用户名: 密码: 验证码:
黄牛Myf5、Pax7基因的克隆、多态性检测及其遗传效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌肉卫星细胞作为生肌性前体细胞的主要来源,对机体出生后骨骼肌的生长、再生、修复起到至关重要的作用。配对盒基因7(paired box 7,Pax7)是卫星细胞表达的标志性基因,可以通过调控肌细胞生成因子5(myogenic factor 5, Myf5)和肌细胞决定因子(myogenic determination factor, MyoD),决定卫星细胞的增殖与分化,从而影响机体的生长发育。
     本研究选择Myf5和Pax7为候选基因,利用Over-lap、DNA测序等方法克隆得到Myf5基因CDS区并进行原核及真核表达,为黄牛转基因研究提供基础资料。另外,采用DNA池测序、PCR-RFLP技术检测了南阳牛、郏县红牛、秦川牛、鲁西牛和草原红牛5个群体共1226个个体的Pax7基因多态性,探讨多态位点在不同群体中的遗传结构、遗传多样性及其与生长性状的关联,以期发现对黄牛生长发育呈正效应的分子标记,为今后黄牛分子标记辅助选择、优质高产新品种或品系培育提供科学依据。本研究获得以下结果:
     1.黄牛Myf5基因CDS区克隆与表达研究
     利用Over-lap法(外显子拼接)从秦川牛基因组DNA中克隆得到Myf5基因CDS区,构建pET-28a-Myf5重组载体并转化至大肠杆菌BL21 (DE3) pLysS中,1mmol/L IPTG、37℃条件下诱导表达融合蛋白6×His-Myf5,经SDS-PAGE检测,诱导5h蛋白表达量较大。此外,还成功构建了真核表达载体pEGFP-C1-Myf5,通过脂质体转染重组质粒pEGFP-C1-Myf5于PK15细胞中,24h后在荧光显微镜下观察转染效率,进一步用Western blot验证Myf5基因在细胞内得到了成功表达。
     2.黄牛Pax7基因多态性检测及群体遗传学分析
     利用DNA池测序和PCR-RFLP技术系统检测了黄牛Pax7基因所有编码区和部分内含子区共9个基因座(P1-P9)在5个黄牛群体(南阳牛、郏县红牛、秦川牛、鲁西牛和草原红牛)中的遗传变异。试验中共检测到5个SNPs:NC_007300: g.332 ins/del G, g.3531G>A, g.56626G>A, g.66117C>T和g.66251A>G,分别位于Pax7基因的内含子1、外显子3、外显子5、外显子7和内含子7。其中,外显子上的SNPs没有引起氨基酸的改变,属于同义突变。有趣的是,这5处突变位点均发生在某个特定的限制性内切酶识别位点上,可以分别通过EcoRII、HinfI、BspT104I、PstI和ApaI-RFLP方法直接检测。
     群体遗传学分析显示,g.332 ins/del G位点在五个黄牛群体中检测到AG和GG两种基因型,GG型在五个群体中均为优势基因型,频率在0.652~0.983之间;g.3531G>A位点共检测到AA、AG和GG三种基因型,GG型在南阳牛、郏县红牛、秦川牛和鲁西牛群体中为优势基因型,频率在0.554~0.724之间;g.56626G>A位点共检测到AA、AG和GG三种基因型,GG型在上述四个牛品种中为优势基因型,频率在0.387~0.492之间;g.66117C>T位点共检测到TT、TC和CC三种基因型,CC型在南阳牛、郏县红牛、秦川牛和草原红牛群体中均为优势基因型,频率在0.0.401~0.991之间;g.66251A>G位点共检测到AA、AG和GG三种基因型,GG型在南阳牛、郏县红牛、秦川牛和鲁西牛群体中为优势基因型,频率在0.590~0.676之间。g.332 ins/del G位点在五个黄牛群体内均处于低度多态(PIC<0.25),其他四个位点除了g.3531G>A在郏县红牛中处于低度多态外,其余均处于中度多态(0.25T和g.66251A>G在草原红牛群体中处于强连锁不平衡状态。
     3.黄牛Pax7基因多态位点与生长性状的关联分析
     利用GLM模型统计分析了Pax7基因5个SNPs位点与秦川牛成年个体、郏县红牛成年个体和南阳牛不同生长时期(6月龄、12月龄、18月龄和24月龄)各项生长指标的关联性。结果显示,g.332 ins/del G位点与秦川牛体重、郏县红牛体斜长和南阳牛12月龄的日增重显著相关,且GG型均显著高于AG型(P<0.05);g.3531G>A位点的不同基因型对秦川牛体斜长、胸宽和尻长及南阳牛6月龄、12月龄的多项指标影响显著(P<0.05或P<0.01);g.56626G>A位点只与秦川牛胸深显著相关,与郏县红牛和南阳牛的各项指标均不相关;g.66117C>T位点的不同基因型对秦川牛体高和十字部高及南阳牛6月龄、12月龄的胸围和日增重影响显著(P<0.05);g.66251A>G位点的不同基因型对秦川牛体重、胸深和坐骨端宽及郏县红牛胸围、腰角宽和尻长及南阳牛6月龄、12月龄的多项指标均有显著影响(P<0.05或P<0.01)。
Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle development, regeneration and also self-renew. Paired box 7 (Pax7) is the identification gene of myogenic satellite cells. It can regulate the proliferation and differentiation of satellite cells by triggering the expression of myogenic determination factor (MyoD) and myogenic factor 5 (Myf5). Therefore, Pax7 is essential for the postnatal muscle growth and development.
     Myf5 and Pax7 were chosen as candidate genes in this study. Firstly, the coding sequences (CDS) of Myf5 were cloned by the method of exon-Over-lap and DNA sequencing, and the protein expression in prokaryotic/ eukaryotic was detected, which will provide some basic materials for the transgenic research in cattle. Secondly, the single nucleotide polymorphisms (SNPs) of Pax7 gene were detected in 1226 cattle from five Chinese indigenous breeds (NY, JX, QC, LX, and CY) by DNA pool, sequencing and PCR-RFLP. The association between SNPs and growth traits were analyzed by using general linear model, as well as population genetic structure. These will benefit for the application of DNA maker related to the growth traits on marker-assisted selection (MAS), improvement and promotion of beef cattle. The main results were shown below:
     1. Cloning and expression of bovine Pax7 gene
     The coding sequences (CDS) of Myf5 gene were cloned from genomic DNA of QC breed by exon-Over-lap method and constructed prokaryotic expression vector pET-28a-Myf5. The prokaryotic expression vector was transformed into E. coli BL21 (DE3) pLysS, and then the expression of fusion protein 6His-Myf5 was induced on the condition of 1mmol/L IPTG and 37℃. Demonstrated by SDS-PAGE, the fusion protein had large quantities when induced for 5 hours. In addition, the plasmid pEGFP-C1-Myf5 was constructed and transfected into PK15 cell by liposome and expressed transiently, after 24 hours the efficiency of transfection was observed by fluorescence microscope. Processed by Western blot, Myf5 gene was verified to be expressed successfully in PK15 cell.
     2. Polymorphisms detection and population genetic analysis of bovine Pax7 gene Genetic variations of Pax7 gene within all coding sequences and partial introns (P1-P9) were detected in five Chinese indigenous cattle breeds (NY, JX, QC, LX, and CY) by DNA pool, sequencing and PCR-RFLP. Five novel SNPs (NC_007300: g.332 ins/del G, g.3531G>A, g.56626G>A, g.66117C>T and g.66251A>G) were identified, which were located at intron 1, exon3, exon 5, exon 7, and intron 7, respectively. Among the above mentioned five SNPs, three mutations in exons revealed synonymous mutations. Interestingly, different allele patterns of all these five loci were directly detected by specified restriction enzymes, suggesting that they could be genotyped by the methods of EcoRII、HinfI、BspT104I、PstI and ApaI-RFLP, respectively.
     By population genetics analysis, there were two genotypes (AG and GG) in g.332 ins/del G locus. The genotype GG was dominant in five cattle breeds than AG, and the frequencies varied from 0.652~0.983. Three genotypes (AA、AG and GG) were identified in g.3531G>A locus, and the GG genotype was predominant in NY, JX, QC and LX breed, the frequencies varied from 0.554~0.724. In g.56626G>A locus, genotype AA、AG and GG were detected and GG genotype was predominant in the above four breeds, the frequencies varied from 0.387~0.492. In g.66117C>T locus, three genotypes (TT、TC and CC) were found and CC genotype was superior in NY, JX, QC and CY breed, the frequencies varied from 0.401~0.991. Three genotypes (AA、AG and GG) were detected in g.66251A>G and GG genotype was predominant in the above four breeds, the frequencies varied from 0.590~0.676. The g.332 ins/del G locus possessed low genetic diversity, and other four loci possessed middle genetic diversity except for the g.3531G>A locus in JX. Moreover, the genotypic frequencies of the five SNPs between CY and other four breeds (P<0.01 for NY, JX, QC and LX, respectively) appeared different based onχ2-test. The linkage disequilibrium analysis demonstrated that g.66117C>T and g.66251A>G were strongly linked in CY breed.
     3. Association of polymorphisms in Pax7 gene and growth traits in cattle
     The association between five SNPs of Pax7 gene and growth traits in QC, JX and NY (6, 12, 18 and 24 months) cattle was analyzed by GLM model. The results showed that g.332 ins/del G locus was significantly associated with body weight in QC breed, body length in JX breed and average daily gain in NY breed aged 12 months, and the individuals with GG genotype had greater than AG (P<0.05). The different genotypes of g.3531G>A locus were significantly affected several growth traits in QC and NY breed (6 and 12 months) (P<0.05 or P<0.01). The g.56626G>A locus was only significantly associated with chest depth in QC breed, and had no association with growth traits in JX and NY breeds. The different genotypes of g.66117C>T locus were significantly affected body height and height at hip cross in QC breed and heart girth in NY breed aged 6 and 12 months (P<0.05). In g.66251A>G locus, different genotypes can not only affect the body weight, chest depth and hucklebone width in QC breed, but also affect the heart girth, hip width and rump length in JX breed and several traits in NY breed aged 6 and 12 months (P<0.05 or P<0.01).
引文
巴雅斯古楞,冯书堂,牟玉莲,道尔吉. 2005.阳性脂质体介导的转染法的研究.中国畜牧兽医, 32(11): 32-34.
    曹兵海. 2010.肉牛业的现状与对策.农产品市场周刊, 2010(32):10-12.
    常洪. 2003.我国畜禽遗传资源的优势与危机.中国禽业导刊, 20(10): 14-16.
    陈国宏,张勤. 2009.动物遗传原理与育种方法.第一版.北京:中国农业出版社陈永福. 2002.转基因动物.北京:科学出版社
    黄永震. 2010.黄牛NPM1、SREBP1c基因的克隆、SNPs检测及其与生长性状的关系. [硕士学位论文].杨凌:西北农林科技大学
    焦骅. 2001.家畜育种学.北京:中国农业出版社
    李鸥,王连想,向振强,黄运茂. 2010.广东农业科学, 11:210-212.
    刘树明,马红霞,陈立芳,刘玉堂. 2011.大肠杆菌多重耐药调控基因evgS的克隆及其原核表达.中国兽医学报, 31(3):338-341.
    刘岩,童佳,张然,汤波,彭云乾,王淑辉,李宁.转基因动物育种研究的现状与趋势.中国医药生物技术, 4(5): 329-334.
    宋振. 2008.人SUMO-1蛋白多克隆抗体的制备与鉴定及亚细胞结构的定位. [硕士学位论文].杨凌:西北农林科技大学
    孙文浩,朱庆. 2008.生肌决定因子Myf5基因的研究进展.黑龙江畜牧兽医, 7:28-30.
    田万强,张道义,林清,昝林森,张设. 2008.分子遗传标记与家畜育种进展, 5:41-43.
    汪思应,郑红,程洁,余科科,许望翔,李俊. 2003.用PCR技术从cDNA文库中获取目的基因长片段. 安徽医药, 7(1): 58-60.
    吴常信. 1999.对"畜禽遗传资源保存与利用"立项研究的建议[A].第九次全国家禽学术研讨会论文集, 1-3.
    许尚忠,李俊雅. 2009.我国肉牛遗传改良现状分析及发展策略探讨.现代畜牧兽医, 10: 11-13.
    昝林森,刘永峰. 2008.中国奶牛、肉牛选育改良现状及基本方略, 44(10): 1-5.
    张英汉. 2007.西北地区养牛业进展.中国牛业科学, 2:7
    Asakura A, Tapscott S J. 1998. Apoptosis of epaxial myotome indanforth's short-tail(sd) mice in somites that form following notochord degeneration. Developmental Biology, 203 (2): 276-289
    Beuzen N D, Stear M J, Chang K C. 2000. Molecular markers and their use in animal breeding. Veterinary Journal, 160 (1): 42-52
    Bhagavati S, Song X S, Siddiqui M A Q. 2007. RNAi inhibition of Pax3/7 expression leads to markedly decreased expression of muscle determination genes. Molecular and Cellular Biochemistry, 302 (1-2): 257-262
    Bhuiyan M S A, Kim N K, Cho Y M, Yoon D, Kim K S, Jeon J T, Lee J H. 2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livestock Science, 126 (1-3): 292-297
    Borycki A G, Emerson C P. 1997. Muscle determination: Another key player in myogenesis? Current Biology, 7 (10): R620-R623
    Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, Laible G. 2003. Cloned transgenic cattle producemilk with higher levels of beta-casein and kappa-casein. Nature Biotechnology, 21 (2): 157-162 Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. 2003. The formation of skeletal muscle: from somite to limb. Journal of Anatomy, 202 (1): 59-68
    Cai L, Taylor J F, Wing R A, Gallagher D S, Woo S S, Davis S K. 1995. Construction and characterization of a bovine bacterial artificial chromosome library. Genomics, 29 (2): 413-425
    Capon F, Allen M H, Ameen M, Burden A D, Tillman D, Barker J N, Trembath R C. 2004. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Human Molecular Genetics, 13 (20): 2361-2368
    Chakravarti A. 1999. Population genetics - making sense out of sequence. Nature Genetics, 21: 56-60 Chen Y, Lin G F, Slack J M W. 2006. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development, 133 (12): 2303-2313
    Chi N, Epstein J A. 2002. Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics, 18 (1): 41-47
    Chung E R, Kim W T. 2005. Association of SNP marker in IGF-1 and MYF5 candidate genes with growth traits in Korean cattle. Asian-Australasian Journal of Animal Sciences, 18 (8): 1061-1065
    Cieslak J, Nowacka-Woszuk J, Bartz M, Fijak-Nowak H, Grzes M, Szydiowski M, Switonski M. 2009. Association studies on the porcine RETN, UCP1, UCP3 and ADRB3 genes polymorphism with fatness traits. Meat Science, 83 (3): 551-554
    Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, Partridge T A, Morgan J E. 2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122 (2): 289-301
    Da Silva Carmo F M, Facioni Guimaraes S E, Lopes P S, Pires A V, Martins Guimaraes M F, Barbosa da Silva M V G, Schierholt A S, de Moraes e Silva K, de Miranda Gomide L A. 2005. Association of MYF5 gene allelic variants with production traits in pigs. Genetics and Molecular Biology, 28 (3): 363-369
    Damak S, Su H Y, Jay N P, Bullock D W. 1996. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Bio-Technology, 14 (2): 185-188
    De Gortari M J, Freking B A, Cuthbertson R P, Kappes S M, Keele J W, Stone R T, Leymaster K A, Dodds K G, Crawford A M, Beattie C W. 1998. A second-generation linkage map of the sheep genome. Mammalian Genome, 9 (3): 204-209
    Dietrich S, Schubert F R, Gruss P, Lumsden A. 1999. The role of the notochord for epaxial myotome formation in the mouse. Cellular and Molecular Biology, 45 (5): 601-616
    
    Gala R R, Singhakowinta A, Brennan M J. 1975. Studies on Prolactin in Human Serum, Urine and Milk. Hormone Research in Paediatrics, 6 (5-6): 310-320
    Grodzick.T, Anderson C, Sharp P A, Sambrook J. 1974. Conditional lethal mutants of adenovirus 2-simian virus-40 hybrids I host range mutants of Ad2+ND1. Journal of Virology, 13 (6): 1237-1244
    Haldar M, Karan G, Tvrdik P, Capecchi M R. 2008. Two Cell Lineages, myf5 and myf5-Independent, Participate in Mouse Skeletal Myogenesis. Developmental Cell, 14 (3): 437-445
    Ishido M, Uda M, Kasuga N, Masuhara M. 2009. The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy. Acta Physiologica, 195 (4): 459-469
    Kablar B, Krastel K, Ying C Y, Tapscott S J, Goldhamer D J, Rudnicki M A. 1999. Myogenic determination occurs independently in somites and limb buds. Developmental Biology, 206 (2): 219-231
    Kirkpatrick L J, Allouh M Z, Nightingale C N, Devon H G, Yablonka-Reuveni Z, Rosser B W C. 2008. Pax7 Shows Higher Satellite Cell Frequencies and Concentrations Within Intrafusal Fibers of Muscle Spindles. Journal of Histochemistry & Cytochemistry, 56 (9): 831-840
    Klosowska D, Kuryl J, Elminowska-Wenda G, Kapelanski W, Walasik K, Pierzchala M, Cieslak D, Bogucka J. 2004. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain x (Polish Large White x Polish Landrace) crosses. Czech Journal of Animal Science, 49 (3): 99-107
    Kuang S, Charge S B, Seale P, Huh M, Rudnicki M A. 2006. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. Journal of Cell Biology, 172 (1): 103-113
    Lai X, Lan X, Chen H, Wang X, Wang K, Wang M, Yu H, Zhao M. 2009. A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Molecular Biology Reports, 36 (7): 1677-1681
    Le Grand F, Rudnicki M A. 2007. Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology, 19 (6): 628-633
    Lindstrom M, Pedrosa-Domellof F, Thornell L E. 2010. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochemistry and Cell Biology, 134 (4): 371-385
    Mansouri A, Gruss P. 1998. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mechanisms of Development, 78 (1-2): 171-178
    McGrew M J, Sherman A, Ellard F M, Lillico S G, Gilhooley H J, Kingsman A J, Mitrophanous K A, Sang H. 2004. Efficient production of germline transgenic chickens using lentiviral vectors. Embo Reports, 5 (7): 728-733
    Mitchell. M G, Tabarini. D, Ziman. M. 2006. Single nucleotide polymorphisms associated with the intronic cis regulatory regions of Pax7: a potential linkage to increased tumorigenesis of rhabdomyosarcoma elucidated via in silio biology and pyrosequencing. Nature and Science, 4 (4): 6-20
    Morrison J I, Borg P, Simon A. 2010. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. Faseb Journal, 24 (3): 750-756
    Murre C, McCaw P S, Vaessin H, Caudy M, Jan L Y, Jan Y N, Cabrera C V, Buskin J N, Hauschka S D, Lassar A B, Weintraub H, Baltimore D. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell, 58 (3): 537-544
    Nicholas F W. 2009. Introduction to veterinary genetics. 3rd Edition. New York: Oxford University Press: 328
    Olguin H C, Olwin B B. 2004. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Developmental Biology, 275 (2): 375-388
    Oustanina S, Hause G, Braun T. 2004. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. Embo Journal, 23 (16): 3430-3439
    Parker M H, Seale P, Rudnicki M A. 2003. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nature Reviews Genetics, 4 (7): 497-507
    Perry R L S, Rudnicki M A. 2000. Molecular mechanisms regulating myogenic determination and differentiation. Frontiers in Bioscience, 5: D750-D767
    Plowman J E, Bryson W G, Jordan T W. 2000. Application of proteomics for determining protein markers for wool quality traits. Electrophoresis, 21 (9): 1899-1906
    Pownall M E, Gustafsson M K, Emerson C P. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annual Review of Cell and Developmental Biology, 18: 747-783
    Primmer C R, Raudsepp T, Chowdhary B P, Moller A R, Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Research, 7 (5): 471-482
    Pursel V G, Pinkert C A, Miller K F, Bolt D J, Campbell R G, Palmiter R D, Brinster R L, Hammer R E. 1989. Genetic-engineering of livestock. Science, 244 (4910): 1281-1288
    Robakowska-Hyzorek D, Oprzadek J, Zelazowska B, Olbromski R, Zwierzchowski L. 2010. Effect of the g.-723G -> T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle. Biochemical Genetics, 48 (5-6)
    Rohrer G A, Alexander L J, Keele J W, Smith T P, Beattie C W. 1994. A microsatellite linkage map of the porcine genome. Genetics, 136 (1): 231-245
    Roy K, de la Serna I L, Imbalzano A N. 2002. The myogenic basic helix-loop-helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. Journal of Biological Chemistry, 277 (37): 33818-33824
    Rudnicki M A, Schnegelsberg P N J, Stead R H, Braun T, Arnold H-H, Jaenisch R. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 75 (7): 1351-1359
    Seale P, Rudnicki M A. 2000. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Developmental Biology, 218 (2): 115-124
    Syagailo Y V, Okladnova O, Reimer E, Grassle M, Mossner R, Gattenloner S, Marx A, Meyer J, Lesch K P. 2002. Structural and functional characterization of the human PAX7 5 '-flanking regulatory region. Gene, 294 (1-2): 259-268
    Te Pas M F W, Harders F L, Soumillion A, Born L, Buist W, Meuwissen T H E. 1999. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mammalian Genome, 10 (2): 123-127
    Thompson J A, Lovicu F J, Ziman M. 2007. Pax7 and superior collicular polarity: insights from Pax6 (Sey) mutant mice. Experimental Brain Research, 178 (3): 316-325
    Urbanski P, Kapelanski W, Wyszynska-Koko J, Bocian M, Pierzchala M, Kuryl J. 2006. An association between the MyoD gene polymorphisms and carcass traits in two- and three-breed crossbred pigs. Animal Science Papers and Reports, 24 (4): 297-303
    Valdez M R, Richardson J A, Klein W H, Olson E N. 2000. Failure of Myf5 to support myogenic differentiation without Myogenin, MyoD, and MRF4. Developmental Biology, 219 (2): 287-298
    Wang J, Li Z J, Lan X Y, Hua L S, Huai Y T, Huang Y Z, Ma L, Zhao M, Jing Y J, Chen H, Wang J Q. 2010. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations withgrowth traits. Molecular Biology Reports, 37 (1): 571-577
    Wringe B F, Devlin R H, Ferguson M M, Moghadam H K, Sakhrani D, Danzmann R G. 2010. Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genetics, 11: 63
    Zaimmit P S, Golding J P, Nagata Y, Hudon V, Partridge T A, Beauchamp J R. 2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? Journal of Cell Biology, 166 (3): 347-357
    Zammit P S, Relaix F, Nagata Y, Ruiz A P, Collins C A, Partridge T A, Beauchamp J R. 2006. Pax7 and myogenic progression in skeletal muscle satellite cells. Journal of Cell Science, 119 (9): 1824-1832
    Zhang P J, Hayat M, Joyce C, Gonzalezvillasenor L I, Lin C M, Dunham R A, Chen T T, Powers D A. 1990. Gene-transfer, expression and inheritance of prsv-rainbow trout-gh cDNA in the common carp, cyprinus-carpio (linnaeus). Molecular Reproduction and Development, 25 (1): 3-13
    
    Zhang R F, Chen H, Lei C Z, Zhang C L, Lan X Y, Zhang Y D, Zhang H J, Bao B, Niu H, Wang X Z. 2007. Association between polymorphisms of MSTN and MYF5 genes and growth traits in three Chinese cattle breeds. Asian-Australasian Journal of Animal Sciences, 20: 1798-1804
    Zhang X, Studier F W. 1997. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. Journal of Molecular Biology, 269 (1): 10-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700