical-properties of mollusk shell material[J]. J. Exp. Zool., 180, 445-453.
    Cusack, M., Pérez-Huerta, A., Dalbeck, P. (2007) Common crystallographic control in calcite biomineralization of bivalved shells[J]. CrystEngComm, 9, 1215-1218.
    Davis, S.A., Burkett, S.L., Mendelson, N.H., Mann, S. (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature, 385, 420-423.
    Deoliveira, D.B, Laursen, R.A (1997) Control of calcite crystal morphology by a peptide designed to bind to a specific surface[J]. J. Am. Chem. Soc., 119, 10627-10631.
    Devouar, B., Posfai, M., Hua, X., Bazylinski, D.A., Frankel, R.B., Buseck, P.R. (1998) Magnetite from magnetotactic bacteria; size distributions and twinnin[J]. Am. Miner., 83, 1387-1398. Dickinson, S.R., McGrath, K.M., 2004. Aqueous precipitation of calcium carbonate modified by hydroxyl-containing compounds[J]. Cryst. Growth Des., 4, 1411-1418.
    Didymus, J.M., Mann, S., Benton, W.J., Collins, I.R. (1995) Interaction of Poly(α,β-aspartate) wih Octadecylamine Monolayers: Adsorption Behavior and Effects on CaCO3 Crystallization[J]. Langmuir, 11, 3130-3136.
    Dominic, W., Jeremy, D., Mann, S. (1994) Crystal Tectonics: Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions[J]. Nature, 264, 1576-1578.
    Donners, J.J.J.M, Nolte, R.J.M., Sommerdijk, N.A.J.M. (2002) A Shape-Persistent Polymeric Crystallization Template for CaCO3[J]. J. Am. Chem. Soc., 124, 9700-9701.
    Donners, J.J.J.M., Meijer, E.W., Nolte, R.J.M., Roman, C., Schenning, A.P.L.H.J., Sommerdijk, N.A.J.M., Heywood, B.R. (2000) Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers[J]. Chem. Comm., 1937-1938.
    Dorozhkin, S.V. (2007) Calcium orthophosphates[J]. J. Mater. Sci., 42, 1061-1095.
    Dorozhkin, S.V. (2009) Calcium orthophosphates in nature, biology ans medicine[J]. Mater. 2, 399-498.
    Dorozhkin, S.V. (2010) Nanosized ans nanocrystalline calcium orthophosphates[J]. Acta Biomaterialia, 6, 715-734.
    Dorozhkin, S.V., Epple, M. (2002) Biological and medical significance of calcium phosphates[J]. Angew. Chem. Int. Ed., 41, 3130-3146.
    Douglas, T. (2003) A Bright Bio-Inspired Future[J]. Science, 299, 1192-1193.
    Elliott, J.C. (1999) Structfure and chemistry of the apatites and other calcium orthophosphates[J]. Elsevier Science V., 7, 131-136.
    Estroff, L.A., Incarvito, C.D., Hamilton, A. D. (2004) Design of a synthetic foldamer that modifies the growth of calcite crystals[J]. J. Am. Chem. Soc., 126, 2-3.
    Falini, G., Albeck, S., Weiner, S., Addadi, L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules[J]. Science, 271, 67-69.
    Farmer, V.C. (1974) The infrared spectra of minerals[M]. London: Mineralogical Society.
    Feng, Q.L., Pu, G., Pei, Y., Cui, F.Z., Li, H.D., Kim, T.N. (2000) Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell[J]. J. Cryst. Growth, 216, 459-465.
    Frankel, R.B., Bazylinski, D.A. (2003) Biologically induced mineralization by bacteria[J]. Rev. Mineral. Gechem., 54, 95-114.
    Friedman, G.M., Schultz, D.J. (1994) Precipitation of vaterite (CaCO_3) during oil field drilling[J]. Miner. Mag., 58, 401-408. Fritz, M., Belcher, A.M., Radmacher, M., Walters, D.A., Hansma, P.K., Stucky G. D., Morse D. E.
    M.S. (1994) Flat pearl from biofabrication of organized composites on inorganic substrates[J]. Nature, 371, 49-51. Gal, J.Y., Bollinger, J.C., Tolosa, H., Gache, N. (1996) Calcium carbonate solubility: a reappraisal of scale formation and inhibition[J]. Talanta, 43, 1497-1509.
    Garvie, L.A. (2003) Decay-induced biomineralization of the saguaro catus (Carnegiea gigantea)[J]. Am. Miner., 88, 1879-1888.
    Gehrke, N., C?lfen, H., Pinna, N., Antonietti, M., Nassif, N. (2005) Superstructures of Calcium Carbonate Crystals by Oriented Attachment[J]. Cryst. Growth Des., 5, 1317-1319.
    Gillan, D.C., Ridder, C.D. (2001) Accumulation of a ferric minerals in the biofilm of Monatacuta ferruginosa (Mollusca, Bivalvia). biomineralization, bioaccumulation and inference of paleoenviroments[J]. Chem. Geol., 177, 371-379.
    Gilbert, P.U.P.A., Abrecht, M., Frazer, B.H. (2005) The organic-mineral interface in biominerals. In J.F. Banfield, J. Cervini-Silva, and K.H. Nealson, Eds., Molecular geomicrobiology, 59, p. 157–185. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Giralt, S., Julià, R., Klerkx, J. (2001) Microbial biscuits of vaterite in Lake Issykkul (Republic of Kyrgyzstan)[J]. J. Sediment. Res., 71, 430-435.
    Gotliv, B.A., Addadi, L., Weiner, S. (2003) Mollusk shell acidic proteins: in search of individual functions[J]. Chembiochem., 4, 522-529.
    Gower, L.B. (2008) Biomimetic model system for investgating the amorphous precursor pathway ans its role in Biomineralization[J]. Chem. Rev., 108, 4551-4627.
    Gower, L.B., Odom, D.J. (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process[J]. J. Cryst. Growth, 210, 719-734.
    Gower, L.B., Tirrell, D.A. (1998) Calcium carbonate films and helices grown in solutions of poly(aspartate)[J] J. Cryst. Growth, 191, 153-160.
    Grasby, S.E. (2003) Naturally precipitating vaterite (μ-CaCO_3) spheres: unusual carbonates formed in an extreme environment[J]. Geochim. Cosmochim. Acta, 67, 1659-1666.
    Han, T.Y., Aizenberg, J. ( 2008) Calcium carbonate storage in amorphous form and its template- induced crystallization[J]. Chem. Mater., 20, 1064-1068.
    Han, Y.J., Wysocki, L.M. Thanawala, M.S., Siegrist, T., Aizenberg, J. (2005) Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions[J]. Angew. Chem. Int. Ed., 44, 2386-2390.
    Hasse, B., Ehrenberg, H., Marxen, J.C., Becker, W., Epple, M. (2000) Calcium carbonate modi- fications in the mineralized shell of the freshwater snail biomphalaria glabrata[J]. Chem. Eur. J., 6, 3679-3685
    He, G., Dahl, T., Veis, A., George, A. (2003) Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1[J]. Nat. Mater., 2, 552-558.
    Heuer, A.H, Fink, D.J.L.V.J. (1992) Innovative materials proeessing: abiomimetie approach[J]. Science, 225, 1098-1105. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, C.L.,
    Blackwel, J.l, Rieke, P.C., Thompson, D.H. (1992) Innovative materials proeessing: abiomimetie approach[J]. Science, 255, 1098-1105.
    Heywood, B. R., Mann, S. (1994b) Template-directed nucleation and growth of inorganic materials[J]. Adv. Mater., 6, 9-20.
    Heywood, B.R. (1994) Biomineralization: New directions in crystal science[J]. Microscopy Research and Technique, 27, 376-388.
    Heywood, B.R., Mann, S. (1994a) Molecular Construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed langmuir monolayers[J]. Chem. Mater., 6, 311-318.
    Heywood, B.R., Sparks, N.H., Shellis R.P., Weiner S., Mann S. (1990) Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites[J]. Connect. Tiss. Res., 25, 103-119.
    Hosoda, N., Kato, K. (2001) Thin-film formation of calcium carbonate crystals: effect of func- tional groups of matrix polymers[J]. Chem. Mater., 13, 688-693.
    Huang, L.J., Li, H.D. (1989) The microstructure of biomineralized bivalvia shells[J]. MRS Symp. Proc., 174, 164-167.
    Jackson, A.P., Vincent, J.F.V., Turner, R.M. (1988) The mechanical design of nacre[J]. Proc. R. Soc. B., 2, 234-237.
    Johnanesss, W., Puhan, D. (1971) The calcite-aragonite transition, reinvestigated[J]. Contrib. Mineral. Petrol., 31, 28-38.
    Kai, A., Fujikawa, K., Miki, T. (2002) Vaterite Stabilization in CaCO3 Crystal Growth by Amino Acid[J]. Jpn. J. Appl. Phys. 41, 439-444.
    Kalisman, Y. L., Falini, G. Addadi L., Weiner, S. (2001) Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM[J] J. Struct. Biol., 135, 8-17.
    Kamat, S., Su, X., Ballarini, R., Heuer, A.H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature, 405, 1036-1040.
    Keith, J., Stockwell, S., Ball, D., Remillard, K., Kaplan, D., Thannhauser, T., Sherwood, R. (1993) Comparatives analysis of macromolecules in mollusk shells[J]. Comp Biochem Physiol., 105B, 487-96.
    Kim, I.W., Morse, D.E., Evans, J.S. (2004) Molecular characterization of the 30-AA N-terminal mineral interaction domain of the biomineralization protein AP7[J]. Langmuir, 20, 11664-11673.
    Kjellin Per, Holmberg Krister N.M. (2001) A new method for the study of calcium carbonate growth on steel surfaces[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 194, 49-55.
    Konhauser, K.O. (1998) Diversity of bacterial iron moneralization. Earth Science Rev., 43,91-121.
    Kralj, D., Bre(?)evi(?), L., Kontrec, J. (1997) Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation[J]. J. Cryst. Growth, 177, 248-257 and references therein.
    Kuang, D.B., Xu, A.W., Fang, Y.P., Liu, H.Q., Frommen, C., Fenske D. (2003) Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process[J]. Adv. Mater., 15, 1747-1750.
    Kurt, O.K. (1998) Diversity of bacterial iron mineralization[J]. Earth Sci. Rev. 43, 91-121.
    Lahiri, J., Xu, G.F., Dabbs, D.M., Yao, N., Aksay, I.A., Groves, J.T. (1997) Porphyrin Amphi- philes as Templates for the Nucleation of Calcium Carbonate[J]. J. Am. Chem. Soc., 119, 5449-5450.
    Lam, R.S.K., Charnock, J.M., Lennie, A., Meldrum, F.C. (2007) Synthesis-dependant structural variations in amorphous calcium carbonate[J]. CrystEngComm, 9, 1226-1236.
    Levi-Kalisman, Y., Albeck, S., Brack, A. Weiner, S., Addadi, L. (1998) Control over aragonite crystal nucle- ation and growth: An in vitro study of Biomineralization[J]. Chem. Eur. J., 4, 389-396.
    Levi-Kalisman, Y., Raz, S., Weiner, S., Addadi, L., Sagi, I. (2000) X-Ray absorption spectroscopy studies on the structure of a biogenic“amorphous”calcium carbonate phase[J]. J. Chem. Soc., Dalton Transactions, 3977- 3982.
    Li, M., Lebeau, B., Mann, S. (2003) Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse micromulsions[J]. Adv. Mater., 15, 2032-2035.
    Li, M., Mann, S. (2002) Emergent nanostructures: water-induced mesoscale transformation of surfactand-stabilized amorphous calcium carbonate nanoparticles inreverse micromulsions[J]. Adv. Funct. Mater., 12, 773-779.
    Li, Q., Ding, Y., Li, F.Q., Xie, B., Qian, Y.T. (2002) Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin[J]. J. Cryst. Growth, 236, 357-362. Li, Q., Feng, Q.L., Li Z. (2007) Special Vaterite Found in Freshwater Lackluster Pearls[J]. Cryst. Growth Des., 2007, 7, 275-279.
    Loste, E., Diaz-Marti, E., Zarbakhsh, A., Meldrum F.C. (2003) Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using Brewster angle microscopy[J]. Langmuir, 19, 2830-2837.
    Loste, E., Wilson R.M., Seshadri R., Meldrum F.C. (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies[J]. J. Cryst. Growth, 254, 206-218.
    Lovley, D.R., Stolz, J.F., Nord, Jr. G.L., Philips E.J.P. (1987) Anaerobic production of magnetiteby a dissimilatory iron-reducing microorganism[J]. Nature, 330, 252-254.
    Lowenstam H.A. (1981) Minerals formed by organisms[J]. Science, 211, 1126-1131.
    Lowenstam, H.A Weiner, S. (1992) Phosphatic shell plate of the barnacle ibla (cirripedia): a bone-like structure[J]. Proc. Natl. Acad. Sci. USA, 89, 10573-10577.
    Lowenstam, H.A. Weiner, S. (1989) On Biomineralization. Oxford University Press, N.Y.
    Lowenstam, H.A. (1962) Magnetite in denticle capping in recent chitons (polyplacophora)[J]. Geol. Soc. Am. Bull., 73, 435-438.
    Lowenstam, H.A., Weiner, S. (1985) Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons[J]. Science, 227, 51-53.
    Ma, Z.J., Huang, J., Sun, J., Wang, G.N, Li, C.Z., Xie, L.P, Zhang, R.Q. (2007) A Novel Extrapallial Fluid Protein Controls the Morphology of Nacre Lamellae in the Pearl Oyster, Pinctada fucata[J]. J. Biol. Chem., 282, 23253-23263.
    Mann, S. (1983) Mineralization in biological systems[J]. Struct. Bonding, 54, 125-174.
    Mann, S. (1986) On the nature of boundary-organized Biomineralization[J]. J. Inorg. Chem., 28, 363-371.
    Mann, S. (1995) Biomineralization and biomimetic materials chemistry[J]. J. Mater. Chem., 1995, 935-946.
    Mann, S. (2001) Biomineralization: Principles and concepts in bioinorganic materials mhemistry[M]. Oxford University Press, Oxford, UK, 240pp.
    Mann, S., Archibald, D.D., Didymus, J.M, Douglas, T., Heywood, B.R., Meldrum, F.C., Reeves, N. J. (1993) Crystallization at Inorganic-organic Interfaces Biominerals and Biomimetic Synthesis[J]. Science, 261, 1286-1292.
    Mann, S., Didymus, J.M., Sanderson, N.P., Heywood, B.R., Samper, E.J.A. (1990) Morphological influence of functionalized and non-functionalizedα,ω-dicarboxylates on calcite crys- tallization[J]. J. Chem. Soc., Faraday Transactions, 86, 1873-1880.
    Manoli, F., Dalas, E. (2001) Calcium carbonate crystallization in the presence of glutamic acid[J]. J. Cryst. Growth, 222, 293-297.
    Manoli, F., Kanakis, J., Malkaj, P., Dalas, E. (2002) The effect of amino acids on the crystal growth of calcium carbonate[J]. J. Cryst. Growth, 236, 363-370.
    Mao, Z.F. Huang, J.H. (2007) Habit modification of calcium carbonate in the presence of malic acid[J]. J. Solid State Chem., 180, 453-460.
    Marentette, J.M., Norwig, J., St(?)ckelmann, E., Meyer, W.H., Wegner, G. (1997)Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers[J]. Adv. Mater., 9, 647-651.
    Marina, G., Taylor, K., Simkiss, G.N. Greaves, M., Okazaki, Mann S. (1993) An X-Ray Ab-sorption Spectroscopy Study of the Structure and Transformation of Amorphous Calcium Carbonate from Plant Cystoliths[J]. Proc. R. Soc. B: Biol. Sci., 252, 75-80.
    Marsh, M.E. (1989) Self-association of calcium and magnesium complexes of dentin phosphophoryn[J]. Biochemistry, 28, 339-45.
    Marxen, J.C., Becker, W. (1997) The organic shell matrix of the freshwater snail Biomphalaria globate[J]. Comp Biochem Physiol., 118B, 23-33.
    Marxen, J.C., Becker, W., Finke, D., Hasse, B., Epple, M. (2003) Early mineralization in biom- phalaria glabrata: Microscopic and structural results[J]. J. Molluscan Studies, 69, 113-121.
    Matsunaga, T., Okamura, Y., Tanaka, T. (2004) Biotechnological application of nano-scale engineered bacterial magnetic particles[J]. J. Mater. Chem., 14, 2099-2105.
    Mayer, G. (2005) Rigid biological systems as models for synthetic composites[J]. Science, 310, 1144-1147.
    Meldrum, F.C. (2003) Calcium carbonate in biomineralisation and biomimetic chemistry[J]. International Materials Reviews, 48, 187-224.
    Meldrum, F.C., Heywood, B.R.M.S. (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein[J]. Science, 257, 522-523.
    Meldrum, F.C., Heywood, B.R.M.S. (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein[J]. Science, 257, 522-523.
    Minchin, E.A. (1909) Sponge-spicules. Summary of present knowledge[J]. Ergebn. Fortschr. Zool. 2, 171-274.
    Moskowitz, B.M. (1995) Biomineralization of magnetic minerals[J]. Reviews in Geophysics Supplementum, 123-128.
    Naka, K., Tanaka, Y., Chujo, Y. (2002) Effect of anionic starburst dendrimers on the cryst- allization of CaCO3 in aqueous solution: size control of spherical vaterite particles[J]. Langmuir, 18, 3655-3658.
    Naka, K., Tanaka, Y., Chujo, Y., Ito, Y. (1999) The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution[J]. Chem. Comm., 1931-1932.
    Nassif, N., Pinna, N., Gehrke, N., Antonietti, M., J?ger, C., C?lfen, H. (2005). Amorphous layer around aragonite platelets in nacre[J]. Proc. Natl. Acad. Sci. USA, 102, 12653-12655.
    Nehrke, G., Cappellen, P.V. (2006) Framboidal vaterite aggregates and their transformation into calcite: A morphological study[J]. J. Cryst. Growth, 287, 528-530.
    Nesterova, M., Moreau, J., Banfield, J.F. (2003) Model biomimetic studies of templated growth and assemble of nanocrystalline FeOOH[J]. Geochim. Cosmochim. Acta, 67, 1185-1187.
    Niderberger, M., C?lfen, H. (2006) Oriented attachment and mesocrystals: Non-classicalcrystallization mechanisms based on nanoparticle assembly[J]. Phy. Chem. Chem. Phy., 8, 3271-3287.
    Noguchi, Y., Fujiwara, T., Yoshimatsu, K., Fukumori, Y. (1999) Iron reductase for magnetite synthesis in the magnetotatic bacterium magnetospirillum magnetotacticum[J]. J. Bacteriology, 181, 2142-2147.
    Oaki, Y., Imai, H. (2005) The Hierarchical Architecture of Nacre and Its Mimetic Material[J]. Angew. Chem. Int. Ed., 44, 6571-6575.
    Ogoshi, T., Itoh, H., Kim, K.M., Chujo, Y. (2002) Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium Bipyridyl Complex[J]. Macromolecules, 35, 334-338.
    Oliveira, A.M., Farina, M. (1996) Vaterite, Calcite, and Aragonite in the Otoliths of Three Species of Piranha[J]. Naturwissenschaften, 83, 133-135. Orme, C.A., Noy, A., Wierzbicki, A., Mcbride, M.T., Grantham, M., Teng, H.H., Dove, P.M.,
    Deyoreo, J.J. (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 411, 775-779.
    Pai, R.K., Pillai, S. (2007) Water-soluble terpolymer directs the hollow triangular cones of packed calcite needles[J]. Cryst. Growth Des., 7, 215-217.
    Palchik, N.A., Moroz, T.N. (2005) Polymorph modifications of calcium carbonate in gallstones[J]. J. Cryst. Growth, 283, 450-456.
    Pastero, L., Costa, E., Bruno, M., Rubbo, M., Sgualdino, G., Aquilano, D. (2004) Morphology of calcite (CaCO_3) crystals growing from aqueous solutions in the presence of Li+
    Pokroy, B., Fitch, A.N., Marin, F., Kapon, M., Adir, N., Zolotoyabko, E. (2006) Anisotropic lattice distortions in biogenic calcite induced by intracrystalline organic molecules[J]. J. Struct. ions. Surface behavior of the {0001} form[J]. Cryst. Growth Des., 4, 485-490.
    Perry, C.C. (2003) Silicification: The Processes by Which Organisms Captureand Mineralize Silica[M]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, p. 291-327. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Perry, C.C., Keeling-Tucker, T. (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium[J]. J. Inorg. Biochem., 69, 181-191.
    Pokroy, B. Aizenberg, J. (2007) Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystalface[J]. CrystEngComm, 9, 1219-1225.Biology, 155, 96-103.
    Pokroy, B., Zolotoyabko, E. (2003) Microstructure of natural plywoodlike ceramics: a study by high resolution electron microscopy and energy-variable X-ray diffraction[J]. J. Mater. Chem., 13, 682-688.
    Pokroy, B., Zolotoyabko, E. (2005) Aragonite growth on single-crystal substrates displaying a threefold axis[J]. Chem. Comm., 2140-2142.
    Politi, Y. , Arad, T., Klein, E., Weiner, S., Addadi, L. (2004) Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase[J]. Science, 306, 1161-1164.
    Politi, Y., Levi-Kalisman, Y., Raz, S., Wilt, F., Addadi, L., Weiner, S., Sagi, I. (2006) Structural Characterization of the Transient Amorphous Calcium Carbonate Precursor Phase in Sea Urchin Embryos[J]. Adv. Funcct. Mater., 16, 1289-1298.
    Politi, Y., Mahamid, J., Goldberg, H., Weiner, S. Addadi, L. (2007) Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO_3 crystallization[J]. CrystEngComm, 9, 1171-1177. Politi, Y., Metzler, R.A., Abrecht, M., Gilbert, B., Wilt, F.H., Sagi, I., Addadi, L., Weiner, S.,
    Gilbert, P.U.P.A. (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule[J]. Proc. Natl. Acad. Sci. USA, 105, 17362-17366. Porter, A.E., Nalla, R.K., Minor, A., Jinschek, J.R., Kisielowski, C., Radmilovic, V., Kinney, J.H.,
    Tomsia, A.P., Ritchieb, R.O. (2005) A transmission electron miscroscopy study of mineralization in age induced transparent dentin[J]. Biomaterials, 26, 7650-7660.
    Qi, R.J., Zhu, Y.J. (2006) Microwave-assisted synthesis of calcium carbonate (vaterite) of various morphologies in wat?eerthylene glycol mixed solvents[J]. J. Phys. Chem. B., 110, 8302-8306.
    Rautaray, D., Sanyal, A., Bharde, A., Ahmad, A., Sastry, M. (2005) Biological Synthesis of Stable vaterite crystals by the reaction of calcium ions with germinating chickpea seeds[J]. Cryst. Growth Des., 5, 399-402.
    Raz, S., Hamilton, P.C., Wilt, F.H., Weiner, S., Addida, L. (2003) The transient phase of amor- phous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization[J]. Adv. Funct. Mater., 13, 480-486.
    Raz, S., Weiner, S., Addadi, L. (2000) Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications[J]. Adv. Mater., 12, 38-42.
    Rodríguez-Clemente, R., Gómez-Morales, J. (1996) Microwave precipitation of CaCO3 from homogeneous solutions[J]. J. Cryst. Growth, 169, 339-346. Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Munoz, M.T.,
    Rodriguez-Gallego, M. (2007) Bacterially mediated mineralization of vaterite[J]. Geochim. Cosmochim. Acta, 71, 1197-1213.
    Rudloff, J., Antonietti, M., C(?)lfen, H., Pretula, J., Kaluzynski, K., Penczek, S. (2002) Double hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO3[J]. Macromol. Chem. Phys., 203, 627-635.
    Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., Akera, S. (1999). A new matrix protein family related to the nacreous layer formation of Pinctada fucata[J]. FEBS Letters, 462, 225-229.
    Saruwatari, K., Ozaki, N., Nagasawa, H., Kogure, T. (2006) Crystallographic alignments in a coccolith (Pleurochrysis carterae) revealed by electron back-scattered diffraction (EBSD)[J]. Am. Miner., 91, 1937-1940.
    Sawada, K. (1997) The mechanisms of crystallization and transformation of calcium carbonates[J]. Pure Appl. Chem., 69, 921-928.
    Sch(?)ffer, T.E., Ionescu-Zanett, C., Proksch, R., Fritz, M., Walters, D.A., Almqvist, N., Zaremba C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridge(?)[J]. Chem. Mater., 9, 1731-1740.
    Schmidt, W.J. (1924) Dic Bausteine des Tierkorpers in Polarisiertem Lichte[J]. Cohen Verlag, Bonn.
    Shen, F.H., Feng, Q.L. Wang, C.M. (2002) The modulation of collagen on crystal morphology of calcium carbonate[J]. J. Cryst. Growth, 242, 239-244.
    Skinner, H.C.W. (2005) Biominerals[J]. Miner. Mag., 69, 621-641. Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A.,
    Stucky, G.D., Morse, D.E., Hansma, P.K. (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature, 399, 761-763.
    Song, R.Q., Xu, A.W., Antonietti, M., C?lfen, H. (2009) Calcite crystals with platonic shapes and minimal surfaces[J]. Angew. Chem. Int. Ed., 48, 395-399.
    Sparks, N.H.C., Mann, S., Bazylinski, D.A., Lovley, D.R., Jannasch, H.W., Frankel, R.B. (1990) Structure and morphology of magnetite anaerobically produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium[J]. Earth Planet. Sci. Let., 98, 14-22.
    Spero, H.J., Braun, P.V. (1997) Molecular manipulation of microstrucres: biomaterials, ceramics and semiconductors[J]. Science, 277, 1242-1248.
    Su, Y.L., Wang, D.X., Yang, H.R., Wang, D.J. (2009) Facile synthesis of elongated calcite superstructure by triblock copolymers with precisely designed block length[J]. Colloids andSurfaces A: Physicochem. Eng. Aspects, 342, 122-126.
    Suga, S., Watabe, N. (1992) Hard tissue mineralization and demineralization[J]. Springer Verlag, 6, 101-105.
    Tartaix, P.H., Doulaverakis, M., George, A., Fisher, L.W., Butler, W.T., Qin, C., Salih, E., Tan, M., Fujimoto, Y., Spevak, L., Boskey, A.L. (2004) In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions[J]. J. Biol. Chem., 279, 18115-18120.
    Thompson, J.B., Paloczi, G.T., Kindt, J.H., Michenfelder, M., Smith, B.L., Stucky, G., Morse, D. E., Hansma, P.K. (2000) Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins[J]. Biophysical J., 79, 3307-3312
    Tomas, J., Geffen, A.J., Allen, I.S. Berges, J. (2004) Analysis of the soluble matrix of vaterite otoliths of juvenile herring (Clupea harengus): do crystalline otoliths have less protein[J]. Comp. Biochem. Physiol., 139, 301-308.
    Tong, H., Ma, W.T., Wang, L.L., Wan, P., Hu, J. M., Cao L. X. (2004) Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process[J]. Biomaterials, 25, 3923-3929.
    Towe, K.M., Lowenstam, H.A. (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca)[J]. J. Ultrastructure Research, 17, 1-13. Travaille, A.M., Donners, J.J.J.M., Gerritsen, J.W., Sommerdijk, N.A.J.M., Nolte, R.J.M., Kempen, H. van (2002) Aligned growth of calcite crystals on a self-assembled monolayer[J]. Adv. Mater., 14, 492-495.
    Travaille, A.M., Kaptijn, L., Verwer, P., Hulsken, B., Elemans, J.A.A.W., Nolte, R.J.M., Kempen, H. van (2003) Highly Oriented Self-Assembled Monolayers as Templates for Epitaxial Calcite Growth[J]. J. Am. Chem. Soc., 125, 11571-11577.
    Turnbull, A.G. (1973) A thermodynamic study of vaterite[J]. Geochim. Cosmochim. Acta, 37, 1593-1601.
    Vallet-Regi, M., Gonzalez-Calbet, J.M. (2004) Calcium phosphates as substitution of bone tissue[J]. Prog. Solid State Chem., 32, 1-31.
    Vecht, A., Ireland, T.G. (2000) The role of vaterite and aragonite in the formation of pseudobiogenic carbonate structures: implications for Martian exobiology[J]. Geochim. Cosmochim. Acta, 64, 2719-2725.
    Vincent, J. (1991) Structrual biomaterials[M]. Princeton University.
    Wada, N., Kanamura, K., Umegaki, T. (2001). Effects of Carboxylic Acids on the Crystallization of Calcium Carbonate[J]. J. Colloid Interface Sci., 233, 65-72.
    Wada, N., Yamashita, K. Umegaki, T. (1999) Effects of carboxylic acids on calcite formation in the presence of Mg~(2+)Xiao, W., Zhu, Y.C., Liu, Y.Y., Liu H.J., Zeng, Y., Xu, F.F., Wang L.Z. (2008) Vaterite Selection by ions[J]. J Colloid Interface Sci., 212, 357-364.
    Walsh, D., Lebeau, B., Mann S. (1999) Morphosynthesis of calcium carbonate (vaterite) microsponges[J]. Adv. Mater., 11, 324-328.
    Wang, T.X., Antonietti, M., C?lfen, H. (2006) Calcite mesocrystals:“Morphing”crystals by a polyelectrolyte[J]. Chem. Eur. J., 12, 5722-5730.
    Wang, T.X., C?lfen, H., Antonietti, M. (2005) Nonclassical Crystallization: Mesocrystals and Morphology Change of CaCO3 Crystals in the Presence of a Polyelectrolyte Additive[J]. J. Am. Chem. Soc., 127, 3246-3247.
    Webb, J., Macey, D.J., Chua-anusorn, W., Pierre T.G.S., Brooker, L.R., Rahman, I., Noller, B., (1999) Iron biominerals in medicine and the environment[J]. Coord. Chem. Rev., 190, 1199-1215.
    Weiner, S., Dove, P.M. (2003) An Overview of Biomineralization Processes and the Problem of the Vital Effect[M]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, p. 1-29. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Weiner, S. (2008) Biomineralization: A structural perspective[J]. J. Struct. Biology, 163, 229-234. Weiner, S., Addadi, L. (1997) Design strategies in mineralized biological materials[J]. J. Mater. Chem., 7, 689-702.
    Weiner, S., Sagi, I., Addadi, L. (2005) Choosing the crystallization path less traveled[J]. Science, 309, 1027-1028.
    Weiner, S., Traub, W., Wagner, H.D., (1999) Lamellar bone: structure-function relations[J]. J. Struct. Biol. B, 126, 241-255.
    Weiner, S., Wagner, H.D. (1998) The material bone: structure-mechanical function relations[J]. Ann. Rev. Mater. Sci., 28, 271-298.
    Weiss, I.M., Tuross, N., Addadi, L. Weiner, S. (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite[J]. J. Exp. Zool., 293, 478-491. Wen, S. L. (1989) Human enamel structure studied by HRTEM[J]. Electron Microscopy Review, 2, 1-4.
    Westin, K.J., Rasmuson, A.C. (2005) Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid[J]. J.Colloid Interface Sci., 282, 359-369.
    Xiao, J.P., Xie, Y., Tang, R., Chen, M., Tian, X.B. (2001) Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures[J]. Adv. Mater., 13, 1887-1891.
    Xiao, W., Zhu, Y.C., Liu, Y.Y., Liu H.J., Zeng, Y., Xu, F.F., Wang L.Z. (2008) Vaterite Selection byChitosan Gel: An example of polymorph selection by morphology of biomacromolecules[J]. Cryst. Growth Des., 8, 2887-2891.
    Xie, A.J., Shen, Y.H., Zhang, C.Y., Yuan, Z.W., Zhu, X.M.,Yang, Y.M. (2005) Crystal growth of calcium carbonate with various morphologies in different amino acid systems[J]. J. Cryst. Growth, 285, 436-443.
    Xu, A.W., Yu, Q., Dong, W.F., Antonietti, M., C?lfen, H. (2005) Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid[J]. Adv. Mater., 17, 2217-2221.
    Xu, G., Yao, N., Aksay, I.A, Groves, J.T. (1998) Biomimetic synthesis of macroscopic-scale calcium carbonate thin films. Evidence for a Multistep Assembly Process[J]. J. Am. Chem. Soc., 120, 11977-11985.
    Xu, X.R., Han, J.T., Kim, D.H., Cho, K. (2006) Two Modes of Transformation of Amorphous Calcium Carbonate Films in Air[J]. J. Phys. Chem. B., 110, 2764-2770.
    Xyla, A.G., Mikroyannidis, J., Koutsoukos, P.G. (1992) The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds[J]. J. Colloid Interface Sci., 153, 537-551.
    Yang, L., Zhang, X.Y., Liao, Z.J., Guo, Y.M., Hu, Z.G., Cao, Y. (2003) Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization[J]. J. Inorg. Biochem., 97, 377-383.
    Yang, R.A., Brown, W.E. (1982) Structures of Biological Minerals [J]. Biol Min and Demin., 101-142.
    Young, J.R., Davis, S.A., Bown, P.R., Mann, S. (1999) Coccolith ultrastructure and biomineralisation[J]. J. Struct. Biology, 126, 195-215.
    Young, J.R., Henriksen, K. ( 2003) Biomineralization Within Vesicles: The Calcite of Coccoliths. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, p. 189-215. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Young, J.R., Henriksen, K. (2003) Biomineralization within vesicles: the calcite of coccoliths[J]. Rev. Mineral. Geochem., 54, 189-215.
    Yu, S.H., C?lfen, H., Tauer, K., Antonietti, M. (2005) Tectonic arragemen of BaCO3 nano-crystals into helices induced by a racemic block copolymer[J]. Nat. Mater., 4, 51-55.
    Zaremba, C.M., Belcher, A.M., Fritz, M., Li, Y.L., Mann, S., Hansma, P.K., Morse, D. E., Speck, J. S., Stucky, G.D. (1996) Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls[J]. Chem. Mater., 8, 679-690.
    Zhang, H.B., Cui, F.Z., Wang, S. Li, H.D. (1991) Characterizing the hierarchical structures ofnatural ivory[M]. MRS Symp Proc., 255, 151-154.
    Zhou, G.T. Zheng, Y.F. (2001) Chemical synthesis of CaCO3 minerals at low temperitures and implication for mechanism of polymorphic transition[J]. N. Jb. Miner. Abh., 176, 323-343.
    Zhou, G.T., Yao, Q. Z., Fu, S.Q., Guan Y.B. (2010) Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite[J]. Eur. J. Mineral., 22,259-269.
    Zhou, G.T., Yao, Q.Z., Ni, J. Jin, G. (2009) Formation of aragonite mesocrystals and implication for Biomineralization[J]. Am. Miner., 94, 293-302.
    Zhou, G.T., Yu, J.C., Wang, X.C., Zhang, L.Z. (2004) Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies[J]. New J. Chem., 28, 1027-1031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700