用户名: 密码: 验证码:
微波强化还原低品位钛精矿新工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对攀枝花钛精矿固相还原方面存在的问题,本文提出微波强化还原低品位钛精矿新工艺。论文以金属化率为考察指标,优化了微波强化还原钛精矿配碳球团以及微波强化还原机械活化预处理钛精矿的新工艺。在此基础上,采用常规加热和微波加热对比的方法,研究了还原产物相组成、显微结构、铁晶粒生长形态和铁晶粒生长动力学等,揭示了微波强化低品位钛精矿碳热还原的过程反应机理,详细考察了机械力对钛精矿结构及反应特性的影响,并系统研究了机械活化后钛精矿的常规加热等温还原表观动力学和微波加热非等温还原表观动力学,揭示了机械活化-微波对低品位钛精矿协同强化还原的过程反应机理。
     (1)研究了钛精矿金属矿物分布、解离情况,以及氧化前后钛精矿的微观形貌变化。测定了不同TiO2品位钛精矿的介电特性。采用终端开路同轴线反射法,通过矢量网络分析仪测定了不同TiO2品位钛精矿的反射系数幅值|Γ|和相位中变化,并运用遗传算法和有限元来反演出被测物料的介电系数ε'、损耗因子ε''。测定了钛精矿及相关物质的微波升温特性,分析了化学成分、化学反应热和热辐射对升温速率的影响规律。
     (2)探索了氧化条件、配碳量、添加剂种类、还原温度和保持时间等因素对微波还原钛精矿配碳球团产物铁金属化率的影响规律,在此基础上建立了还原温度、保持时间和配碳量等可信因子与响应值金属化率的数学模型。
     (3)采用常规加热和微波加热对比,揭示了微波对低品位钛精矿碳热还原过程的强化机理。微波加热可减少Fe2+固溶,缩短铁晶粒形核期,增加铁晶粒初晶数量,驱动铁晶粒快速长大,使微区出现应力裂纹,并能促进铁连晶形成,降低铁晶粒生长界面扩散能垒;以铁晶粒大小和金属化率大小为研究对象,分别采用K-S模型和A-E模型拟合计算得到常规和微波加热条件下铁晶粒的生长激活能、形核活化能和生长活化能。
     (4)研究了机械力对钛精矿结构及反应特性的影响。机械活化使钛精矿颗粒及晶粒细化,出现大量新表面,其x衍射特征峰峰强降低,半高宽增加,导致晶格应变和结构无序化并可能出现畸变,使钛精矿活性提高,同时活化处理增加了钛铁矿与石墨的紧密接触。以上原因是导致钛精矿碳热还原过程温度降低、速率提高的主要原因。
     (5)测定了不同球磨活化时间下钛精矿与石墨混合物介电常数和损耗正切随频率变化关系,探索了球磨活化时间、还原温度和保持时间等因素对产物铁金属化率的影响规律,在此基础上建立了上述可信因子与响应值金属化率的数学模型。
     (6)系统的研究了未活化和活化1-8h钛精矿的常规加热等温还原表观动力学,分析了反应过程控制机理,对比了还原反应速率常数,拟合得到了常规等温还原反应表观活化能;建立了微波非等温表观动力学实验装置,测定了320-960w不同微波功率下活化钛精矿的还原度曲线和温度变化曲线,分析了反应过程控制机理,拟合计算得到微波非等温还原反应表观活化能。对比了两种加热条件下活化能等动力学参数的不同,揭示了机械活化-微波对低品位钛精矿碳热还原过程的协同强化机理。
     新工艺将可利用钛精矿的Ti02品位降低至37-39%。论文工作的开展对形成微波和机械活化强化还原新工艺、完善微波和机械活化强化还原理论及拓宽微波和机械活化应用领域等具有重要意义。
New carbothermic reduction processes of low TiO2 grade ilmenite concentrate strengthened by microwave irradiation were developed in this thesis, aiming to solve the existing problems in the direct solid reduction process of Panzhihua ilmenite concentrate. The parameters of microwave carbothermic reduction and mechanical activation followed by microwave reduction were optimized. On the basis of above researches, the phases transformation, microstructure, metal Fe grain growing morphology and kinetics of reduced products by microwave heating and conventional heating were investigated comparatively to elucidate the microwave strengthening mechanism. The effect of mechanical force on the structure and characteristics of carbothermic reduction were investigated systematically to elucidate the strengthening mechanism of mechanochemical activation, and the isothermal and non-isothermal apparent kinetics of milled ilmenite concentrate reduced by conventional and microwave heating were studied, respectively, in order to elucidate the cooperative strengthening mechanism.
     (1) The distribution and dissociation degree of metal mineral in ilmenite concentrate were investigated, the microtopography change of ilmenite before and after oxidation were compared. Terminal Open Coaxial Reflection Method (TOCRM) and Vector Network Analyzer (VAN) were employed to measure the amplitude and phase position of reflection coefficient of different TiO2 grade ilmenite concentrate, and then the dielectric properties i.e. Specific Inductive Capacity (SIC)ε, Dielectric Dissipation Factor (DDF)εand Loss Tangent (LT) tanδwere calculated through Genetic Algorithm (GA) and Finite Element Analysis (FEA). Based on above researches, the temperature rising characteristics of ilmenite concentrate and associated materials in microwave field were studied, and the effect of chemical compositions, reaction heat and thermal radiation on the temperature rising rates were analyzed.
     (2) The effect of pre-oxidation, proportion of coke, sort of additives, reduction temperature and holding time on the Fe metallization of reduced ilmenite were investigated, and the processing parameters of microwave reduction of coke bearing ilmenite pellets were optimized, and the mathematical model was built up according to the relationship between Fe metallization response value and three independent variables.
     (3) By using of comparative studies of conventional and microwave reduction of ilmenite concentrate pellets, the strengthening mechanisms of microwave irradiation were concluded as follow:reducing the solid solution of Fe2+in isomorphism, shortening the crystal nucleus formation period of metal Fe grain, increasing the initially crystal nucleus of metal Fe, promoting the quick growing of metal Fe grain, forming many of thermal stress cracks, pushing the formation of crystal stock due to selective heating, and decreasing the interface diffusion barrier. The grain growth activation energy E, nucleus formation activation energy En and grain growth activation energy Ee of Fe grain under conventional heating and microwave heating were obtained by using K-S and A-E models.
     (4) The effect of mechanical force on the structure and characteristics of reduction reaction of ilmenite were investigated. The results show that the peaks intensity of ilmenite were decreased and the full width at half maximum (FWHM) were increased. The activity of ilmenite was increased due to fining of particle and grain size, coming of new surface, disordering of structure and defect of lattice strain. The dissociation degree of Ti and Fe elements in ilmenite concentrate were also increased. The carbothermic reduction temperature was decreasing and the reaction rate was significant increasing due to the increase of activity and the close contact of ilmenite and graphite.
     (5) The dielectric properties of milled ilmenite were measured. The effect of milling time, reduction temperature and holding time on the Fe metallization of reduced ilmenite were investigated. The processing parameters of ball milling and followed by microwave reduction were optimized, and the mathematical model was built up according to the relationship between Fe metallization response value and three independent variables.
     (6) The isothermal apparent kinetics of unmilled and activated ilmenite for different time reduction by conventional heating was studied. The reaction control mechanisms were analyzed and the experimental data were found to fit well to the Jander's and Ginstling's model for different samples respectively. The reduction reaction constant rates of different samples were compared, and the activation energies of unmilled and activated ilmenite for different time were obtained respectively. A non-isothermal microwave apparatus was set up to investigate the non-isothermal apparent kinetics of carbothermic reduction of activated ilmenite. The relationship between reduction degree and temperature under 320,640 and 960 W microwave power were analyzed. The reaction control mechanisms were analyzed and the apparent activation energies of ilmenite milled for 1~8 under 320,640 and 960W microwave power levels were obtained respectively. The cooperative strengthening effect was proved through comparing the kinetics parameters under tow heating ways.
     Generally, the available TiO2 grade in ilmenite concentrate are reduced to 37~39% by using the new processes techniques developed. The development of the present thesis is of great significance to the formation of new strengthening reduction process by microwave and mechanochemistry, perfecting the strengthening reduction theory of microwave and mechanochemistry, and broadening the application fields of microwave and mechanochemistry.
引文
[1]Kucukkaragoz CS, Eric RH. Solid state reduction of a natural ilmenite [J]. Minerals Engineering,2006,19(3):334-337
    [2]Gupata SK, Grieveson P. Reduction behavior of ilmenite with carbon at 1240℃ [J]. Metallurgical and Materials Transaction B,1995,26(2):401-404
    [3]Wang YM, Yuan ZF. Reduction kinetics of the reaction between a natural ilmenite and carbon [J]. International Journal of Mineral Processing,2006,81(3):133-140
    [4]李晋林,马兵,阎庆庚,等.攀枝花钛精矿直接还原过程的研究[J].化工冶金,1990,,1(3):189-194
    [5]吴剑辉,孙康,李伟,等.碱金属氯化物对预氧化钛铁矿碳热还原反应的协同催化作用[J].广东有色金属学报,2000,10(1):25-29
    [6]朱德庆,郭宇峰,邱冠周,等.钒钛磁铁精矿冷固结球团催化还原机理[J].中南工业大学学报,2000,31(3):208-211
    [7]Metaxas AC, Meredith RJ. Industrial microwave heating [M]. London:Peter Peregrinus, 1993
    [8]Al-Harahsheh M, Kingman S W.Microwave-assisted Leaching-AReview [J]. Hydrometallurgy,2004,73(3-4):189-203
    [9]Elliot S. Physics and chemistry of solids [M]. Chichester:Wiley,2000
    [10]Clark DE, Folz DC, West JK. Processing Materials with Microwave Energy [J]. Material Science and Engineering:A-Structure,2000,287(2):153-158
    [11]Mingos D M P, Baghurst D R. Application of Microwave Dielectric Heating Effect to Synthetic Problems in Chemistry [J]. Chemical Society Reviews,1991,20:1-47
    [12]蔡卫权,李会泉,张懿.微波技术在冶金中的应用[J].过程工程学报,2005,5(2):228-232
    [13]彭金辉,杨显万.微波能技术新应用[M].昆明:云南科技出版社,1997
    [14]金钦汉.微波化学[M].北京:科技技术出版社,2001
    [15]Pickles C A. Microwave in extratctive metallurgy part2-Review of applications [J]. Minerals Engineering,2009,22(13):1112-1118
    [16]Harahsheh M Al, Kingman S, Bradshaw S. The reality of non-thermal effects in microwave assisted leaching systems [J]. Hydrometallurgy,2006,84(1-2):1-13
    [17]McGill SL, Walkiewicz J W, Smyres G A. The Effect of Power Level on Microwave Heating of Selected Chemicals and Minerals [A]. Reno, NV:M4.6,1988,124:247-252
    [18]Liu CP, Xu YS, Hua YX. Application of microwave radiation to extractive metallurgy [J]. China Journal of Metallurgy Science and Technology,1990,6(2):121-124
    [19]陈津,潘小娟,张猛,等.含碳氧化锰矿粉微波加热升温特性研究[J].材料导报,2007,21(11):81-84
    [20]陈津,李宁,王社斌,等.含碳铬铁矿粉在微波场中的升温特性[J].北京科技大学学报,2007,29(9):880-882,906
    [21]彭金辉,刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50-51,84
    [22]华一新,刘纯鹏,乐莉.微波促进Mn02分解的动力学[J].中国有色金属学报,1998,8(3):497-501
    [23]Kingmana SW, Jackson K, Bradshaw SM, et al. An investigation into the influence of microwave treatment on mineral ore comminution [J]. Powder Technology,2004,146(3): 176-184
    [24]Kingman SW, Vorster W, Rowson. The influence of mineralogy on microwave assisted grinding [J]. Minerals Engineering,2000,13(3):313-327
    [25]Whittles DN, Kingman SW, Reddish DJ. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage [J]. International Journal of Mineral Processing,2003,68(1-4):71-91
    [26]Amankwah RK, Khan AU, Pickles CA, et al. Improved grindability and gold liberation by microwave pretreatment of a freemilling gold ore [J]. Mineral Processing and Extractive Metallurgy,2005,114(1):30-36
    [27]Kingman SW, Jackson K, Cumbane A. Recent developments in microwave assisted comminution [J]. International Journal of Mineral Processing.2004.74(1-4):71-83
    [28]Salsman JB, Williamson RL, Tolley WK, et al. Short-pulse microwave treatment of disseminated sulfide ores [J]. Minerals Engineering,1996,9(1):43-54
    [29]Jones DA, Kingman SW, Whittles DN. The influence of microwave energy delivery method on strength reduction in ore samples [J]. Chemical Engineering and Processing, 2007,46(4):291-299
    [30]Steven B, Willem L. Techno-economic considerations in the commercial microwave processing of mineral ores [J]. The Journal of Microwave Power and Electromagnetic Energy,2007,40(4):228-240
    [31]Jones DA, Kingman SW, Whittles DN. Understanding microwave assisted breakage [J]. Minerals Engineering,2005,18(7):659-669
    [32]Harahsheh MA, Kingman SW. Microwave-assisted leaching:a review [J]. Hydrometallurgy,2004,73(3-4):189-203
    [33]Haque KE. Microwave energy for mineral treatment processes a brief review [J]. International Journal of Mineral Processing,1999,57(1):1-24
    [34]Huang HJ, Rowson NA. An application of microwave pre-oxidation in improving gold recovery of a refractory gold ore [J]. Rare Metals,2000,19(3):161-171
    [35]Olubambi PA, Potgieter JH, Hwang JY, et al. Influence of microwave heating on the processing and dissolution behavior of low-grade complex sulphide ores [J]. Hydrometallurgy,2007,89(1-2):127-135
    [36]Deveci H. Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors [J]. Hydrometallurgy,2004,71(3-4): 385-396.
    [37]Olubambi PA, Ndlovu S, Potgieter JH. Effects of ore mineralogy on microbial leaching of low-grade complex sulphide ores [J]. Hydrometallurgy,2007,86(1-2):96-104
    [38]Ishizaki K and Nagata K. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder [J]. ISIJ International,2007, 47(6):811-816
    [39]Standish N, Huang W. Microwave application in carbothermic reduction of iron ores [J]. ISIJ International,1991,31(3):241-245
    [40]Saidi A and Azari K. Carbothermic reduction of zinc oxide concentrate by microwave [J]. Journal of Material Science and Technology,2005,21(5):724-728
    [41]Pickles CA. Microwave reduction of nickeliferous silicate laterite ores [C]. In:Donald, J., Schonewille, R. (Eds.), Proceedings of Nickel and Cobalt 2005-Challenges in Extraction and Production, Calgary, AB, Canada, August 21-24,2005:285-304
    [42]Pickles CA. Microwave heating and reduction of fused borosilicate melts containing metal oxides [C]. In:Alex McLean Symposium Proceedings, Toroto, ISS-AIME, July 12-14,1998:239-249
    [43]Kelly RM, Rowson NA. Microwave reduction of oxidized ilmenite concentrates[J]. Minerals Engineering,1995,8(11):1427-1438
    [44]陈津,刘浏,曾加庆.微波加热还原含碳铁矿粉试验研究[J].钢铁,2004,39(6) : 1-5
    [45]陈津,刘浏,曾加庆.微波加热含碳铁矿粉还原矿相结构研究[J].电子显微学报,2005,24(2):114-119
    [46]Guo SH, Li W, Peng JH, et al. Microwave-absorbing characteristics of mixture of different carbonaceous reducing agents and oxidized ilmenite [J]. International Journal of Mineral Processing,2009,93(3-4):289-293
    [47]Xia HY, Peng JH, Niu H, et al. Non-isothemal microwave leaching kinetis and absorption characteristics of primary titanium-rich materials [J]. Transaction of Nonferrous Metals Society of China,2010,20(4):721-726
    [48]Peng JH, Liu CP. Characteristics of temperature increase of titanium minerals and compounds by microwave irradiation, Symposium Extraction and Processing of Titanium [C]. TMS,1997; USA
    [49]Zhang LB, Chen G, Peng JH, et al. Microwave absorbing properties of high titanium slag [J]. Journal of Central South University of Technology,2009,16(4):588-593
    [50]黄孟阳,彭金辉,黄铭,等.微波场中不同配碳量钛精矿的吸波特性[J].中国有色金属学报,2007,17(3):111-115
    [51]黄孟阳,张世敏,彭金辉,等.微波场中钛精矿不同粒度吸波特性研究[J].金属矿山,2007,(7):42-45
    [52]黄孟阳,彭金辉,雷鹰,等.微波场中钛精矿温升行为及吸波特性[J].四川大学学报(工程科学版),2007,39(2):207-214
    [53]雷鹰,彭金辉,黄孟阳,等.云南钛砂矿在微波场中的吸波行为和还原效应[J].钢铁钒钛,2007,28(1):31-34
    [54]黄铭,彭金辉,王家强,等.微波与物质相互作用加热机理的理论研究[J].昆明理工大学学报(理工版),2005,30(6):15-17
    [55]黄孟阳,彭金辉,张世敏,等.微波加热还原钛精矿制取富钛料新工艺[J].钢铁钒钛,2005,26(3):24-28
    [56]孙艳,彭金辉,黄孟阳,等.微波选择性浸出制取高品质富钛料的研究[J].有色金属:冶炼部分,2006, (3):29-31
    [57]黄孟阳,彭金辉,黄铭,等.微波加热还原钛精矿制取富钛料扩大试验[J].有色金属:冶炼部分,2007, (6):31-34
    [58]张世敏,彭金辉,黄孟阳,等.微波加热钛精矿含碳球团制取初级富钛料的研究[J].稀有金属,2006,30(1):78-81
    [59]彭金辉,张世敏,黄孟阳,等.一种初级富钛料制取金红石型富钛料的方法[P].发明专利,专利号:ZL200510010853.9
    [60]彭金辉,黄孟阳,张世敏,等.一种高钙镁钛精矿制取初级富钛料的方法[P].发明专利,专利号:ZL200510010853.4
    [61]汪云华,彭金辉,杨卜,等.钒钛磁铁矿制备还原铁粉的碳热还原过程的实验研究[J].南方金属,2005, (5):23-24,27
    [62]杨卜,彭金辉,汪云华,等.一种钒钛铁精矿制备还原铁粉的新工艺[J].矿产综合利用,2006, (1):12-15
    [63]刘巧茹,谢辉,郝成君.煤矸石的污染危害及其在化工方面的应用[J].大众科技,2007,10:97-98
    [64]Wan JKS. Microwaves and chemistry:The catalysis of an exciting marriage [J]. Research on Chemical Intermediates,1993,19(2):147-158
    [65]Wicks GD, Clark DE, Schulz RL, et al. Microwave technology for waste management applications including disposition of electronic circuitry [C],1998, Annual meeting of the American Ceramic Society, Cincinnati, OH (United States)
    [66]陈艳,白晨光,何宜柱.微波协助碾磨高钛高炉渣[J].钢铁研究学报,2006,18(8):5-8
    [67]Junya K, Eiko K, William T, et al. Reduction of WO3 to W-metal by mechanochemical reaction [J]. Journal of Alloys and Compounds,2009,480(2):666-669
    [68]Rena RM, Yang ZG, Shaw LL. Synthesis of Nanostructured Tic via Carbothermic Reduction Enhanced by Mechanical [J]. Scripta Materialia,1998,38(5):735-741
    [69]高海燕,曹顺华.机械活化—反应热处理制备纳米晶WC-Co复合粉末[J].粉末冶金材料科学与工程,2004,9(1):60-64
    [70]杨坤,杨筠,林志明,等.机械活化燃烧合成SiC粉体的研究[J].无机材料学报,2007,22(2):263-267
    [71]苏继桃,苏玉长.机械活化在制备尖晶石LiMn2O4中的应用[J].电池工业,2006,11(3):159-162
    [72]李伟,黄春燕.机械活化-还原扩散法制备Fe-TiC复合粉末的新工艺[J].山东交通学院学报,2004,12(3):5-9
    [73]黎铉海,刘伟涛,潘柳萍,等.机机械活化强化从锑渣氧粉中回收铟锑的工艺研究[J].金属矿山,2004,z(1):489-492
    [74]郑雅杰,龚竹青,易丹青,等.以硫铁矿烧渣为原料制备绿矾新技术[J].化学工程,2005,33(4):51-55
    [75]高树军,吴其胜.机械力化学方法活化矿渣研究[J].南京工业大学学报:自然科学版,2002,24(6):61-65
    [76]温金保,陆雷.机械力化学作用活化钢渣的研究[J].硅酸盐通报,2006,25(4):89-92,136
    [77]Li C, Liang B, Guo LH. Effect of mechanical activation on the dissolution of Panzhihua ilmenite [J]. Minerals Engineering,2006,19(14):1430-1438
    [78]Li C, Liang B, Wang HY. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite [J]. Hydrometallurgy,2008,91(1-4): 121-129
    [79]Zhang L, Hu HP, Liao Z. Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations [J]. Hydrometallurgy,2011,107(1-2):40-47
    [80]吴保林,赵中伟.机械活化对辉钼矿浸出的影响[J].稀有金属与硬质合金,2004,32(1):1-4
    [81]李春,梁斌,梁小明.钛铁矿的机械活化及其浸出动力学[J].四川大学学报:工程科学版,2005,37(1):35-38,56
    [82]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性能的影响[J].中国有色金属学报,2010,20(2):354-362
    [83]李洪桂,杨家红.黄铜矿的机械活化浸出[J].中南工业大学学报,1998,29
    (1)::28-31
    [84]王淀佐,黎铉海.磨介质对机械活化难处理金矿浸金的影响[J].有色金属,2000,52(4):118-120
    [85]黎铉海,王淀佐.机械活化强化浸出过程的理论分析及其应用[J].有色金属,2000,52(4):136-138
    [86]姚金环,李延伟,黎铉海.机械活化过程中粒度对硬锌渣浸铟反应活化能的影响[J].矿产综合利用,2009,5:44-46
    [87]Mansour R, Amir H, Rajabi Z, et al. Synthesis of Fe-TiC-Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation [J]. Ceramics International,2011,37(2):443-449
    [88]Xiang DP, Liu Y, Tu MJ. Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction [J]. International Journal of Refractory Metals and Hard Materials,2009,27(1):111-114
    [89]Parviz P, Eric F. Effects of mechanical activation on the reduction behavior of hematite concentrate [J]. International Journal of Mineral Processing,2007,82(2):96-105
    [90]Udhayabanu V, Singh N, Murty BS. Mechanical activation of aluminothermic reduction of NiO by high energy ball milling [J]. Journal of Alloys and Compounds, 2010,497(1-2):142-146
    [91]Welham NJ. Activation of the carbothermic reduction [J]. International Journal of Mineral Processing,2002,67(1-4):187-198
    [92]王兴庆,钟军华.微纳米氧化铁粉低温还原特性的研究[J].中国冶金,2007,17(8):23-28
    [93]赵沛,郭培民.低温还原钛铁矿生产高钛渣的新工艺[J].钢铁钒钛,2005,26(2):1-4
    [94]Magdalena K, Vaclav S, Ladislav K. Effect of expansion by instantaneous controlled pressure drop on dielectricproperties of fruits and vegetables [J]. Journal of Food Engineering,2011,102(4):361-368
    [95]Walkiewicz JW, Kazonich G, McGill SL. Microwave Heating Characteristics of Selected Minerals and Compounds [J]. Mineral Metallurgy Processing,1988,5(1):39-42
    [96]Liu CP, Xu YS, Hua YX. Application of microwave radiation to extractive metallurgy [J]. Journal of Materials Science and Technology,1990,6(2):121-124
    [97]Borowiec K, Rosenqvist. Phase Relations and Oxidation Studies in the System Fe-Fe2O3-TiO2 at 1100℃ [J]. Scand Journal of Metallurgy,1981,10:217-223
    [98]Gupta SK, Rajakumar V, Grieveson P. The Role of Preheating in the Kinetics of Reduction of Ilmenite with Carbon [J]. Canadian Metallurgical Quarterly,1989,28(4): 331-336
    [99]Merritt RR, Turnbull AG. A solid-state cell study of oxygen activities in the Fe-Ti-O system [J]. Journal of Solid State Chemistry,1974,10:252-257
    [100]Overholt JL, Vaux G, Rodda JL. The nature of Arizonite [J]. American Mineralogist, 1950,35:17-19
    [101]Grey IE, Reid AF, Jones DG. Reaction sequences in the reduction of ilmenite: 4-interpretation interms of the Fe-Mn-Ti-O phase diagrams [J]. Transactions of the institution of mining and metallurgy,1974,83(C):105-111
    [102]Teufer G, Temple AK. Pseudo rutile-a new mineral intermediate between ilmenite and rutile in the alteration of ilmenite [J]. Nature,1966,211(5045):179-185
    [103]陈倩.微波生物化学及生物组织中同轴探头的有限元分析[D].四川大学,硕士学位论文,2002
    [104]方峪枫.不同功率下电介质溶液介电常数测量中的特殊现象研究与分析[D].四川大学,硕士学位论文,2007
    [105]Stuchly MA, Stuchly SS. Coaxial line reflecton methods for measuring dielectric properties of biological substances at radio and microwave frequencies em dash a revoew. 1980,1(29):176-183
    [106]Pickles CA. Microwave heating behaviour of nickeliferous limonitic laterite ores [J]. Minerals Engineering,2004,17(6):775-784
    [107]Dielectric constant reference guide. Environment Writer Chemical Backgrounder Index, Known Carcinogens,8th Annual Report on Carcinogens, North American Emergency Response Guidebook 1996 (NAERG96),Pennsylvania Department of Environmental Regulation Regulated Substances,UMCP Select list of carcinogens.
    [108]Wong D. Microwave dielectric constants of metal oxides at high temperature [D]. MSc thesis. Univ. of Alberta, Canada,1975
    [109]Tinga WR. Microwave dielectric constants of metal oxides, part 1 and part 2 [J]. Electromagnetic Energy Reviews,1988.1(5):2-6
    [110]Tinga WR. Microwave dielectric constants of metal oxides, part 1 and part 2 [J]. Electromagnetic Energy Reviews,1989,2(1):349-351
    [111]华一新,刘纯鹏,乐莉.微波促进MnO2分解的动力学[J].中国有色金属学报, 1998,8(3):497-501
    [112]Alberty K A. Physical Chemistry 7th edn [M]. New York:Wiley,1987
    [113]Mingos D M P and Baghuest D R. Chem Soc Rev,1991,20:1
    [114]彭金辉,刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50-51,84
    [115]崔慧军,陈津,冯秀梅,等.微波场中含碳铬矿粉升温特性曲线数值模拟[J],中国冶金,2007,17(1):30-34,37
    [116]任志国,周渝生.含碳冷固结球团矿冶金性能研究[J].烧结球团,1996,21(6):16-21
    [117]杜挺,杜昆.含碳球团-铁浴熔融还原法关键技术的应用基础研究[J].金属学报,1997,33(7):718-727
    [118]Nippon Steel News. Gold Boneded Pellet Achieved High Performance,1979
    [119]汪琦.铁矿含碳球团技术[M].北京:冶金工业出版社,2005,8-22
    [120]雷鹰.电焊条用还原钛铁矿制备新工艺研究[D].昆明理工大学硕士学位论文,2007
    [121]Gupta SK, Grieveson P. Reduction behavior of ilmenite with carbon at 1240℃ [J]. Metallurgical and Materials Transaction B,1995,26(2):401-404
    [122]Wang YM, Yuan ZF. Reduction kinetics of the reaction between a natural ilmenite and carbon [J]. International Journal of Mineral Processing,2006,81(3):133-140
    [123]李晋林,马兵,阎庆庚等.攀枝花钛精矿直接还原过程的研究[J].化工冶金,1990,11(3):189-194
    [124]Xu M, Guo MW, Zhang JL, et al. Beneficiation of Titanium Oxides from Ilmenite by Self-reduction of Coal Bearing Pellets [J]. International Journal of Iron and Steel Research,2006,13(3):6-9
    [125]Wright RA, Cocks FH, Vaniman DT, et al. Thermal processing of ilmenite and titania-doped haematite using microwave energy [J]. Journal of Materials Science,1989, 24(4):1337-1342
    [126]周兰花.钛铁矿流态化预氧化工艺研究[D].重庆大学工程硕士论文,2001
    [127]Johnson HA, Douglas J. Chlorination of Titaniferous Feedstock's [C]. MINPREX 2000/International Congress on Mineral Processing and Extractive Metallurgy,2000: 189-194
    [128]Baubande DV, Menon PR, Juneja JM. Studies on the upgrading of Indian ilmenite to synthetic rutile [J]. Indian journal of engineering and materials sciences,2002,9(4): 275-281
    [129]C.H.杰尼索夫.钛渣冶炼[M].国外钒钛,1985
    [130]吴剑辉,孙康,李伟,等.碱金属氯化物对预氧化钛铁矿炭热还原反应的协同催化作用[J].广东有色金属学报,2001,10(1):25-29
    [131]朱德庆,郭宇峰,邱冠周,等.钒钛磁铁精矿冷固结球团催化还原机理[J].中南工业大学学报,2000,31(3):208-211
    [132]Eltawil SZ, Morsi IM, Francis AA. Kinetics of Solid-State Reduction of Ilmenite Ore [J]. Canadian Metallurgical Quarterly,1993,32(4):281-288
    [133]Mohanty BP, Smith KA, Alkali. Metal Catalysis of Carbothermic Reduction of Ilmenite [J]. Transactions of the Institution of Mining and Metallurgy,1993, 102(C139-196):163-174
    [134]雷鹰.电焊条用还原钛铁矿制备新工艺研究[D].昆明理工大学硕士学位论文,2007
    [135]Womer HK. Microwave in pyromerallurgy [C].1st Australian Symposium on Microwave Power Applications,1989
    [136]Francis AA, El-Midany AA. An Assessment of the Carbothermic Reduction of Ilmenite Ore by Statistical Design [J]. Journal of Materials Processing Technology,2008, 199(1-3):279-286
    [137]Mason RL, Gunst RF, Hess JJ. Statistical Design and Analysis of Experiments with Application to Engineering and Science, Second Edition [M]. London:An International Thomason Publishing,2003
    [138]Azargohar R, Dalai AK. Production of activated carbon from Luscar char: experimental and modeling studies [J]. Micropor Mesopor Mater,2005,8(5):219-225.
    [139]Myers RH, Montgomer y DC. Response Surface Methodology[M]. New York:Wiley and Sons,1995
    [140]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学),2005,14(3):237-239.
    [141]Bezerra MA, Santelli RE, Oliverira P, et al. Response surface methodolody as a tool for optimization in analytical chemistry [J]. Talanta,2008,76(5):965-977
    [142]Karkhanavala MO, Momin A. Subsolidus reactions in the system Fe2O3-TiO2 [J]. Journal of American Ceramic Society,1959,42(8):399-403
    [143]Andersen DJ, Lindsley DH. Internally consistent solution models for Fe-Mg-Mn-Ti oxides:Fe-Ti oxides [J]. American Mineralogist,1988,73:714-726
    [144]陈津,刘浏,曾加庆,等.微波加热含碳铁矿粉还原矿相结构研究[J].电子显微学报,2005,24(2):114-119
    [145]高蓉杰,史可信,王之昌.金红石型二氧化钛粒子成长及动力学[J].无机材料学报,1998,13(5):729-732
    [146]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2002
    [147]李海霞.纳米铜锰复合氧化物前驱物晶粒生长动力学研究[J].河北化工,2007,30(3):26-27
    [148]Kingery WD, Brown HK, Uhlmann DR. Introduction to Ceramics [M]. Academic Press,1976
    [149]Shikawa K, Okada N, Takada K, et al. Nitial-stage of growth-process of lead titante fine particles [J]. JPN J Applphys,1994,133(98):5412-5415
    [150]Sakar SB, Ray HS. Nucleation and grain growth model for reduction of hematite to magnetite [J]. Trans [SI],1988,28:1006-1010
    [151]Binder K. Monte Carlo Method in Statistical Phys [M]. Oxford:Clarenden Press, 1979
    [152]闵乃本著.晶体生长物理基础[M].上海:科技出版社,1982: 332-350
    [153]吴其胜.无机材料机械力化学[M].北京:化学工业出版社,2008
    [154]Zhang L, Hu HP, Liao Z. Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations [J]. Hydrometallurgy,2011,107(1-2):40-47
    [155]Chen Y, Hwang T, Williams JS. Ball milling induced low-temperature carbothermic reduction of ilmenite [J]. Materials Letters,1996,28(6):55-58
    [156]Welham N J. Mechanochemical reduction of FeTiO3 by Si [J]. Journal of Alloys And Compounds,1998,274(1-2):303-307
    [157]Welham N J. Mechanically induced reduction of ilmenite (FeTiO3) and rutile(TiO2) by magnesium [J]. Journal of Alloys And Compounds,1998,270(1-2):260-265
    [158]Welham N J. Mechano chemical reaction between ilmenite (FeTiO3) and aluminum [J]. Journal of Alloys and Compounds,1998,270(1-2):228-236
    [159]Welham N J. A Parametric Study of the Mechanically Activated Carbothermic Reduction of Ilmenite [J]. Minerals Engineering,1996,9(12):1189-1200
    [160]莫畏,邓国珠,罗方承. 钛冶金(第二版)[M].北京:冶金工业出版社,1998
    [161]Sasikumar C, Srikanth S, Mukhopadhyay NK, et al. Energetics of mechanical activation-Application to ilmenite [J]. Minerals Engineering,2009,22(6):572-574
    [162]Chen Y, Hwang T, Marsh M. Study on mechanism of mechanical activation [J]. Materials Science and Engineering,1997, A(226-228):95-98
    [163]Chen Y, Hwang T, Marsh M, et al. Mechanically Activated Carbothermic Reduction of Ilmenite [J]. Metallurgy and Material Transaction,1997,28(A):1116-1121
    [164]陈环,彭振康,傅刚.碳湿敏膜的非线性感湿特性和导电机理[J].物理学报,2009,58(11):7904-7908.
    [165]Wang YM, Yuan ZF, Guo ZC, et al. Reduction mechanism of natural ilmenite with graphite [J]. Transactions of Nonferrous Metals Society of China,2008,18:962-968
    [166]Sai PST. Evaluation of Mathematical Models for the Reduction of Ilmenite with Char in a Rotary Reactor [J]. Indian Chemical Engineer,2008,50(4):312-322
    [167]El-Guindy MI and Davenport DG. Kinetics and Mechanism of Ilmenite Reduction with Graphite [J], Metallurgical Transanction B,1970,3(B):1729-1734
    [168]Gupta SK, Rajkumar V and Grieveson P. Kinetics of Reduction of Ilmenite with Graphiteat 1000 to 1100℃ [J], Metallurgical Transanction B,1987,18(B):713-718
    [169]Sucre G. Kinetics of Reduction of Titaniferrous Ores with Lignite Coal [D], M.Sc. Thesis,The University of British Columbia, Canada,1979
    [170]Jones DG. Kinetics of Gaseous Reduction of Ilmenite [J], Journal of Apply Chemical Biotechnology,1975,25:561-582
    [171]Poggi D. Reduction of Ilmenite and Ilmenite Ores [J]. In Titanium Science and Technology (Plenum Press),1973,1:247-259
    [172]Wouterlood HJ. The Reduction of Ilmenite with Carbon [J], Journal of Chemical Technologu and Biotechnology,1979,29:603-618
    [173]Von Bogadandy L and Engell HJ. Reduction of Iron Ores [J], Springer-Verlag,1971: 286-313
    [174]Sai PST, Surender GD and Damodaran AD. Controlling Mechanisms in the Reduction of Ilmenite with Coal in Laboratory Reactor", Proc. First Int. Conf. on Metallurgy and Materials Science of Tungsten, Titanium, Rare Earths and Antimony, Vol.1, Academic Publishers,1988:263-268
    [175]Welham NJ and Williams JS. Carbothermic Reduction of Ilmenite (FeTiO3) and Rutile(TiO2) [J], Metallurgy and Material Transanction B,1999,30(B):1075-1081
    [176]Zhang G and Ostrovski O. Effect of Preoxidation and Sintering on Properties of Ilmenite Concentrates [J], International Journal of Minerals Processing,2002,64: 201-218
    [177]Sharp JS, Brindley GW, Achar BN. Numerical data for some commonly used solid state reactions [J]. Journal of American Ceramic Society,1966,49(7):379-382
    [178]Beretka J, Brown T. Effect of particle size on the kinetics of the reaction between magnesium and aluminum oxides [J]. Journal of American Ceramic Society,1983,66(5): 383-388
    [179]Koga N, Criado JM. Kinetic analyses of solid- state reactions with a particle-size distribution [J]. Journal of American Ceramic Society,1998,81(11):2901-2909
    [180]Frade JR, Cable M. Theoretical solutions for mixed control of solid state reactions [J]. Journal of Material Science,1997,32(10):2727-2733
    [181]Frade JR. Reexamination of the basic theoretical model for the kinetics of solid-state reactions [J]. Journal of American Ceramic Society,1992,75(7):1949-1957
    [182]Li Y, Lei Y, Zhang LB, et al. Microwave drying characteristics and kinetics of ilmenite. Transactions of Nonferrous Metals Society of China,2011,21(1):202-207
    [183]Xia HY, Peng JH, Niu H, et al. Non-isothernal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials. Transactions of Nonferrous Metals Society of China,2010,20(4):721-726
    [184]Al-Harahsheh M, Kingman S, Hankins N, et al. The influence of microwave on the leaching kinetics of chalcopyrite. Minerals Engineering,2005,18(13-14):1259-1268
    [185]任瑞,马海乐,朱春梅,等.香菇多糖微波降解反应动力学研究.化学工程,2009,37(4):38-40
    [186]华一新,刘纯鹏,乐莉.微波促进Mn02分解的动力学.中国有色金属学报,1998,8(3):497-501
    [187]雷向欣,李俊,沈瀛坪.微波对乙酸甲酯水解的作用及反应动力学研究.化学反应工程与工艺,2002,18(2):97-102
    [188]陶东平,刘纯鹏.碱式碳酸镍在微波辐射下的热分解动力学.有色金属,1992,44(4):48-51
    [189]李核,张展霞,李攻科.密闭式微波系统的微波辅助萃取动力学.中山大学学报(自然科学版),2004,43(3):40-44
    [190]范华均,肖小华,李攻科.微波辅助提取石蒜和虎杖中有效成分的动力学模型.高等学校化学学报,2007,28(7):1049-1054
    [191]Adnadevic B, Gigov M, Sindijc M, et al. Comparative study on isothermal kinetics of fullerol formation under conventional and microwave heating. Chemical Engineering Journal,2008,140(1-3):570-577
    [192]赵志曼,何天淳,宁平,等.微波辐照改性陈煤矸石球团烧结动力学研究.矿产综合利用,2004,5:21-24
    [193]Chen SY, Lee SY, Lin YJ. Phase transformation, reaction kinetics and microwave characteristics of Bi2O3-ZnO-Nb3O5 ceramics. Journal fo the Europea Ceramic Society, 2003,23(6):873-881
    [194]彭金辉,刘纯鹏,苏永庆,等.微波辐照下镍磁黄铁矿空气氧化动力学.昆明工学院学报,1993,18(2):22-27
    [195]Yoshikawa N, Ishizuka E, Mashiko K, et al. Difference in carbothermal reduction reaction kinetics of NiO in microwave E- and H-fields. Materials Letters,2007,61(10): 2096-2099
    [196]Chen J, Wang, SB, Zhang M, et al. Kinetics of voluminal reduction of chromium ore fines containing coal by microwave heating. Journal of Iron and Steel Research International,2008,15(6):10-15
    [197]王海川,周云,吴宝国,等.微波辅助加热氧化锰的还原动力学研究.中国稀土学报,2004,22:212-215
    [198]陶长元,孙大贵,刘作华,等.微波辅助高价锰还原浸出动力学研究.中国锰业,2010,28(1):21-24
    [199]彭金辉,刘纯鹏.微波场中FeCl3溶液浸出闪锌矿动力学.中国有色金属学报,1992,2(1):46-49
    [200]彭金辉,刘纯鹏.微波辐照下硫化铅矿常压溶解动力学.有色金属,1993,45(1):68-72
    [201]彭金辉,黄孟阳,张正勇,等,微波加热浸出初级富钛料非等温动力学及吸波特 性.中国有色金属学报,2008,18(S):207-214
    [202]佟志芳,毕诗文,于海燕,等.微波作用下铝酸钙炉渣非等温浸出动力学[J].中国有色金属学报,2006,16(2):357-362
    [203]汤建伟,许秀成,张宝林,等微波作用磷矿分解反应非等温动力学研究[J].化学反应工程与工艺,2004,20(2):100-116
    [204]彭金辉,刘纯鹏.微波辐照下PbS和PbO的升温速率及其反应动力学.中国有色金属学报,1993,3(1):22-27
    [205]A.伏尔斯基,E.谢尔吉耶夫斯卡娅.冶金过程理论—火法冶金过程[M].北京:科学出版社,1987
    [206]廖为鑫,解子章.粉末冶金过程热力学分析[M].北京:冶金工业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700