用户名: 密码: 验证码:
利用电子废弃物中多组分共混高分子材料制备改性沥青的技术工艺与设备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子废弃物对环境危害很大,不能随意抛弃,目前对电子废弃物回收处理主要目的是回收其中的高值品——金属和易回收的材料(如玻璃),而对其中的多组分共混高分子材料因其回收价值低、回收处理难度大、回收工艺流程长、投入高、投资回收期长等而形成技术瓶颈,在电子废弃物拆解厂到处堆积如山,造成白色污染。为了完善电子废弃物处理工艺,提高废弃资源综合回收效率,必须为电子废弃物中的废弃高分子材料寻找归宿,开发出电子废弃物中多组分共混高分子材料综合利用技术、工艺和设备,减少资源浪费,防止环境污染。
     本文研究了电子废弃物资源化处理技术,提出把电子废弃物中的多组分共混高分子材料不分类、不清洗、磨碎后与基质沥青在一定条件下熔融共混制成改性沥青的处理技术。研究了用电子废弃物中多组分共混废弃高分子材料生产改性沥青(塑料沥青)的配方、设备及产品性能,具体内容如下:
     (1)研究了不同种类电子废弃物的材料构成,不同电子废弃物的拆解处理方式,发现国内外学者及电子废弃物收购处理单位重视电子废弃物中的高值品(如金属)、易回收物(如玻璃)的回收,而对回收价值低、回收难度大的多组分共混高分子材料回收研究报道较少,几乎没有处理报道,而电子废弃物中的高分子材料占了总量的40%左右,如果不妥善处理,其对环境的危害、对资源的浪费是十分显著的。
     (2)研究了不同电子废弃物中高分子共混高分子材料的使用情况,包含使用的种类、含量,及其相应的物理化学特性,分析国内外的处理技术工艺。
     (3)系统研究了电子废弃物中常用的6中高分子材料废弃后的常用处理方法——物理回收、化学分解和焚烧。物理回收要单一种类的高分子材料,回收办法是造粒后添加到新料中制成较低档次的塑料制品出售,要么制成木塑等建材,这种制品老化更快;化学回收也是需要分类,然后分解成小分子,工艺复杂、投入高;焚烧的二次污染太大,这些方式均不适合处理电子废弃物中多组分共混高分子材料。
     (4)研究了电子废弃物中的高分子共混高分子材料的分离、提取技术工艺。电子废弃物中的高分子共混高分子材料往往是与金属粘合在一起的,需要进行分离。主要通过对电子废弃物的拆解、筛分、形状分选、磁选、电选、重力分选和涡电流分选,提取高分子材料。
     (5)研究了电子废弃物中的高分子共混高分子材料生产沥青的助剂选用,不同高分子材料对助剂的敏感性不一样,主要对增塑剂、引发剂、分散剂及稳定剂进行了实验选择。分别实验了季戊四醇、过氧化钠、过硫酸钾、邻苯二甲酸二丁酯、聚丙烯醇、四氢呋喃、二氯乙烷、硫磺、甲苯、丙烯酸对PS、ABS、PP、PU、PC、PF等材料的影响,最后选定用二氯乙烷、甲苯和过硫酸钾。
     (6)研究了利用电子废弃物中高分子共混高分子材料生产改性沥清的技术工艺配方。通过多次实验,提出液化技术,将废旧塑料(不清洗、不分类如PE、PP、PVC、CR、NR等共混高分子材料)在120~160℃,压力为一个标准大气压、氦气环境下液化;然后按照10:1~12:1的比例混合沥青与废旧共混高分子材料,并使之充分融合,生成沥青酚,得到高性能的共混高分子材料改性沥青。
     (7)研究了用电子废弃物中的多组分共混高分子材料制成的改性沥青的各项主要性能。分析了相容性,计算了不同参入比下的针入度(即黏稠度)、延度、软化点及稳定性。
     (8)设计了废旧高分子共混高分子材料改性沥青生产设备,根据废旧高分子材料改性沥青技术工艺产生设计改性沥青反应釜,反应釜采用PLC程序控制器,人机界面操作,自动恒压、恒温、高压、低压保护、漏电保护、过热、过冷保护、电导越限控制等自动处理。
Electronic waste does harm to our environment, so it can not be abandoned. At present, the main purpose of the E-waste recycling is to reclaim the high value products--metal and recycled materials (such as glass). The recycling of the multi-component blend polymer material in the E-wastes has formed a technical bottleneck because of its low recovery value, its high difficult processing and recycling, its long recovery process, and its high investment and long investment recovery period. Thus the E-waste piles up around like a mountain hand in E-waste dismantling plant, it has caused white pollution. In order to improve the E-waste treatment process and improve the efficiency of the waste resource comprehensive recovery, we must find a family for the E-waste polymer materials and develop the comprehensive utilization technology, process and equipment for the multi-component blend polymer material in the E-wastes. At last, it will reduce the waste of resources and prevent from the environmental pollution.
     The author has studied the treatment technology which the multi-component blend polymer wastes in the E-wastes became harmless, resource and has studied the formulations, equipment and product performance which the multi-component blend polymer wastes in the E-wastes were produced to become the modified asphalt (plastic asphalt). Specific contents are as follows:
     The author has studied the material composition of the different E-wastes and the dismantling processing methods of the different E-wastes. At the same time, the author has found that the domestic and foreign scholars and E-waste acquisition processing department all pay attention to the recycling of high value products (such as metal), easy recycling material (such as glass) in the E-wastes. While the reports of the recycling of the multi-component blend polymer wastes in the E-wastes are few, almost no treatment reports because of its low recycling value and difficult recycling. The polymer materials in the E-wastes account for about40%of the total. If we could not handle them properly, it will be very significant that they do harm to the environment and it is waste for resources.
     The author has studied the use of the blend polymer material in the different E-waste, including its type, content, and physical and chemical properties, and has analyzed the domestic and international processing technology.
     The author has studied the common processing method after the six polymeric material abandoned in the E-wastes. That is the physical recycling, incineration and chemical decomposition. A single type of polymer materials may do the Physical recycling. The recycling solution is that after the polymer materials added to the new material through granulation, the plastic products made into lower grades are for sale. They can also make into the wood and other building materials. This kind of products is aging faster. Chemical recycling is that the polymer materials needs to be classified, and then they are decomposed into small molecules. This kind of method has the characteristic of complex process, high investment. Incineration method is too big for the environment pollution again. All these methods are not suitable for processing the multi-component blend polymer materials in the E-wastes.
     The author has studied the separation, extraction technology of the multi-component blend polymer materials in the E-wastes. The multi-component blend polymer material in the E-wastes is often bonded with the metal together, so they need to be separated. We extracted the polymer materials through dismantling, screening, separation, magnetic separation, electrostatic separation shape, gravity separation and eddy current separation for the E-wastes.
     The author has studied the auxiliary selection of the polymer blend materials made into asphalt in the E-waste. Different polymer materials are not the same to the auxiliary sensitivity. We selected mainly the plasticizing agent, initiator, dispersing agent and stabilizer in the experiment. We also did the experiment that pentaerythritol, respectively, potassium persulfate, sodium peroxide dibutyl phthalate, polypropylene glycol, tetrahydrofuran, two chlorine ethane, sulphur toluene, acrylic affected on PS, ABS, PP, PU, PC, PF and other materials. At last, we selected with two chlorine ethane, toluene and potassium sulfate.
     The author has studied the technology formula of the polymer blend materials being produced to the modified asphalt in the E-wastes. Through many experiments, the author put forward the liquefaction technology. The waste plastic (not cleaned, not classification such as PE, PP, PVC, CR, NR and other polymer blend materials) was liquefied at120-160℃, a standard atmosphere pressure, helium environment, and then the waste polymer blend material was mixed with the asphalt according to the radio of10:1-12:1, and was integrated fully with the asphalt and came into phenol. At last we got the high performance polymer blend modified asphalt.
     The author has studied the main properties of the modified asphalt which is made by multi-component blend polymer materials in the E-wastes. At the same time, the author analyzed the compatibility between them, and calculated the needle penetration (i.e., viscosity), ductility, softening point and stability under the different incorporation ratio.
     The author has designed the production equipment of waste polymer blend polymer made into modified asphalt. We designed the modified asphalt reactor according to the process of the waste polymer modified asphalt technology. The reactor used the PLC programmable controller, man-machine interface operation, automatic constant pressure, constant temperature, high pressure, low pressure protection, leakage protection, overheat, cold protection, conductance and more control and other automatic processing.
引文
[1]国家环境保护总局.电子废物污染环境防治管理办法[z].2007.
    [2]刘小丽,杨建新,王如松.中国主要电子废物产生量估算[J].中国人口.资源与环境,2005,15(5):113—117.
    [3]赖芸.贵屿故事——记一电子废物拆解地[J].资源与人居环境,2006,(07S):44-49.
    [4]高丽峰,赵丹丹.基于循环经济理念下的电子废弃物再利用[J].中国环保产业,2004(12):20-22.
    [5]王春香.我国电子垃圾回收处理的困境及出路[J].大连海事大学学报:社会科学版,2006,5(1):74-77.
    [6]Anna LC Zong Wei and W.:分钟 g Hung. Environmental conta 分钟 ation from electronic waste recycling at Gui yu, southeast China[J]. Journal of Material Cycles and Waste Management,2006, V8(1):21-33.
    [7]Deng W. J. P. K. K. Louie, W. K. Liu, et al. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM25 at an electronic waste recycling site in southeast China[J]. Atmospheric Environment,2006,40(361:6945-6955.
    [8]Gaofeng Z. X. Ying, H. Guanggen, et al. Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste[J]. Environmental Geochemistry and Health,2006, V28(4):341-351.
    [9]毛玉如,李兴.电子废弃物现状与回收处理探讨[J].再生资源研究,2004(2):11-14.
    [10]黄震,余静.2005.长江芜湖段水体中溶解氧现状及其影响因素[J]安徽师范大学学报(自然科学版),28:348-351
    [11]罗勇,余晓华,杨中艺,袁剑刚,麦碧娴.2008b.电子废物不当处置的重金属污染及其环境风险评价.I.电子废物焚烧迹地的重金属污染[J].生态毒理学报,3:34-41
    [12]孙丽娜,金成洙.2002.卧龙泉河流域水环境地球化学[J].地球化学,31:97-103
    [13]张新华,冉东辉.2007.粤北地区地表水中重金属危害及防治对策[J]珠江现代建设,(1):14_16,3
    [14]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保.北京:化学工业出版社,2003
    [15]周仲凡.电子产品污染源头的控制与回收[J].世界环境,2004(4):34-35.
    [16]查建宁.电子废弃物的环境污染及防治对策[J].污染防治技术,2002,15(3):35-37
    [17]Houwelingen J, Thomas A G, Dalmijin W L.Recycling non-ferro kunstst of combinaties. Senter IOP recycling projiect in Dutch,TU Delft, The Netherlands 1996
    [18]Deckers J, Ram A A P,Stevels A L N.Recyclability of high volume electronics-de-sign for non-disassembly. Proceedings Care Version, Vienna,1998
    [19]AVR Chemie. Personal communication with R. Sasse. AVR Chemie,2001
    [20]Tweel, Van Den M Graduation report dynamic mass balances of nickel,gold and PGMs.TU Delft Geosciences Department,2003
    [21]Verhoef E V, Dijkema P J, Reuter M A. Knowledge,waste management and metal ecology.
    [22]Mirec. Personal communication with S. Smets-Brenters. Eindhoven, The Netherlands,2002
    [23]殷琨,彭晓成,周培国等.电子废弃物的污染与处理技术[J].中国资源综合利用,2006,24(2):25-28.
    [24]杨慧芬,张强.固体废物资源化.北京:化学工业出版社.2004
    [25]何亚群等.电子废弃物资源化处理,北京:化学工业出版社,2006.7
    [26]王景伟,施德汉,陈须连.美国电子废弃物资源化产业现状分析[J].上海环境科学,2003,(12).
    [27]吴峰.国外电子废弃物的环境管理技术初探[J]1环境管理,2001,6(3):24-26
    [28]陈燕平.日本固体废物管理与资源化技术.北京:化学工业出版社,2007.8
    [29]刘育,温雪峰,赵跃民.电子废弃物资源化处理现状及研究.能源环境保护,2004,18(5):19-21。43
    [30]童听.电子废弃物资源化处理现状及发展.科技导报,2004。170:59-61
    [31]沈洪.大有发展前途的电脑垃圾[J].中国物资再生,1999,(4).
    [32]奚旦立.环境与可持续发展[M].北京:高等教育出版社.1999.
    [33]中国信息产业部.中国电子信息产业统计年鉴(2006)[M].北京:中国年鉴出版社,2007.
    [34]李可.电子垃圾:一边是危机,一边是商机[J].中国贸易报.20070412.
    [35]夏苏湘,金成舟.浅议电子废弃物的再生利用[J].上海城市管理职业技术学院学报,2004,13(2).
    [36]李金惠.电子废物处理技术[M].北京:中国环境科学出版社.2006.
    [37]胡天觉.曾光明.袁兴中.从家用电器废物中回收贵金属[J]1中国资源综合利用,2001(07):12-15.
    [38]吴峰.电子废弃物的环境管理与处理处置技术初探:国外现状综述[J].中国环保产业,2001(1):34-35.
    [39]叶晓江.电子废弃物回收利用良方[J].环境导报,1997(4):33
    [40]SUM ELAINE Y L. Recovery of Metals from Electronic Scrap[J]. JOM,1991,43(4): 53-61,1047-4 838.
    [41]GLOE K. MUEHL P, KNOTHE M. Recovery of Precious Metals from Electronic Scrap, in Particular from Waste Products of the Thick-1ayer Technique[J]. Hydromatallurgy,1990(25): 99-110.
    [42]沈洪.大有发展前途的电脑垃圾[J].中国物资再生,1999(4):30.
    [43]田晖.国外倡导企业通过设计提高电器产品的再生性家电处置.1999(6):31-34.
    [44]吴自强,许士洪,刘志宏,等.废旧塑料的综合利用,现代化工,2001,21(2):9-12
    [45]包永忠,朱慧芳.废塑料的回收利用.化工环保,2000,20(3):11-14
    [46]陈占勋,废旧高分子材料资源及综合利用.北京:化学工业出版社,1997
    [47]冯英晖,陈福林,周彦豪,等.废尼龙短纤维增强废PP/胶粉复合材料的性能研究.橡胶工业,1998,45(9):520-523
    [48]Park H D Cho W J, Ha CS, et al. Synthesis and Reaction Compounds of Silicon. Polym Recyel,1996,2(4):277-282
    [49]The XXII international mineral processing congress, Cape Town,South A frica,2003
    [50]廖兵,黄玉惠,丛广民,等.废旧塑料回收及其综合利用,内蒙古石油化工,1999,25(1):25-26
    [51]张向和,蒋良伟,汪志勇,等.废弃塑料生产涂料的工艺研究.环境工程,1998,16(1):44-46
    [52]张松滨,李万海,王红.废塑料生产胶粘剂的研究环境保护科学,1999,25(5):40-41
    [53]郑天亮,林莉萍,刘耀卿.用废聚苯乙烯塑料研制涂料新技术新工艺,2001,(3):41-42
    [54]党民团.“白色污染”治理进展.渭南师专学报,1999,14(2):62-64
    [55]胡其非,吴鸿强.废旧塑料综合利用技术及应用前景环境保护,1998(9):29-30
    [56]王子元.废旧塑料综合利用探讨.中国物资再生.1999,(4):7-8
    [57]周全法.尚通明.废电脑及配件与材料的回收利用.北京:化学工业出版社,2003.8
    [58]王梅.薛锐.废旧电脑的回收处理[J]1环境,2002,
    [59]李飞.电子废弃物处理技术与生命周期评价.[学位论文].广州:华南理工大学,2004
    [60]李勇.废旧冰箱塑料回收再生利用技术研究[J],再生资源研究,2006(3):27-30
    [61]林逢春,王钰.中国废旧电脑产生量预测及对策研究[J].上海环境科学,2003,(22).
    [62]牛东杰等.电子废弃物的处理处置与资源化.北京:冶金工业出版社,2007.6
    [63]李金惠,温雪峰,刘彤宙.等.电子废物处理处置政策、技术及设施.家电科技.2005,
    [64]白庆中,王晖,韩洁,等.世界废弃印刷电路板的机械处理现状[J].环境污染治理技术与设备,2001,2(01):84.89
    [65]DHARA S. Reclamation of Precious Metals from Microelectronic Components[J]. Hybrid Circuit Technology.1991,8(9):747-1599
    [66]马场研二.环境保护与赢利并存的废家用电器.电脑的循环利用事业[R].第七届中国国际高新技术成果交易会.2005.10
    [67]冯绍华等.废旧聚氨酯的醇解与利用.现代塑料加工应用,2004,16(1)15-17
    [68]王素华.废旧塑料的鉴别处理和利用.内蒙石油化工,2005,(9):10-11
    [69]张玉龙主编.废旧塑料回收制备与配方.北京:化学工业出版社,2008.2
    [70]席国喜,梁蕊,汤清虎,等.废聚苯乙烯裂解催化剂的筛选及工艺条件的优化.环境科学研究,1999,12(3):60-61
    [71]杨庆贤.木/塑复合材料性能与相关素的研究.福建林学院学报,1997,17(3):273-277
    [72]黄立本等.ABS树脂及其应用[M].北京:化学工业出版社,2004
    [73]冯孝中,李亚东.高分子材料[M].哈尔滨:哈尔滨工业大学出版社,2007
    [74]郭峰.聚丙烯用助剂的研究进展[J],现代塑料加工应用,2003,15(1):56-59
    [75]Donnchadh Casey, Ciaran McNally. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources. Conservation and Recycling,2008(52),1167-1174
    [76]李忠明,杨鸣波,冯建民,等.秸秆/聚丙烯复合材料.塑料工业,2000,28(4):9-11
    [77]刘廷栋等.回收高分子材料的工艺与配方[M].北京:化学工业出版社,2002.
    [78]刘英俊.废旧塑料的利用改性.塑料,2002,31(4):8-14
    [79]刘均科等.塑料废弃物的回收与利用技术.北京:中国石化出版社,2001
    [80]周凤华.塑料回收利用,北京:化学工业出版社,2005.4
    [81]陈乐怡.合成树脂及塑料速查手册,北京:机械工业出版社,2006.4
    [82]黄发荣等.高分子材料的循环利用.北京:化学工业出版社,2000
    [83]陈燕平主编.日本固体废物管理与资源化技术.北京:化学工业出版社,2007.8
    [84]张志梅,刘志刚,陈庆琰,等.利用废旧塑料和粉煤灰制建筑用瓦.化工环保,2000, 20(1):25-2
    [85]Widmer Rolf, Oswald-Krapf Heidi, Sinha-Khetriwla Deepali,etal.Global Perspectives on E-waste Environmental Impact[J]. Assessment Review,2005,25(4):436-458
    [86]汤子强,赵金安,王志忠,等.低温煤焦油与废旧塑料共熔油化的研究.燃料化学学报,1999,27(5):403-407
    [87]胡圣飞,严海标,郦华兴,等.废弃PE/EVA/沥青共混作铺路材料.石油技术与应用,2000,18(1):58-60
    [88]方长青.包装废PE改性沥青的研究[D]:[硕士论文].西安:西安理工大学,2005
    [89]刘克、杨锡武.PE改性沥青的几个问题.胶体与共混高分子材料,2008-9,26(3)
    [90]Burak Sengoz. Morphology and image analysis of polymer modified bitumen. Construction and Building materials,2009(23),1986-1992
    [91]M.Garcia-Morales,P.Partal. Effect of waste polymer addition on the rheology of modified bitumen. science direct,2005-9,936-943
    [92]周琨等.废旧PE的再生处理技术.再生资源研究,2005,(6):12-17
    [93]张登良.改性沥青机理及应用[J].石油沥青,2003,17(2):36-37.
    [94]Burak Sengoz, Giray Isikyakar. Analysis of styrene-butadiene polymer modified bitumen using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials, 2008(150),424-432
    [95]李双瑞,林青,董声雄.SBS改性沥青机理研究进展[J],高分子通报,2003(5):14-19
    [96]杨林江.改性沥青及其乳化技术[M].北京:人民交通出版社,2004
    [97]石洪波,王洪国.废橡胶粉改性沥青配方与工艺条件研究[J].石化技术与应用,2005,23(4):28-30
    [98]曹祖光,蔡明,严军等.SBS改性沥青储存稳定性影响因素的研究.中国市政工程,2006,4:89
    [99]冯亚青,王利军等.助剂化学及工艺学[M].北京:化学工业出版社,1997
    [100]王锡通.共混高分子材料改性沥青性能评价方法综述.石油沥青,2007,21(3):8-12
    [101]王旭东等.橡胶沥青及混凝土应用成套技术.北京:人民交通出版社,2008.3
    [102]李福普,沈金安.共混高分子材料改性沥青的配伍性与相容性[J],公路交通科技,1999,16(3):1-5
    [103]杨军.共混高分子材料改性沥青[M].北京:化学工业出版社,2006
    [104]Mike Gribble.Dow Polyurethanes,Horgen, Switzerland. Polyeurethanes[J]. Modern Plastics World Encyclopedia,2000:A-313
    [105]M.Garcia-Morales,P.Partal,F.J.Navarro, C.Gallegos. Effect of waste polymer addition on the rheology of modified bitumen. Fuel,2006(6):936-943
    [106]交通部公路科学研究所.JTG F40-2004公路沥青路面施工技术规范[S].北京:人民交通出版社,2004
    [107]杨林江.改性沥青及其乳化技术[M].北京:人民交通出版社,2004
    [108]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999
    [109]李秀君,原健安等.沥青针人度与流变特性关系[J],长安大学学报(自然科学版),2003,23(2):17-21.
    [110]D J Harmon.Third International Seminer on Gel Permeation Chromatography.Geneva: Wasters Associates,1966
    [111]J F Schabron,D Z Bradfield.J.of Applied Polymer Sci.,1981,26:2479
    [112]Park H D, Park K O, Cho W J, et al. Reactions of Silanes with Aliphatic Unsaturated Compounds. Polym Recyel,1996,2(4):283-289
    [113]T R Crompot.Analysis of Polymers:An Introduction.Oxford:Per gamon Press,1989
    [114]E Ruckenstein,C O Workers.J.Colloid Interface Science,1981,79:159; 1981,82:439;1982,85:323
    [115]B G Belenkii, L Z Vilenchik. Moden Liquid Chromatography of Macromolecules. Asterdam:Elsevier,1983
    [116]Roland Bodmeier,Ornlaksana Paerataknl.J.of Liquid Chromatogr.,1991,14(2)
    [117]A P Metz,F L Morse,T W Theyson.J.of Chromatogr.,1989,479:107
    [118]K Sreenivasan. J.of Liquid Chromatogr.,1990,13(3):599
    [119]Franco Sevini,Brumo Maroutol.J.of Chromatogr.,1983,260:507
    [120]Waters Associates.Know More Your Polymer.Milford:Millipore,1981
    [121]S Podzimek.Chromatographia,1992,33:377
    [122]O Busto,J C Dlucha,F Borrull.Chromatographia,1991,32(9/10)
    [123]P Simon,L Lemacon.Anal.Chem.,1987,59:480
    [124]Y Kato,S Kido,M Watanabe et al.J.Appl.Polym.Sci.,1975,19(2):629
    [125]R V Vivilenchia,B G Lightbody,N Z Thimot et al.J.Chromatogr.Sci.,1977,159(9)
    [126]M R Smish. Supercritical Fluid Chromatography.England:Royal Society of Chemisty,1988
    [127]J Haslam,H A Willis. Identification and Analysis of Plastics.London:Heyden & Son,1980
    [128]T R Crompton.Practical Polymer Analysis.New York,London:Plenum Press,1993
    [129]James F.Ross and John L.Mac Adams.Polyethylene(Commercial)[J].Polymeric Material Encyclopedia,1996:5953
    [130]Robert J.Bauman.Principal[G].Polyolefins-Review of market & Technology Development ChemSystems/IBM2000年会资料:paper No11
    [131]James E.Maass.Polyester Unsatyrated[J].Modern Plastics World Encyclopedia,2000:A-308
    [132]Gungor Gunduz.Unsaturated Polyesters (overview) [J].Polymeric Material Encycylopedia,1996:8469
    [133]Martin Wusik,Structural Composite Marketing.Ciba Speciality Chemicals,Epoxy[J].Modern Plastics World Encyclopedia,2000:A297
    [134]Partrick Waitkus.Tech.Sale,Plastics Engineering Co.[J].Modern Plastics World Encyclopedia,2000:A305
    [135]Kalyan Sehanobish.H.T.Pham,and C.P.Bosnyak.The Dow Chemical Company [J].Polycarbonate (Overview).Polymeric Materials Encyclopedia, Editor-in-Chief Josepc Salamone,Volume8:5697-5708
    [136]Hoang t.Pham,Sarat Munjal,Clive P.Bosnyak.Polycarbonates[M].Handbook of thermoplastics,edited by OLAGOKA OLABISI:609-640
    [137]R.W.M.Van Berkel,Edwina.Polybutylene Terephthalate.A.Van Hartingsveldt,and C.L.Van der Sluijs[M].Handbook of Thermoplastics,New YORK.;Marcel Dekker,Inc.,1997:465
    [138]Chemical Week Editorial Staff.Fortron Doubles PPS Production in the U.S.[J].Chemical Week,2005-8-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700