用户名: 密码: 验证码:
配筋砌块砌体矩形截面剪力墙滞回性能数值仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配筋砌块砌体剪力墙结构是一种融砌体和混凝土性能于一体,集两者优点于一身的新的高层结构形式,其经济性和适用性与我国的住房需求和墙体改革方向相适应,但由于材料离散性大且试验数目有限,还不能很好的总结其规律。
     为研究高层建筑剪力墙的受力与变形、研究带剪力墙的高层建筑地震响应分析,前人提出过等效梁模型、墙板模型、等效支撑模型、三垂直杆和多垂直杆模型、二维板单元模型等计算方案,从不同侧面部分解决了对剪力墙来说必须考虑剪切变形影响的问题,各有优缺点。在复杂受力状态下考虑材料非线性,目前无疑首推纤维单元模型。但传统的纤维单元及其各种改进均未离开“平截面”这一基本假设,对高宽比很小的剪力墙来说显然截面在变形后绝非平面。又从有限单元法的基本思想来说,关键在于构造接近真实变形的位移场。出于这一基本思想,本文通过对模拟实际受力的均质剪力墙进行有限元数值分析,探索并给出了均质剪力墙随几何尺寸不同墙内各点的变形规律。由这一接近实际的变形规律出发,利用弹性和弹塑性状态下变形规律不变(像梁柱单元一样)的基本假设,采用纤维模型进行复杂受力状态下的材料非线性分析,应该具有通用性(可适用各种材料的剪力墙分析)和更高的精度。
     在数值解析建立了均质、墙片面内受剪的变形规律的基础上,本文放弃了传统纤维单元的平截面假设,提出并构建了考虑截面翘曲影响的纤维单元模型,为了验证这种新纤维单元在剪力墙非线性分析中的适用性和可靠性,对已有物理实验的配筋砌块砌体剪力墙进行了数值模拟分析。结果表明,考虑截面翘曲影响的纤维单元模型能较好地再现物理实验的客观规律,特别是屈服荷载和屈服位移较传统纤维单元有较大的改进。在此基础上,考虑工程可能的剪力墙高宽比范围,及可能的砌体抗压强度平均值、轴压比、配筋率影响因素,用均匀设计法安排配筋砌块砌体一字型剪力墙的数值试验墙片,进行与物理实验相同加载机制下的非线性数值分析,从而回归分析建立了墙片骨架曲线特征参数与所考虑因素之间的经验公式,并根据数值试验的滞回规律,给出了墙片的加卸载滞回规律,为以配筋砌块砌体一字型剪力墙为抗侧力结构的高层结构弹塑性分析奠定了基础。
Reinforced block masonry shear wall structure is one kind of new high-rise structure that combines performance and advantages both the masonry structure and the concrete structure, and its economy and applicability are adapt to the residential building needs and the reform direction of wall. However, the characteristics can’t be well summed up because of large material discrete and limited experimentation.
     To study the internal force and deformation of shear wall on high-rise buildings and earthquake response analysis of high-rise buildings with shear wall, previous proposed many calculation programs, such as equivalent beam model, wall model, equivalent support model, three-vertical poles and multi-vertical bars model, two-dimensional plate element model. Each of them with advantages and disadvantages solves partial problems from different aspects considering shear deformation which is necessary to shear wall solution. Considering the material nonlinearity in a complex stress state, it’s no doubt that the fiber element model is chose. However, the traditional fiber element and its various improvements had not abandoned the basic assumption of "flat section". For a shear wall with a small aspect ratio, it's clearly not in the plane after deformation. From the basic idea of finite element method, the key is to construct a displacement field approximating to the real deformation. Based on the idea, the paper explores and gives the deformation laws of all points in different homogeneous shear walls with different geometry by analyzing finite element models of homogeneous shear walls simulating the real force. From the deformation law closing to the actual, on the basis of the assumptions that the deformation of elastic and plastic is the same (the same as the column unit), the material nonlinear analysis using fiber model under complex stress state should have universal (applicable to shear wall analysis of all kinds of materials)and higher accuracy.
     Based on the the deformation law by shear of homogeneous walls according to numerical analysis, the paper abandoned traditional plane section assumption, and construct a fiber element model considering the cross-section warping effects. In order to verify the applicability and reliability of the new fiber in nonlinear analysis of shear wall, the reinforced block masonry shear walls with existing experiments results are numerical simulated. The result demonstrate that the fiber element model considering the cross-section warping effects can reproduce the objective laws of physics experiments. Especially the yield load and yield displacement have been greatly improved relative to conventional fiber unit. On this basis, considering the possible project range of shear wall aspect ratio and the possible masonry compressive strength, axial compression ratio, reinforcement ratio, reinforced block masonry shear walls in a straight were arranged for numerical tests with a uniform design. Nonlinear numerical analysis was carried out under the same loading mechanism to construct the empirical formula between the walls skeleton curves parameters and considered factors, and then give the loading and unloading hysteresis rules of the wall. It’s the basis of elastoplastic analysis of high-level with reinforced block masonry shear wall as it’s lateral force structure.
引文
1李宏男.结构多维抗震理论与设计方法.科学出版社. 1998
    2中华人民共和国行业标准GB50003-2001砌体结构设计规范.中国建筑工业出版社. 2002
    3聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析.工程力学. 2004,21(3):15-20
    4 Z. Y. Zhu, Iftekhar Ahmadb, Amir Mirmiran. Fiber element modeling for seismic performance of bridge columns made of concrete-filled FRP tubes. Engineering Structures. 2006,28:2023~2035
    5 Tae-Hyung Lee, Khalid M. Mosalam. Probabilistic fiber element modeling of reinforced concrete structures. Computers and Structures. 2004,82:2285~2299
    6秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法.浙江大学学报. 2005,39(7):1003~1008
    7伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用.东南大学学报(自然科学版). 2005,35(S1):129~132
    8汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟.工程力学. 2007,24(12):76~81
    9周勇,张峰,李术才等.基于纤维模型的钢管混凝土拱非线性失稳分析.山东大学学报. 2007,37(6):106~110
    10张素梅,刘界鹏,王玉银等.双向压弯方钢管高强混凝土构件滞回性能试验与分析.建筑结构学报. 2005,26(3):9~18.
    11 NEHRP. Recommended Provisions for Seismic Regulations for New Buildings. 2000:53~55
    12 Shedid M T, Hamid A A and Drysdale R G. Ductility of reinforced masonry shear walls and impact of incomplete grouting. In: 10th Canadian Masonry Symposium. Banff, Alberta. 2005, on CD-ROM
    13胡嘉.配筋砌体墙片出平面偏心受压试验研究.同济大学硕士学位论文. 2006
    14孙恒军.配筋砌体基本力学性能及其墙片抗震性能的试验研究.同济大学硕士论文. 2001:71~89
    15蔡健,潘东辉,何建罡等.高层配筋砌块砌体剪力墙的延性设计研究.土木工程学报. 2006,39(7):33~38
    16刘桂秋,施楚贤,吕伟荣.砌体剪力墙的受剪性能及其承载力计算.建筑结构学报. 2005,26(5):81~90
    17黄靓,施楚贤.配筋砌块砌体结构的模型试验和理论研究.建筑结构学报. 2005,26(3):107~113.
    18蔡勇.配筋混凝土砌块砌体框支剪力墙房屋抗震性能研究.湖南大学博士学位论文. 2005,107~110
    19吕伟荣.砌体基本力学性能及高层配筋砌块砌体剪力墙抗震性能研究.湖南大学博士学位论文. 2007
    20邱战洪,赵成文,陈兆才.配筋砼小砌块剪力墙的抗剪性能.沈阳建筑工程学院学报. 2001,(01)
    21王腾,闰宝民,赵成文,苑振芳.混凝土砌块剪力墙抗剪性能的试验研究.建筑结构. 2000,30(10):57~59
    22王腾,赵成文,阎宝民,潘斌.正压力和水平筋对砌块剪力墙抗剪性能的影响.沈阳建筑工程学院学报. 1999,15(3):206~210
    23施楚贤,周海兵.配筋砌体剪力墙的抗震性能.建筑结构学报. 1997,18(6):32-40
    24田瑞华.混凝土空心小砌块配筋砌体墙体的抗剪承载力的试验研究与理论分析.西安建筑科技大学硕士学位论文. 2001:40~49
    25姜洪斌.配筋混凝土砌块砌体高层结构抗震性能研究.哈尔滨工业大学博士论文. 2000,28~63
    26胡志远.采用端部约束的配筋砌块砌体剪力墙抗震性能试验研究.哈尔滨工业大学硕士论文. 2006
    27全成华.配筋砌块砌体剪力墙抗剪静动力性能研究.哈尔滨工业大学博士论文. 2002,36~80
    28田玉滨.配筋砌块砌体剪力墙砌块连梁的抗震性能研究.哈尔滨工业大学博士论文. 2002
    29石星亮.配筋砌块砌体组合连梁抗震性能试验研究.哈尔滨工业大学硕士论文. 2005
    30翟希梅.砌块空腔墙体与约束配筋砌块结构的抗震性能研究.哈尔滨工业大学博士论文. 2001
    31费洪涛.配筋砌块短肢砌体剪力墙抗震性能的试验研究.哈尔滨工业大学硕士论文. 2005
    32王凤来,陈再现,王焕定,潘景龙.底部框支配筋砌块短肢砌体剪力墙结构抗震性能试验研究.土木工程学报. 2009,(11)
    33王焕定,王铁英,张永山.高层配筋砌块砌体住宅弹塑性地震反应分析.哈尔滨建筑大学学报. 2002,25(3):24~29
    34王焕定,王铁英,张永山.高层配筋砌体建筑弹塑性时程分析程序开发中的若干问题.哈尔滨建筑大学学报. 2001,34(5):6~10
    35张永山,王焕定,王铁英.配筋混凝土砌块砌体高层模拟结构抗震分析.世界地震工程. 2001,17(2):90~94
    36秦文欣,王歆玫,赵俭斌.配筋混凝土小砌块建筑地震倒塌反应全过程计算.沈阳建筑工程学院学报. 1994,10(3): 249~255
    37谢小军.混凝土小型砌块砌体力学性能及其配筋墙体抗震性能的研究.湖南大学硕士学位论文. 1998
    38黄尚安.底部框剪配筋砌块砌体房屋抗震设计研究.湖南大学博士学位论文. 2003,40~70
    39 Fafar P, Fischinger M. Mathematieal modeling of reinforced concrete structural walls for nonlinear seismic analysis. Structural Dynamic. 1990:471~478
    40张令心,孙景江,江近仁.钢筋混凝土剪力墙结构基于自平衡力的非线性地震反应分析.地震工程与工程振动. 2001,121(4):29~34
    41 Hiraishi H, Kawashima T. Deformation behavior of shear walls after flexural yielding. Proceedings of 9th WCEE[C]. Tokyo, 1988,8:653~658
    42 Kabeyasawa, Shioara T.H., and Otani S.U.S.-Japan Cooperative Research on R/C Fullscale Building Test-Part5: discussion on dynamic response system. Procs.8th WCEE. 1984,Vol.6, 627~634
    43李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法.地震工程与工程振动. 2004,24(1):79~81
    44 Vulcano A. Bertero V V. Analytical Models for Predicting the Lateral Response of Shear walls: Evaluation of Their Reliability. Report No UCB/EERC-87/19, University of California, Berkeley. Nov 1988
    45孙景江,江近仁.框架一剪力墙型结构的非线性随机地震反应和可靠性分析明.地震工程与工程振动. 1992,12(2):59~65
    46张川.钢筋混凝土框架—抗震墙结构的抗震性能及模型化研究.重庆建筑大学博士学位论文. 1994
    47 Linda P. Bachmann H. Dynamic modeling and design of earthquake-resistant walls. EESD. 1994,23:1331~1350
    48宋亚新.考虑土-桩-结构相互作用的框-剪结构弹塑性地震反应分析.同济大学博士论文. 1998
    49 Ghobarah A, Youssef M. Modeling of Reinforced Concrete Strutural Walls. Engineering Structures. 1999,21:912~923
    50孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元.地震工程与工程振动. 2001,21(2):78~83
    51 Vulcano A. Bertero V V, Colotti V. Analytical model of R/C structural walls. Proc. of 9th WCEE. Tokyo, Vol 6, Tokyo, 1988.41~46
    52陈亦,何勇毅,蒋欢军.剪力墙结构计算模型分析.四川建筑科学研究. 2001,27(1):1~4
    53 VULCANO A, BERTERO V V. Analytical model for predicating the lateral response of RCshear wall: evaluation of their reliability. EERC-87/19, Univ. of California. Berkeley, 1987
    54蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构.地震工程与工程振动. 1998,18(3):40~48
    55汪梦甫,周锡元.钢筋混凝土框架-剪力墙结构非线性地震反应实用分析方法的研究.土木工程学报. 2002,35(6):32~38
    56沈蒲生,王海波.剪力墙结构的非线性地震反应分析.土木工程学报. 2003, 36(5):11~16
    57李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究.建筑结构学报. 2004,25(5):35~42.
    58 Milev J I. Two dimensional analytical model of reinforced concrete shear walls. Proc. of 11thWCEE. 1996, Elsevier Science Ltd., Paper No. 320
    59 Colotti, V. , Shear Behavior of R/C Structural Walls. J. Struct. Engrg. 1993,(3) :728~746
    60陈勤,钱稼如,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析.土木工程学报. 2004,37(3):35~43
    61 Edward THOMSON and Julio FLOREZ-LOPEZ. A Simplified Damage Model For Shear Dominated Reinforced Concrete Walls Under Lateral Forces. Procs.13th WCEE. 2004,844~859
    62魏勇,钱稼茹.应用SAP2000程序进行剪力墙非线性时程分析.清华大学学报. 2005,45(6):740~744
    63 Sashi K., Kunnath et al., Analytical Modeling of inelastic Seismic Response of R/C Structures, J. Struct. Engrg. 1990,116(4):996~1017
    64赵军,李耕勤,钱稼茹.一种考虑截面翘曲的剪力墙宏模型.地震工程与工程振动. 2003,23(2):37-44
    65吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用.力学季刊. 2005,26(1):72~80
    66臧登科,纤维模型中考虑剪切效应的RC结构非线性特征研究.重庆大学硕士学位论文. 2008
    67 M. Mahasuverachai, G. H. Powell. Inelastic Analysis of Piping and Tubular Structures. EERC-82/27
    68 Zeris C A, Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation. Journal of Struct. Engrg., ASCE. 1988,114(4):804~820
    69 Zeris C A, Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation. Journal of Struct. Engrg., ASCE. 1991,117(9):2657~2673
    70 Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Berkeley, CA. 1991
    71 Spacone E, Ciampi V, Filippou F C. Mixed formulation of nonlinear beam finite element. Comput. Struct. 1996,58(1):71~83
    72陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展.世界地震工程. 2002,18(1):91~97
    73 Tae-Hyung Lee, Khalid M. Mosalam. Probabilistic fiber element modeling of reinforced concrete structures. Computers and Structures. 82 (2004) 2285~2299
    74陈滔,黄宗明,基于有限单元柔度法的材料与几何双重非线性空间梁柱单元.计算力学学报. 2006,23(5):524~528
    75陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析.重庆大学博士学位论文. 2003
    76陈滔,黄宗明.基于有限单元柔度法的钢筋混凝土空间框架非弹性地震反应分析.建筑结构学报. 2004,25(2):79~84
    77韦成龙,曾庆元,刘小燕.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法.铁道学报. 2000,22(5):60~64
    78钱寅泉,倪元增.箱梁剪力滞计算的翘曲函数法.铁道学报. 1990,(02):57~70
    79甘亚南,周广春.一种薄壁箱梁自振频率分析的多参数翘曲位移函数法.铁道学报. 2007,29(5):93~98
    80朱伯龙,吴明舜,张琨联.在周期荷载作用下,钢筋混凝土构件滞回曲线考虑裂面接触效应的研究.同济大学学报. 1980,01:63~75
    81朱伯龙.钢筋混凝土非线性分析.同济大学出版社. 1985,11~17
    82苑振芳.《配筋砌块砌体结构设计规范》(ISO9652-3)介绍.建筑结构. 2002,32(8):69~72
    83 Robert G. Drysdale, Ahmad A.Hamid and Lawrie R. Baker. Masonry structure behavior and design. Englewood Cliffs, New Jersey 07632. 1994,52~60
    84 P. B. Shing, M. Sehuller and VS. Hoskere. In-plane resistance of reinforced masonry shear wall. Journal of Structural Engineering, ASCE. 1990,16(3):619~640
    85 R.Wang, A.E. Elwi and M.H. Hatzinikolas. Numerical simulation of tall masonry cavity walls tested under eccentric loading. Seventh Canadian Masonry Symposium. 1995,328~339
    86 Triq S. Cheema and Richard E. Klingner. Compressive strength of concrete masonry prisms. ACI Journal. 1986(l):88~97
    87 E. Y. Sayed-Ahmed and N. G. Shrive. Nonlinear finite-element model of hollow masonry. Journal of Structural Engineering, ASCE. 1996,122(6):683~690
    88 Reinofrced Masonry, ISO/TC179/SC2 N46. 1995,14~18
    89 Masony standards Joint Committee. Building Code Requirements for Masonry structures, ACI530-02/ASCE-02/TMS4OZ-02. Ameriean Concrete Institute, Ameriean Soeiety of Civil Engineering and the Masonry Soeiety, New York. 2002,32~38
    90 International Conference of Building Offieials, Whiter, CA. Uniofrm Building Code, Chapter 24: Masonry, 1991,l~45
    91蓝贵禄.砌体房屋的抗震强度.地震工程与工程振动. 1994,14(4):77~82
    92方开泰.均匀设计与均匀设计表.科学出版社. 1994
    93蒋欢军,吕西林.沿竖向耗能剪力墙滞回特性的计算方法.同济大学学报. 1999,27(6):633~637
    94吕西林,蒋欢军.一种新型耗能剪力墙的滞回曲线计算分析.地震工程与工程振动. 2000,20(1):112~119
    95李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究.建筑结构学报. 2004,25(5):35~42
    96张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究.建筑结构学报. 2006,27(1):90~98
    97张国军,吕西林.高强混凝土框架柱的恢复力模型研究.工程力学.2007,24(3):83~90
    98张松,吕西林,章红梅.钢筋混凝土剪力墙构件恢复力模型.沈阳建筑大学学报(自然科学版) . 2009,25(4):644~649

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700