用户名: 密码: 验证码:
荧光酮类试剂—钼(VI)光谱探针测定蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细介绍了蛋白质定量分析的一些主要方法及其在生物化学、药物、食品、临床医学方面的应用概况,这些方法包括最早的浊度法、凯氏定氮法,和目前研究最多、应用最广、操作较为简便的分光光度法、荧光光度法,还有新进展起来的共振瑞利散射法、高效液相色谱法、毛细管电泳分析法。实验中选取以苯基荧光酮、水杨基荧光酮为母体、具有不同取代基的苯基荧光酮(PF)、邻硝基苯基荧光酮(o-NPF)、间硝基苯基荧光酮(m-NPF)、邻氯苯基荧光酮(o-CPF)、间氯苯基荧光酮(m-CPF)、对氯苯基荧光酮(p-CPF)、2′、4′-二氯苯基荧光酮(2′、4′-DCPF)、二溴羟基苯基荧光酮(DBH-PF)、水杨基荧光酮(SAF)、5′-硝基水杨基荧光酮(5′-NSF)、3′、5′二溴水杨基荧光酮(3′、5′-DBSF)等十一种三羟基荧光酮类试剂。三羟基荧光酮类试剂-钼(VI)配合物作为定量测定蛋白质的光谱探针,用分光光度法系统地研究了其与蛋白质分子的反应条件,如酸度、介质及用量、显色剂用量、反应时间、离子强度、干扰离子、最大结合数、摩尔吸光系数ε等,建立了一系列定量测定蛋白质的新方法;并首次将微乳液作为介质用于蛋白质测定中,起到了增溶增敏的作用,提高了体系的灵敏度。
     试验结果表明,三羟基荧光酮类试剂-钼(VI)配合物作为定量测定蛋白质的光谱探针具有很高的灵敏度。现有文献记载金属离子—染料结合光度法中灵敏度最高的体系是水杨基荧光酮-钼(VI)-BSA体系,其摩尔吸光系数为2.86×10~6Lmol~(-1)cm~(-1)。本论文中新建立的十一种体系中5′-NSF-Mo(VI)-BSA体系、o-NPF-Mo(VI)-BSA体系、DBH-PF-Mo(VI)-BSA体系摩尔吸光系数分别达到:8.71×10~6Lmol(-1)cm(-1)、9.06×10~6Lmol~(-1)cm~(-1)、15.30×10~6Lmol~(-1)cm~(-1),其摩尔吸光系数分别是水杨基荧光酮-钼(VI)-BSA体系的3.0、3.2、5.4倍。
     试验还表明,微乳液比胶束对体系有更好的增溶增敏作用。微乳液体系比胶束体系有较高的摩尔吸光系数,从而验证了微乳液比胶束对体系有更好的增敏作用。
     在实验基础上,选取与BSA反应灵敏度较高的5′-NSF-Mo(VI)、o-NPF-Mo(VI)、DBH-PF-Mo(VI)作为光谱探针,应用于人尿样、人血样、奶粉中蛋白质的分析测定上,取得了令人满意的结果。
     本论文的系统性、科学性和新颖性:
     1.系统性:
     本论文系统地研究了具有不同取代基的三羟基荧光酮类试剂-钼(VI)配合物光谱探针与蛋白质分子的反应条件(酸度、介质及用量、显色剂用量、反应时间、离子强度、干扰离子、最大结合数、摩尔吸光系数ε)及取代基、取代基位置对体系灵敏度的影响,为建立高灵敏度定量测定蛋白质的方法奠定了基础。
     2.科学性:
    
    摘要
     荧光酮类试剂一金属离子配合物光谱探针光度法测定蛋白质灵敏度高且抗干扰能力
    强,成为微量蛋白质检测的一种灵敏方法。本论文通过大量的科学实验建立了更灵敏的方
    法,灵敏度比文献记载的方法高5.4倍,应用于人尿样、人血样、奶粉中蛋白质的分析
    测定上,取得了令人满意的结果。
    3.新颖性:
     首次将微乳液作为介质用于蛋白质测定中,起到了增溶增敏的作用,提高了体系
    的灵敏度;论文中所用的大部分荧光酮类试剂都是首次用于蛋白质的测定,建立了一
    系列定量测定蛋白质的新方法。
In this paper, some major quantitative analysis methods of protein and their applications in the fields of biochemistry, medicine, food and clinical medicine are presented in details. These methods mainly include Turbidity Method and Kjeldahl, which are applied in the earlier period; Spetrophotometric Method and Flurospetrophotometric Method, which are presently studied and applied widely, and can be easy operated; and Esonance Rayleigh Scattering Method, High Performance Liquid Chromatographic Method, and Capilary Electrophoresis Method, which are newly developed. In our experiments, eleven tri-hydroxyl fluorone reagents with different substituents are selected on the basis of Phenyl Fluorone(PF) and salicylfluorone(SAF), such as Phenyfluorone(PF), o-Nitrophenylfluorone(o-NPF), Salicylfluorone and etc. The complex of Tri-hydroxyl Fluorone and Mo(VI) is used as a spectral probe for protein determination in quantity. The Spetrophotometric Analytical Methods is applied for the systematic study of the reaction
    conditions (such as acidity, media and dosage, dosage of developer, reaction time, ionic strength, interfering ion, and etc.) for Tri-hydroxyl Fluorone-Mo(VI) and protein, and a series of new methods with higher sensitivity for the determination of protein are established. Microemulsion, as the media, is firstly introduced to the determination of protein, which has increased the sensitivity of system with its sensitization and solubilization.
    The experimental results indicate that the complex of Tri-hydroxyl Fluorone and Mo(VI), as a spectral probe of protein determination, has very high sensitivity. At present, the relevant reference shows that SAF-Mo(VI)-BSA System has the highest sensitivity in the method of Metallic Ion-dye Spetrophotometry, with the molar absorptivity of 2.86 X 106Lmol-1cm-1. Among the eleven systems studied in this paper, 5'-NSF-Mo(VI)-BSA , o-NPF-Mo(VI)-BSA, DBH-PF-Mo(VI)-BSA have the highest sensitivity, with the molar absorptivities of 8.71 X 106mol-1cm-1, 9.06X106Lmol-1cm-1 and 1.53 X 107Lmol-1cm-1 respectively, which are 3.0, 3.2 and 5.4 times higher than the SAF-Mo(VI)-BSA method.
    The experiments also indicate that the microemulsion media has more solubilization and sensitization than micelle media. That the microemulsion media has higher molar absorptivity than that of micelle media proves that it has higher sensitization than micelle media.
    Based on the experiments, the 5'-NSF-Mo(VI), o-NPF-Mo(VI), DBH-PF-Mo(VI), as a
    
    
    spectral probe, have been successfully applied to the determination of protein in human urine, human blood sample and milk powder.
    This paper features in systematic, scientific, and creative methods.
    1. Systematic feature:
    This paper systematically studies the reaction conditions (such as acidity, media and dosage, dosage of developer, reaction time, ionic strength, interfering ion, and etc.) for Tri-hydroxyl Fluorone-Mo(VI) and protein and the effects of substituents on the sensitivity of system, and provides a foundation for quantitative determination of protein with the higher sensitivity.
    2. Scientific feature:
    The Spetrophotometric Method with Fluorone Reagent-Metallic Ion as spectral probe for the determination of protein becomes a sensitive way in the micro-determination of protein with higher sensitivity and stronger anti-interference. This paper establishes a more sensitive method based on the large amounts of experiments which has indicated 5.4 times higher sensitivity than that of the reference and been successfully applied to the determination of protein in human urine, human blood sample and milk powder.
    3. Creative feature:
    Microemulsion, as the media, is firstly introduced to the determination of protein, which has increased the sensitivity of system with its sensitization and solubilization. The most Fluorone reagents described in this paper are all firstly introduced for the determination of protein and formed a series of new methods.
引文
[1] 魏述众.生物化学,中国轻工业出版社,P39,1996.11
    [2] 林钧材.血液生物化学,人民卫生出版社,P41,1988
    [3] 陈鸿琪.蛋白质定量分析的进展.理化检验—化学分册,2000,36(7):333~335
    [4] 厉朝龙等.生物化学与分子生物学实验技术.浙江大学,1999,42~44
    [5] Webster, G.C., Biochem. Biophys. Acta., 1970,207:371
    [6] Gornall, A.G., et al., J. Biol. Chem., 1948, 177:751
    [7] Lowry O.H, Rosebrough N.J,Farr A.L, Randall R.J,J.Biol.Chem, 1951, 193:265
    [8] Smith P.K, Krohn R.I, Hermanson G.T, et al, Anal.Biochem, 1985,150:76
    [9] I.Sjoholm;B.Ekman;A.Kober, Mol.Pharmaccol.,1990,3 9:949-953
    [10] K.J.Fehske;W.E.Muller;U.Wollert,Biochem.Pharmacol., 1981,30:687-692
    [11] S.Iwakawa;H..Spahn;Benet LZ;Lin ET, Biochem.Pharmacol., 1990,39:949-953
    [12] K.Ikade;T.Kato;T.Tsukamoto,Chem.Pharm.Bull., 1971,19:2510-2517
    [13] Halfman;T.Nishida,Biochemistry, 1972,11:3493-3498
    [14] H.R.Mohammed;M.Toru;O.Tomako;I.Teruko, Biochem.Pharmacol., 1993,46:1733-1740
    [15] J.H.Tonsgard;S.C.Meredith,Biochem.J.,1991,267 :569-575
    [16] J.H.Tonsgard;S.A.Mendelson;S.C.Meredith., J. Clin.Invest, 1988,82:1567-1573
    [17] J.R.Brown,PshockleyLipidProteinlnteraction,(JostC,Griflith ,O.Lleds)Vol1.PP25-68 ,John Wiley and Sons.New York.
    [18] Stoschek C.H, Anal Biochem, 1987, 160:301
    [19] Moeremans M, Daneels G, Mey J.D, Anal Biochem, 1985,145:315
    [20] Brachen J.S, Klotz I.M, Am.J.Clin.Path, 1953,23:1055
    [21] 张保林,北京大学技术物理博士论文,1992
    [22] 杨曼曼;杨频;张立伟,科学通报,1994,39.31-35
    [23] 李进,王红等.某些变色酸偶氮类染料与蛋白质作用的分光光度研究.化学试剂.2000,22(3):129~131
    [24] 李娜,童沈阳等.偶氮类染料与蛋白质作用的分光光度研究.分析科学学报,1997,13(4):265~269
    [25] 张正奇,陈永湘等.用偶氮胂M分光光度法测定蛋白质.分析科学学报,2001,17(3):214~216
    [26] 白峰,赵海舰等.中华医学检验杂志,1994,17(5):
    [27] Bradford,M.M.,Anal.Biochem. 1976,72:248
    [28] 李娜,童沈阳.分析科学学报,1993,9:8
    [29] Soedjak H.S.,Anal.Biochem., 1994,220:142
    [30] Fujita, Y., Mori, I., Kitano,S., Bunseki Kagaku, 1983, 32(12)E379(Eng.)
    [31] 陈鸿琪.二溴羟基苯基荧光酮—钼(Ⅵ)—蛋白质配合体系形成机理的研究.佛山科学技术学院学报(自然科学版),1999,17(4):23~27
    [32] 俞英,黄发德.牛血清白蛋白与偶氮胂Ⅲ—镱(Ⅲ)结合反应及其应用.分析化学,2001,299(10):1205~1208
    [33] Hu Qiuluan,Zhao Bangtun. The study on the determination of protein based on the interation between
    
    protein and complex of Cu(Ⅱ)-Arsenazo K. chemistrymag ,2001,3(6):23~29
    [34] 赵凤林,李克安.Cu(Ⅱ)-氯磺酚S配合物与蛋白质反应及分析应用的研究.北京大学学报,1999,35(6):734~736
    [35] 汤桂那,魏巍.4,5-二溴苯基荧光酮一钛(Ⅳ)-Tween 80分光光度法测定蛋白质.分析化学,1993,21(7),831~833
    [36] 肖国荣,黄选忠.蛋白质-Mo(Ⅵ)邻苯二酚紫-OP显色体系的研究及应用.分析实验室,2001,20(3):63~65
    [37] 陈鸿琪.二溴羟基苯基荧光酮-Mo(Ⅵ)蛋白质光谱探针研究.西北师范大学学报,2000,36(3):53~57
    [38] Stryer L. Science,1969,162:526~533
    [39] Hartman B.K, Undenfriend S, Anal Biochem, 1969,30:391
    [40] 中国科学院生物物理研究所六室溶液构象组等,中国科学,1976,437
    [41] Austin,R.H., et al., Proc.Nail.Acad.Sci.USA, 1987,84:1541
    [42] Siepak,J.,Anal.Chim.Acta., 1989,218(1): 143
    [43] Siepak,J., Chem.Anal.(Warsaw), 1991,36(1):7
    [44] 王守业,余华明等.荧光探针在蛋白质研究中的应用.大学化学,1998,13(3):5~10
    [45] Chistoponlos, T. K., et al.,Clin. Chem., 1990,36(8): 1749
    [46] Li,J., et al .,Proceedings of First Changchun Intl. Symposium on Anal. Chem. 1986, 58:1237A
    [47] 徐永源,赵永刚等.化学通报,1992,6:38
    [48] 张海容,李琳等.磷光探针技术—蛋白质研究的新方法.生命的化学,2001,21(3):231~233
    [49] 张海容等.分析化学的成就与挑战.西南师范大学出版社,2000,1398~1399
    [50] 刘长松等.分析化学新进展.山西科技出版社,1997,55
    [51] 陈鸿琪等.荧光染料啶红测定蛋白质的生物探针.理化检验—化学分册,2001,37(2):53~55
    [52] 覃文武,包永军等.茜素红S荧光熄灭法测定蛋白质。分析化学,2000,28(4):526
    [53] 陈小萍,郑玉聪等.荧光分光光度法测定保健品中的微量蛋白质.卫生研究,1996,25(1):62~63
    [54] 童裳伦,朱岩等.稀土离子荧光探针对肾上腺素的测定.分析化学,2000,28(3):293~295
    [55] Qin Wenwu, Bao Yongjun.et Fluorescence Quenching Method for the determination of Protein by Alizarin. Journal of Lanzhou University, 2000, 36(3): 105~109
    [56] Ma C Q, Li K A, Tong S Y. Selective spectrophotometric determination of human serum albumin with tetraiodo phenol sulfonphthalein. Anal Lett, 1997,30(4): 739
    [57] Ma C Q, Li K A, Tong S Y. Enhancement of rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique. Analyst, 1997, 122:361
    [58] Ma C Q, Li K A, Tong S Y. Microdetermination of proteins by resonance light scattering spectroscopy with tetraiodo phenol sulfonphthalein. Fresenius J Anal Chem, 1997, 357:915
    [59] Pinnell A.E, Northam B E. New automated dye-bing method for serum albumin determination with bromcresol purple. Clin Chem, 1978,24:80
    [60] 杨睿,刘绍璞.某些分子光谱分析法测定蛋白质的进展.分析化学,2001,29(2):232~241
    [61] Anglister J, Steinberg I Z.J.Chem. Phys., 1981,74(2): 786~791
    [62] 杨睿,刘绍璞等.曲利本蓝-蛋白质体系的共振瑞利散射及其分析应用.西南师范大学学报,1999,24(2):179~182
    [63] 龙秀芬,刘绍璞.磷锑钼蓝共振瑞利散射法测定蛋白质.西南师范大学学报,2000,25(2):155~159
    [64] 范莉,刘绍璞等.某些变色双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用.分析化学,2002,30(1):81~85
    [65] 王晓霞,沈含熙等.菜红-蛋白质体系的共振光散射光谱研究及其分析应用.分析化学,2000,28(11):
    
    1388~1390
    [66] Bietz J A. J. chromatography. 225:219~238
    [67] Bean S.R. et al. Cereal chem. 74(6): 758~765
    [68] Ciaffi M. et al. Cereal chem. 76(2): 299~302
    [69] 周雅琳,陈宗道等.高效液相色谱法在蛋白质分析中的应用.粮食与油脂,2001,11:37~38
    [70] 周雅琳,陈宗道等.高效液相色谱法在蛋白质分析中的应用.粮食与油脂,2001,11:37~38
    [71] 张彤,付进.毛细管电泳在蛋白质分离分析中的应用.山东化工,1998,34~36
    [72] Pritchett T. Poster, HPLC'94, San Diego,USA, 1994
    [73] Yowell G G,Fazio S D,Vivilecchia R V.J Chromatogr,1993,652,215
    [74] 李干佑,杨伟华,醇对微乳液形成的影响,石油学报,1983,4(4):63
    [75] S Friberg et al.,in "Encyclopedia of Emulsion Technology",Vol. 1, Basic Theory, Edited by P. Becher, Chapter 4, Marcel Dekker, New York and Basel (1984)
    [76] J. H Schulman, W. Stoeckenius and L. M. Prince, J. Phys. Chem., 1959, 63:1677
    [77] 郭荣,朱霞石,微乳液介质中硫氰酸铁(Ⅲ)分光光度测定,高等学校化学学报,1987,8(6):509
    [78] 朱霞石,郭荣,O/W型微乳液的增敏作用,I.Mn(Ⅱ)-PAN的吸光光度测定,理化检验-化学分册,1991,27(1):34
    [79] 朱霞石,郭荣,十二烷基硫酸钠/正丁醇/正庚烷/水微乳液的增敏作用,Ⅱ..Zn(Ⅱ)-PAN分光光度分析,分析化学,1992,20(4):452
    [80] 朱霞石,郭荣,非离子型微乳液对铜-铬天青S分光光度分析的增敏作用,分析化学,1993,21(11):1267
    [81] 朱霞石,郭荣,阳离子型微乳液对镉-4(2-吡啶偶氮)间苯二酚的增敏作用,分析化学,1994,22(7):692
    [82] 朱霞石,郭荣,O/W复配微乳液对Fe(Ⅲ)-BPHA的增敏作用及其机理,化学学报,1995,53(7):716
    [83] 朱霞石,郭荣,O/W微乳液增敏作用机理探讨,分析化学,1995,23(9):989
    [84] 魏琴,杜斌等,微乳液介质-PAN光度法测定汽油中环烷酸铁,分析化学,1994,22(9):924
    [85] 魏琴,杜斌等,微乳液增敏PAN光度法测定汽油中痕量抗静电剂环烷酸钻,分析化学,1994,22(11):1132
    [86] Wei Q,Du B.Talanta,1998,45:957
    [87] 朱霞石,郭荣,戚文彬等.微乳液增溶机理探讨—显色剂在微乳液中的分配系数.分析化学,1995,23(9):989
    [88] Ezio Pelizzetti, Edmondo Pramauro. Analytical application of organized molecular asse mblies. Analytica Chimica Acta, 1985, 169:1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700