用户名: 密码: 验证码:
载甲苯活性炭微波辐照再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭具有高度发达的孔隙结构和极大的比表面积,对分子具有极强的吸附能力,是一种优良的吸附剂。到20世纪70年代,颗粒状活性炭处理工业废水和废气的工艺开始得到广泛应用。此后,无论是在技术上,还是在应用范围及处理规模上,活性炭吸附法处理工业废水和废气工艺都取得了很大发展。与此同时,活性炭的消耗量也迅速增加。由此产生大量吸附饱和的废炭,如不进行再生处理和回收利用,不仅会造成资源的浪费,还会对环境带来二次污染。
     由于微波加热具有即时性、穿透能力强以及加热均匀等特点,国内外学者已将微波加热技术应用于活性炭再生工艺并就此展开了大量研究。但目前对微波再生活性炭的研究均以氮气作为载气,对以干燥空气作为载气的条件进行微波再生活性炭的研究较少,本实验对此进行了较为系统的研究。
     本实验以载甲苯活性炭为研究对象,以微波辐照为再生手段,以干燥空气为载气,主要从活性炭的升温行为和损耗率、甲苯的脱附率、载甲苯活性炭再生前后的吸附性能的变化等方面,考察了微波再生对活性炭性能的影响和微波辐照再生效果,并以此分析评价了微波再生工艺的优劣。
     活性炭的升温行为和损耗率实验结果表明:在微波场中改性活性炭升温速率要大于新鲜活性炭的升温速率;活性炭在微波场中的升温受微波功率、载气含氧量、载气流量等因素的影响;在相同的操作条件下改性活性炭的损耗率要高于新鲜活性炭的损耗率。因此,改性活性炭不宜在本实验条件下作为吸附剂。
     甲苯的脱附率实验结果表明:载气中含氧量的变化对甲苯的脱附率有一定的影响。相同操作条件下,当载气中含氧量为0时,甲苯的脱附率为78.74%,当载气含氧量为21%时,甲苯的脱附率为24.3%。正交实验的结果表明,本实验中微波功率、含氧量、载气流量、辐照时间这4个所考察的因素中对脱附率影响大小依次为载气流量、辐照时间、微波功率、氧含量。若以脱附率为衡量指标,则在本实验条件下的最佳工艺参数是:载气流量800mL/min、氧含量6%、辐照时间3min、微波功率231W。
     载甲苯活性炭再生前后的吸附性能实验表明:微波辐照再生过程中,载气中含氧量的变化对再生活性炭吸附甲苯的性能产生了影响。经过一定次数的再生后,活性炭对甲苯的平衡吸附量增加,再生过程中氧气的存在有利于再生活性炭对甲苯的吸附。在本实验的操作条件下,各影响因素重要性依次为微波功率、载气流量、含氧量、辐照时间,最佳工艺参数是:微波功率231W、含氧量10%、载气流量500mL/L、辐照时间3min。
     通过X射线衍射发现,微波辐照对活性炭的晶体结构具有一定影响;氮气吸附实验的结果表明,微波再生后活性炭的比表面积比新鲜活性炭比表面积大,因而提高了活性炭的吸附性能;经分形理论分析得出,微波辐照后活性炭的表面比新鲜活性炭表面粗糙,这有利于活性炭的吸附。
Activated carbon has good opening structure and huge surface area, it has excellent absorption capacity and had got wide application in industry. Since the first application of grain AC in industrial waste water treatment and waste air treatment in 1970s, AC has got great development in terms of technique and has been employed for different purposes. Meanwhile, a lot of waste saturated adsorbing AC have been produced in the process of its application, it not only wastes resources, but pollutes the environment if it were not reclaimed and disposed correctly.
     As microwave heating takes advantages of instantaneous heating, good penetrate ability etc, a lot of researches have been carried out regarding the application of microwave in AC regeneration both at home and abroad. But all the researches which use microwave to regenerate AC use N_2 as carrier gas. Using the dry air as the carrier gas in the experiments is little, so this research will use the dry air as the carrier gas.
     In the experiment, the object is the AC which loading the toluene, the regenerating method is microwave radiation, the carrier gas is dry air . The research will survey the wastage and temperature increasing behaviour of AC, the toluene desorption, the changment of absorption capacity of AC which loading the toluene, etc. The research will also survey the microwave's effect on the AC, the effect of microwave regeneration, and evaluate the technology of the microwave regeneration.
     The experiments on AC wastage and temperature increasing character show that: the temperature increasing velocity of modified activated carbon is higher than AC; the temperature increasing performance of AC was influenced by the microwave power, the oxygen content in the carrier gas, the velocity of carrier gas, ect. On the same condition the wastage of modified activated carbon is higher than AC. So, the the modified activated carbon is not suitable for the research.
     The experiment on toluene desorption shows that: the alteration of oxygen content will effect on the desorping rate. Under the same condition, the desorping rate of toluene is 78.74% when oxygen's content is 0%, the desorping rate of toluene is 24.3% when oxygen's content is 21%. Based on orthogonal experiment, among the four factors: microwave power, oxygen content, the velocity of carrier gas and the time of radiation, to the effect on the desorping rate, the significance sort is the velocity of carrier gas, the time of radiation, microwave power and oxygen content. The best technology condition for AC regeneration is obtained as follows: the velocity of carrier gas is 800mL/min, oxygen content is 6%, the time of radiation is 3 min , and the microwave power is 231W.
     The experiment of absorption capacity on AC which loading the toluene shows that: in the process of microwave radiation, the alteration of oxygen content will have effect on the adsorbing ability of regenerated AC to the toluene. After several regenerations the adsorption quantity of AC to the toluene is augmentation. So in the process of regeneration the existent of oxygen has advantage on the adsorbing ability of AC. In the condition of this experiment, the significance sort is the microwave power, the velocity of carrier gas, the oxygen content and the time of radiation. The best technology condition for adsorption of regenerated AC: the microwave power is 231W, the oxygen content is 10%, the velocity of carrier gas is 500mL/min and the time of radiation is 3 min.
     The result of XRD shows that: the crystal structure of AC has changed after the microwave radiation. The result of N2 adsorption shows that: the specific area of regenerated AC is higher than the fresh AC, so the microwave radiation can enhance the adsorbing ability of AC. After the fractal theory analysis, the result shows that: the microwave radiation has advantage on the adsorption of AC, for the face of regenerated AC is rougher than that of AC.
引文
[1]田森林,宁平.有机废气治理技术及其新进展.环境科学动态[J].2000(1):23-28
    [2]国家环境保护局.大气污染物综合排放标准详解.北京:中国环境科学出版社,1997
    [3]刘亚敏,付智娟.可挥发有机物治理技术及研究进展[J].江西化工,2006,(1):23-26
    [4]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001
    [5]姜安玺.气污染控制[M].北京:化学工业出版社,2003
    [6]唐运雪.有机废气处理技术及前景展望[J].湖南有色金属,2005,21(5):31-35
    [7]Katherine,Dombrowski,Christopher M.B.Lehmann,et al.Organic Vapor Recovery and Energy Efficiency during Electric Regeneration of an Activated Carbon Fiber Cloth Adsorber [J].Journal of Environmental Engineering,2004,130(3):268-275
    [8]王长林,颗粒活性炭表面改性技术净化多组分挥发性有机废气的研究[D]:[硕士学位论文].天津:天津大学,2004
    [9]Khan F.I.Ghoshal A.K.Journal of Loss Prevention in the Process Industries[J],2000,13:527
    [10]朱联锡,蒋文举等.空气污染控制原理[M].成都成都科技出版社,1990
    [11]Ruhl,M,J.Recovery VOCs via adsorption on activated carbon[J].Chem Eng Prog,(1993):37-41
    [12]赵毅.李守信编.有害气体控制工程[M].北京:化学工业出版社,2001:20-183
    [13]刘景良编.大气污染控制工程[M].北京:中国轻工业出版社,2002
    [14]Ralph T.Yang.Gas Separation by Adsorption[M].Butterworth Publishers,1987
    [15]王丽燕,王爱杰,任南琪等.有机废气净化技术研究进展[J].哈尔滨工业大学学报.2004,36(6):772-775
    [16]闫勇.有机废气中VOCS的回收方法[J].化工环保,1997,17(6):332-335
    [17]左文雅,张民峰.吸收法处理工业生产中的有机废气[J].化工环保,2004,22(1):48-49
    [18]张林,陈欢,林柴红.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保,2002.4.22(2):75-81
    [19]刘鹏.VOC的回收与处理技术简介[J].石油化工环境保护,2001,3:39-43
    [20]S·P·P·Otlengraf.A·H·C·Van Den Oever.Kinetics of Organic compound Removal from Waste gases with a Biological Filter[J].Biotechnology and Bioengineering,1983,ⅩⅩⅤ:3089-3102
    [21]孙学习,孙佩石,王洁.生物法净化低浓度有机废气技术研究应用进展[J].昆明理工大学学报(理工版),2004,29(5):115-119
    [22]饶佳家,陈柄灿,孙兴福等.生物法处理挥发性有机废气的研究[J].环境污染治理技术与设备,2004,5(9):56-60
    [23]左国民,徐敏,程振兴等.挥发性有机的气相光解及光催化降解研究[J].分子催化,2001,15(6):464-467
    [24]李志松,蔡复礼.催化焚烧处理挥发性有机物技术进展[J].工业催化,1998,(5):18-22
    [25]熊蜀涓,魏振东.催化燃烧及其应用[J].河南化工,1999,9:40-41
    [26]孟月,祁永智,丁瑞星.有机废气的催化燃烧[J].洛阳工学院学报,2000,21(3):91-94
    [27]王宝庆,马广大,陈剑宁.挥发性有机废气净化技术研究进展[J].环境污染治理技术与设备,2003,4(5):47-51
    [28]曹耀华,杨绍文,金梅等.纳米二氧化钛降解有机污染物的试验研究[J].矿产保护与利用,2002(3):37-40
    [29]王银生,季学李,羌宁.脉冲电晕等离子体净化有机污染物甲苯的实验研究[J].同济大学学报,2000,28(6):699-701
    [30]冯春杨,赵君科.晕法处理挥发性有机化合物技术研究现状[J].四川环境,2003,22(2):2-5
    [31]李坚,马广大.电晕法处理VOCSs的机理分析与实验[J].西安建筑科技大学学报,2000,32(1):24-27
    [32]王晓明,史文祥,赵莹,唐宇,张建功.管磊等离子体反应器的室内空气净化装置研究[J].环境污染治理技术与设备,2004.5(6):91-94
    [33]吴祖良,高翔,魏恩宗,骆仲涣,倪明江,岑可法等.离子体气态污染物控制技术的研究进展[J].电站系统工程,20(2):1-4
    [34]Weiner Kast.Adsorption aus der Gasphase[M].Weinheim Verlag,Berlin,1988
    [35]宁平,蒋文举.大气污染控制工程[M].成都:四川大学出版社,2001
    [36]张自杰主编.环境工程手册水污染防治卷[M].高等教育出版社,1996
    [37]兰淑澄编著.活性炭水处理技术[M].中国环境科学出版社,1992
    [38]Newconbe.G,Drikas.M.Chemical Regeneration of Granular Activated Carbon from an Operating Water Treatment Plant.Wat.Res.1993;27(1):161-165
    [39]Modell,M,Defilippi.R.P,Krukonis.Val.Regeneration of Activated Carbon with Supercritical Carbon Dioxide Activated Carbon Adsorption[J].Surface Chemistry and Physical Properties.(1):447-467
    [40]Knopp.P.V,Gitchel.B.Wastewater Treatment with Powedered Activated Carbon Regeneration by Wet Air Oxidation.Paper Presented at 25th Industrial Waste Conference.Purdue University.May 1970
    [41]Ding,J,Soneyind.V.L,Larson.R.A,etal.Effects of Temperature,Time and Biomass on Wet Air Regenerration of Carbon[J].WPCF.1987;59(3):139-144
    [42]李惠民,邓兵杰,李晨曦.几种活性炭再生方法的特点[J].化工技术开发,2006,4(8):15-17
    [43]Zimmermann,F.J."New Waste Disposal Process."Chem.Eng.1958,65(8):117-121
    [44]Ding,J.Soeying,V.L.Larson.Effects of temperature,time an d biomass on wet air regeneration of carbon[J],wPcF,1987,59(3):139-144
    [45]熊飞,陈玲,王华等.湿式氧化技术及其应用比较[J].环境污染治理技术与设备.2003,4(5):66-69
    [46]张会平,钟辉,叶李艺.不同化学方法再生活性炭的对比研究[J].化工进展,1995,5:31-34
    [47]张会平,傅志鸿,叶李艺等.活性炭的电化学再生机理[J].厦门大学学报(自然科学版),2000,39(1):79-83
    [48]Tan Chung-Sung,et al.Supercritical Regeneration of AC Load with Benzene and Toluene[J].Ind.Eng.Chem.Res.1989,28:222-1226
    [49]刘勇弟,高勇,袁渭康.超临界流体活性炭再生技术[J].化工进展,1999(1):47-48
    [50]李惠民,载苯活性炭微波辐照再生方法的研究[D]:[硕士学位论文].昆明:昆明理工大学,2007
    [51]王鹏.环境微波化学技术[M].北京:化学工业出版社,2003
    [52]张颖,李光明.活性炭再生技术的发展[J].化学世界,2001,(8):441-443
    [53]宁平,陈玉保.载硫活性炭微波辐照解吸研究[J].林产化学工业,2004,24(3):65-68
    [54]王宝庆,陈亚雄.乙醇的活性炭吸附及微波解吸[J].水处理技术,2001,27(6):348-349
    [55]杨文斌,蒋文举,常青.微波辐照下载硫活性炭的升温及SO_2的解吸研究[J].兰州交通大学学报(自然科学版),2005,24(3):61-64
    [56]Application of activated carbon in a microwave radiation field to trichloroethylene G.CHIH -JU JOU Carbon Vol.36,No.11 1643-1648,1998
    [57]张达欣,于爱民,金钦汉.微波-炭还原法处理NO的研究[J].高等学校化学学报,1997,18(8):271-1274
    [58]钱鸿森.微波加热技术及应用[M].黑龙江科学技术出版社,1985
    [59]田森林,载甲苯活性炭微波辐照再生应用基础研究[D]:[硕士学位论文].昆明:昆明理工大学,1997
    [60]金钦汉.微波化学[M].北京:科学出版社,1999
    [61]ChangYu Cha,Charlie T.Carlisle.Microwave process for volatile organic compound abatement[J].Air &Waste Management Association,2001,51:1628-1641
    [62]叶振华.吸着分离过程基础.北京:化学工业出版社,1988
    [63]北川浩,铃木谦一郎.吸附的基础与设计(中译本).1976
    [64]陈诵英等.吸附与催化[M].河南:科学技术出版社,2001
    [65]H.凯利(德),E.巴德(德).活性炭及其工业应用[M].魏同成译.北京:中国环境科学出,1990
    [66]叶振华.化工吸附分离工程[M].北京:中国石化出版社,1992
    [67]R.T.杨,王树森译.吸附法气体分离[M].北京:化学工业出版社,1991
    [68]邓兵杰.改性活性炭纤维对甲苯吸附性能的研究[D]:[硕士学位论文].昆明:昆明理工大学,2007
    [69]冯孝庭,吸附分离技术[M].北京:化学工业出版社,2000:32-34
    [70]D.H..Bangham.Philosophical Magazine,1925,49:935
    [71]鲛岛十三郎.Bulletin of the Chemical Society of Japan,1930,173:5
    [72]饭岛俊一郎.理研汇报.1938,286:17
    [73]F.Bergton.Ann.Phys.,1912,472:37
    [74]彭金辉,张利波,张世敏,涂建华,夏洪应,范兴祥,郭胜惠.微波加热烟杆制备微孔活性炭的研究[J].材料科学与工程学报,2006,24(1):57-63
    [75]铃木孝臣,金子克美.非晶质固体中の构造解析[J].表面,1995,33(3),157-163
    [76]Kaneko,K.,Specific Intermolecular structures of gases confined in carbon nanospace[J].Ca rbon,2000,38(1):287-303
    [77]孙洪军,赵丽红.分形理论的产生及其应用[J].辽宁工学院学报,2005,25(2).4:113-118
    [78]朱纪磊,奚正平,汤慧萍,谈萍.多孔结构表征及分形理论研究简况[J].稀有金属材料与工程,35(增刊2)2006.8:453-458
    [79]朱文魁,张双全,唐志红,樊亚娟.气体吸附法研究活性炭表面分形维数[J].炭素,2004 2:12-16
    [80]韩严和,全燮,薛大明,赵雅之,陈硕.活性炭改性研究进展[J].环境污染治理技术与设备.2003,4(1):34-40
    [81]郏其庚.活性炭的应用[M].华东理工大学出版社,2002
    [82]姚允斌,解涛,高英敏.物理化学手册[M],上海科学技术出版社,1985,614-631
    [83]李国文等.活性炭吸附甲苯动力学研究[J].化学工程,2000.28:(1)
    [84]仇中柱,张鹤声,徐吉浣.正交实验法在湿式烟气脱硫装置除水器实验中的应用[J].热能动力工程,2001.9.16:511-514
    [85]李晨曦,李惠民,邓冰洁.微波诱导催化技术在污染治理中的应用[J].四川化工,2007,10(1):38-40
    [86]张盛钰,活性炭的催化氧化再生技术研究.[D]:[硕士学位论文].厦门:厦门大学,2002
    [87]活性炭吸附法脱除低浓度苯系物的研究.白洪亮[D]:[硕士学位论文].大连理工大学硕士论文,2006
    [88]黄孟阳,彭金辉等.微波场中不同配碳量钛精矿的吸波特性[J].中国有色金属学报,2007,17(3):476-480
    [89]王宝庆.陈亚雄.宁平.微波解吸技术及其应用[J].环境污染治理技术与设备.2004,5(3):80-83
    [90]杨文斌,蒋文举,常青.微波辐照下载硫活性炭的升温及SO_2的解吸研究[J].兰州交通大学学报(自然科学版),2005,24(3):61-64
    [91]王宝庆,葛媛群,郑晓明.载乙醇活性炭在微波场中升温行为研究[J].安全与环保学报,2003,3(1):40
    [92]吕敏春,严莲荷,王剑虹,潘爱芹,周申范.光、微波、热催化氧化效果的比较[J].工业水处理,2003,23(8):36-38
    [93]张悟铭,赵文宽,赵藻蕃.仪器分析.高等教育出版社,2000
    [94]Atkins PW.Physical chemistry.3rd ed[M].New York:WH Freeman and Company;1986
    [95]PfeiferP,AvnirD,Chemistry in Noninteger Dimensions between two and three[J].Chem Phys.1983,79(7):3558-3565
    [96]江霞,蒋文举,朱晓帆.微波改性活性炭脱硫性能的初步研究环境工程[J].2003.6,21(3)36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700