用户名: 密码: 验证码:
斑茅种质资源遗传多样性及生物质能潜力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑茅(Erianthus arundinaceum (Retz) Jeswiet.)又名大密、笆茅、大巴茅,是蔗茅属多年生、密丛高大草本,秆直立具有分蘖力强、抗旱性强、根系发达等特性,是优良的固土护坡植物,还可以作为编席、造纸的原材料及燃料。斑茅在甘蔗育种中有较为特殊的育种价值和应用潜力,近年来国内外陆续开展了相关研究,而斑茅作为能源植物的开发利用还未见研究。在我国南方大面积的荒山荒坡、盐碱地、沿海滩涂地上种植斑茅作为能源草开发,可以缓解能源供给紧张,并且对改善我国生态环境等也具有重要意义,还不会出现与传统农业和畜牧业争地的情况。
     本文应用SRAP分子标记对来自四川岷江流域、青衣江流域和沱江流域的12个野生斑茅居群的遗传多样性进行分析,了解其遗传多样性水平及分化情况;对野生斑茅的物候期、叶片、茎杆、株高、分蘖数、花序、小穗、生物产量等二十几个农艺性状进行系统的研究,了解其形态学和生产力,从而初步筛选出农艺性状表现优秀的斑茅种质;对初步筛选出的优异种质进行水分、灰分、纤维素、半纤维素、木质素和热值的测定,了解其作为能源植物的开发价值,研究结果如下:
     1采用SRAP方法分析,对来自四川岷江流域、青衣江流域和沱江流域的12个野生斑茅自然居群遗传多样性及群体遗传结构进行了分析。获得下述结果:(1)18对SRAP引物组合共扩增出205条可统计条带,其中多态性条带153条,占74.63%,平均每对引物扩增出8.5条多态带。(2)斑茅具有较高的遗传多样性,多态条带比率PPB(%)为74.63%,Nei's基因多样性(h)为0.2278,Shannon's信息指数(I)为0.3454。(3)遗传分化指数Gst(0.2129)表明斑茅居群出现了一定程度的遗传分化,遗传变异主要存在于居群内部。(4)从斑茅12个居群的遗传距离和聚类分析发现,各居群间的遗传距离与地理距离之间有一定的相关性。通过对斑茅遗传多样性和遗传结构的分析提出了对该物种开发利用建议。
     2为了揭示不同斑茅种质形态学特征多样性和变异程度,确定适合作为能源植物开发的斑茅种质,本试验对斑茅种质资源的11个形态学特征进行了变异性研究。结果表明:不同斑茅种质资源的形态学特征存在广泛的变异,其中:茎粗变异幅度最大,变异范围为8.86-37.36,变异系数高达49.66%;其次为旗叶长和倒二叶宽,两者变异系数分别为45.10%和44.20%;斑茅形态学特征间存在明显相关性,斑茅种质的株高越高,茎秆粗壮,茎节数越多,花序数量多,反之亦然;聚类分析表明,不同斑茅种质资源可划分为3大类,源自不同地区的斑茅材料,形态相似的材料基本聚为一类。
     3本试验对20份斑茅种质资源生产性能进行评价。结果表明:物候期的观测结果显示,斑茅3月中旬返青,11月初进入完熟期,生育期较长,生长速度较快;不同材料的单株之间存在一定的差异,鲜草产量为1.64kg/株-4.92kg/株,单株平均产量为3.37kg/株,干草产量为0.34kg/株-0.94kg/株,平均为0.68kg/株;纤维素和半纤维素含量较高,木质素以及灰分含量较低,而且其能值变异范围在19.32-16.66kJ/g,能值较高,从化学成分及能值上看斑茅很适合做能源植物;对斑茅材料生产性能的综合评价为表现较好
Erianthus arundinaceum (Retz) Jeswiet. is tall perennial grasses of the Erianthus Michx stalk, extends to a height of 4 meters and width of 2cm. They possese strong root, high capability of drought resistance and branching, and they grow well in hill incline, river bank, alongside the road and sand beaches, and can be found at 1500m above sea level, which enables them to be utilized as a proper incline's soil keeper. E. arundinaceum is widely found in tropical, sub-tropical and warm temperate zones in China and widely used as material of weaving, paper production and fuel throughout history due to its high content of cellulose within the stalk and leaves. E. arundinaceum is entrusted with unique value and potential in sugar cane breeding project, and related research is being taken in business worldwide, while the value of its probable being a fuel plant is currently not taken seriously. In making good use of this plant's biological character, it is recommended to plant E. arundinaceum in the large Physiological characteristics of development of the loquat fruits
     1 In the present study, the genetic diversity of E. arundinaceum collected from Minjiang River, Qingyijiang River and Tuojiang River of Sichuanod province of China were investigated using SRAP markers. The following results were obtained. (1)205 loci were identified with 18 oligonucleotide primers, out of which 153 loci were polymorphic (PPB=74.63%. (2) E. arundinaceum showed high genetic diversity:The percentage polymorphic loci (PPB%) was 74.63%, Nei's gene diversity (h) was 0.2278 and Shannon's information index (Ⅰ) was 0.3454; (3) Gst showed that most of the genetic variability Gst=0.2129 resided among populations within individuals; (4)Cluster analysis showed that there was little correlation between Nei's genetic distance and geographic distance of the 12 E. arundinaceum populations. Based on the genetic information available for S. arundinaceum.some conservation strategies and exploitation suggestion were proposed.
     2 A study on variations of 11 morphologic features of E. arundinaceum showed that there were extensive variations in morphology. Among those features, Internode diameter showed the most significant variance. It's from 8.86 to 37.36 at a variance coefficient of 49.66%. Followed by boot leaf length and width of the second leaf from the inflorescence, variance coefficients were 45.10% and 44.20% respectively. There was a significant correlation among morphological features. The higther plant height have more in fertile tillers and inflorescence number. Clustering analysis showed that those accessions can be divided into 3 groups. Accessions from different regions with similar characteristics were put into same group.
     3 A study on evaluation of production performance of 20 E. arundinaceum showed that:E. arundinaceum turn green in mid-March, into ripe in early November. Growth period is long. Growth rate is fast. The yield and quality characterizes twenty accessions also significantly different, the fresh yield was 1.64-4.92kg/plant, with an average of 3.37 kg/plant, the hay yield was 0.34-0.94kg/plant, and with an average of 0.68 kg/plant. Cellulose and hemicellulose content was high, and lignin content was low. Claorific value was 19.32-16.66kJ/g, was very high.So E. arundinaceum was suitable for energy from chemical composition and Claorific value. The comprehensive evaluation of the production performance of E. arundinaceum was very fine.
引文
[1]郭平银,肖爱军,郑现和等.能源植物的研究现状与发展前景[J].山东农业科学,2007,4:621,721,821,921
    [2]张慧坚,杨连珍.热带能源植物的开发利用现状与展望景[J].世界农业,2006,2:43-45
    [3]鄢家俊,白史且,梁绪振等.生物质能源潜力植物—斑茅种植资源考察与收集[J].草业与畜牧,2009,160(3):29-31
    [4]席庆国.德国等欧洲国家重视对高大禾草的研究和利用[J].草业科学,2002,19(4):45
    [5]Heaton E,Voigt T,Long SP.A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen,temperature and water [J].Biomass and bioenergy,2004,27(4):21-30
    [6]冯金朝,周宜君,石莎等.国内外能源植物的开发利用[J].中央名族大学学报,2008,17(3):26-31
    [7]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    [8]黄剑坚,韩维栋.我国主要木本能源植物的研究现状及利用前景[J].广东林业科技,2006,22(4):105-110.
    [9]Calvin M. Petroleum plantation for fuel and materials[J].Bioscience,1979,29:533-538.
    [10]Calvin M. New sources for fuel and material [J].Science,1983,219:24-26.
    [11]Dai L. The development and prospective of bioenergy technology in China[J]. Biomass and Bioenergy,1998, (2):181-186.
    [12]王岩,龙春林,程治英.能源植物小桐子的利用与研究进展[J].安徽农业科学,2007,35(2):426-427,429.
    [13]Opensh A W K. Areview of Jatropha curcas an oil plant unfulfilled promises [J]. Biomass Bioenergy,2000,19:1-15.
    [14]赵立欣,张艳丽,沈丰菊.能源作物甜高粱及其可供适应性研究[J].可再生能源,2005,4:37-40
    [15]刘公社,周庆源,宋松泉等.能源植物甜高粱种植资源和分子生物学研究进展[J].植物学报,2009,44(3):253-261
    [16]严学兵.披碱草属植物遗传多样性研究.博士论文,中国农业大学,2005.
    [17]亢鲁毅,张辉,贾肖云等.我国亚麻种植资源研究进展[J].内蒙古农业科技,2009(2):77-78
    [18]钟声,奎嘉祥,薛世民.滇西滇南牧草种质资源考察与搜集[J].作物品种资源,1999,04:40-42.
    [19]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    [20]吴舒致,黎裕.谷子种质资源的主成分分析和图论主成分分类[J].西北农业学报,1997,6(2):46-50.
    [21]胡延吉,赵檀力小麦农艺性状主成分分析与种质资源评价的研究,1994,8(2):31-34.
    [22]王述明,曹永生,R.J.Redden等.我国小豆种质资源形态多样性的鉴定和分类研究[J].作物学报,2000,28(6):729-733.
    [23]孔秋生.罗卜种质资源遗传多样性和亲缘关系的研究[学位论文].武汉,华中农业大学,2003.
    [24]Meeeell D J.1981,黄瑞复等译.生态遗传学[M]北京:科学出版社,1991.
    [25]沈永宝,施季森.植物种或品种鉴定的展望.江苏林业科技[J].2004,31(5):41-45.
    [26]陈佩度.作物育种生物技术[M].北京:中国农业出版社,2001:124-125.
    [27]胡守荣,扩夏铬,郭长英等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    [28]Fang D Q,Roose M L.Identification of closely related citrus with inter-simple sequence repeat makers[J].Theor Appl Genet,1997,95:408-417.
    [29]郎萍,黄宏文.栗属中国特有居群的遗传多样性及地域差异[J].植物学报,1999,41(6):651-657.
    [30]王述民,谭富娟,胡家蓬.小豆种质资源同工酶遗传多样性的分析与评价[J].中国农业科学,2002,35(1):1311-1318.
    [31]Santalla M,Rodino A P,De Ron A M,Allozyme evidence supporting southwestern Europe as a s-econdarycenter of genetic diversity for the common bean.Theor Appl Genet,2002,104:934-944.
    [32]Brown J. W. S., et al. Fraction of wheat gliadin and gluten subunits by two dimensional electr-ophoresis and role of group 6 and group 2 chromosome in gliadin synthesis[J]. Theor. Appl.G-enet.,1989,59:349-359.
    [33]Payne P. L., Jacksoon E. A., Holt L. M, et al. Genetic linkage between storage protein genes on each of the short arms of chromosome 1A and 1B of wheat [J]. Theor Appl Genet,1984,67: 235-243.
    [34]张玉良,张晓芳,舒卫国.小麦醇溶蛋白电泳技术及应用[J].作物品种资源,1994,(1):33-34.
    [35]张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学,1995,28(4):25-32.
    [36]Draper S. R. ISTA variety committee report of the workinggroup for biochemical tests for cultivar identification 1983-1986[J].Seed Sci. & Technol,1987,15:431-434.
    [37]Zillman R. R, Bushuk W. Wheat cultivar identification bygliadin electrophoregrams. Ⅱ.Effects of environmental and experimental factors on the gliadin electrophoregrams[J].CanJ.Plant Sci., 1979,59:281-286.
    [38]Zillman R. R, Bushuk W. Wheat cultivar identification by gliadin electrophoregrams.Ⅲ. Catalogue of electrophoregrams formul as of Canadian wheat cultivars[J].Can J.Plant Sci., 1979,59:287-288.
    [39]王学路,钱曼懋,宋春华等.改良ISTA醇溶蛋白电泳方法及其应用[J].作物品种资源,1994,(2):32-34.
    [40]傅宾孝,于光华,王乐凯等.小麦醇溶蛋白电泳分析的新方法[J].作物学报,1993,9(2):15-187.
    [41]鲍晓明,黄百渠.小麦-冰草异附加系种子醇溶蛋白基因表达的分析[J].作物学报,1993,19(3):233-238.
    [42]师尚礼,李阳春.天祝草原区鹅观草种质资源考察与收集[J].草业科学,2000,4:61-64.
    [43]钟声,奎嘉祥,薛世明.滇西滇南牧草种质资源的考察与收集[J].作物品种资源,1999,4:40-42.
    [44]贺学礼,赵丽勤.陕西禾本科牧草资源的区系特征[J].草业科学,1996,5:9-11.
    [45]林家栋,朱邦长.贵州草坪植物种质资源的开发利用[J].草业科学,1999,8(4):42-49.
    [46]罗富成.云南野生牧草驯化研究[J].四川草原,1999,2:55-57.
    [47]乌云其木格,布仁吉雄,陈海云等.胡枝子属牧草种子同工酶分析[J].内蒙古农业大学学报, 1998,1:13-17.
    [48]乌云其木格,易津,门中华等.不同类型苏丹草同工酶多样性分析[J].内蒙古草业,1999,5:20-27.
    [49]张新全,杜逸.鸭茅染色体核型分析[J].中国草地,1994,3:55-57.
    [50]帅素容,张新全.二倍体和四倍体野生鸭茅遗传特性比较研究[J].草地学报,1997,5(4):261-268.
    [52]师尚礼,李温.西北地区羊茅属牧草和草坪草的综合评价[J].甘肃农业大学学报,2000,35(2):127-131.
    [52]杨瑞武,周永红,郑有良.小麦族披碱草属、鹅观草属和猬草属模式种的C带研究[J].云南南植物研究,2003,25(1):71-77.
    [53]中国科学院中国植物志编委会.中国植物志(第十卷第二分册)[M].北京:中国农业出版社,40-45.
    [54]南京大学生物系,中科院植物所.中国主要植物图说(禾本科)[IⅥ].北京:科学出版社.1965.758.
    [55]四川植物志编辑委员会.四川植物志(第十二卷)[M].成都:9)Il民族出版社。1998.337.
    [56]廖兆周,劳方业,周耀辉等.具有斑茅种质的耐旱甘蔗品系的选育[J].作物学报.2002,28(6):841-846
    [57]余爱丽,张木清,陈如凯,ISSR分子标记在甘蔗及其近缘属分类上的应用[J]。福建农林大学学报(自然科学版).31(4):484-489
    [58]张木清,洪艺殉,李奇伟等.中国斑茅种植资源分析多态性分析[J].植物资源与环境学报,2004,13(1):1-6
    [59]冯斗,吴子恺,陈荣基RAPD分子标记应用于斑茅分类的研究[J].广西农业大学学报,1997,16(4):261-167
    [60]张云武,龙火生,范源洪等.甘蔗属及近缘属种的rbcL基因序列变异和系统发育初步研究[J].云南植物研究,2002,24(1):29-36
    [61]杨清辉,李富生,肖凤回等.斑茅染色体和植物学性状观察研究[J].云南农业大学学报,1997,12(4):253-256
    [62]文建成,蔡青,范源洪等.甘蔗属割手密(SaccharumSpontaneum),近缘属斑茅(sclerostachya)及河八王(Narenga)的染色体数目研究[J].甘蔗糖业,2001(3):12-15
    [63]戴艺民,卢北川,林江波等.福建斑茅核型分析初报[J].福建农业学报,2002,17(3):148-150
    [64]蔡青,文建成,范源洪等.甘蔗属及其近缘植物的染色体分析[J].西南农业学报,2002,15(2):16-19
    [65]刘文荣,邓祖湖,张木清等.甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究Ⅲ.甘蔗斑茅远缘杂交后代细胞遗传分析[J].作物学报,2004,30(11):1093-1096
    [66]邓祖湖,李玉婵,刘文荣等.甘蔗和斑茅远缘杂交后代的染色体遗传分析[J].热带作物学报,2007,28(3):63-67
    [67]邓祖湖,赖丽萍,林炜乐等.甘蔗斑茅杂交后BC1的染色体核型和染色体遗传分析[J].福 建农林大学学报(自然科学版),2007,36(6):561-566
    [68]丁灿,杨清辉,李富生等.低温胁迫对割手密和斑茅游离脯氨酸含量的影响(Ⅱ) [J].安徽农业学报,2006,34(5):846-849
    [69]杨荣仲,谭裕模,黎焕光等.斑茅杂交后代分子检测[J].广西农业生物科学,2004,23(1):57-62
    [70]劳方业,符成,陈仲华等.斑茅杂交后代的分子鉴定[J].甘蔗糖业,2006(1):6-11
    [71]陈建文,Phillip A.Jackson,劳方业等.应用ISSR标记鉴定斑茅BC2杂种真实性[J].中国糖业,2008(1):1-3
    [72]何慧怡,劳方业,刘睿等.斑茅蔗后代杂种的分子标记分析[J].华中农业大学学报,2008,27(5):573-577
    [73]余爱丽,姚伟,徐景升等.斑茅20S蛋白酶体α亚基5基因的克隆与序列分析[J].热带作物学报,2004,25(2):55-60
    [74]张积森,李伟,阙友雄等.斑茅两个看家基因片段的克隆及其在基因芯片中的应用[J].热带亚热带植物学报,2007,15(4):277-283
    [75]蔡秋华,张积森,刘文荣等.斑茅SAMDC基因的克隆及其原核表达分析[J].福建稻麦科技,2009,27(1):17-20
    [76]刘孝开,张木清.斑茅抗旱全长cDNA文库的构建[J].中国糖业,2008(3):4-6
    [77]刘文荣,张积森,饶进等.干旱胁迫下斑茅消减文库的构建及分析[J].作物学报,2007,33(6):961-967
    [78]阙友雄,许莉萍,林剑伟等.利用斑茅cDNA芯片研究甘蔗受黑穗病菌侵染后基因差异表达[J].作物学报,2009,35(5):940-945
    [79]Nagai C. Somaclonal varieties of an intergeneric hybrid:Sacdaarum×Ripidum[A]. D J Heing. Annual Report of Experiment Station of Hawaii sugar[C]. Aiea, Hawaii:Planter's Association, 1983.9-10.
    [80]Sreenivasan T V. Sugarcane genetic resources activities in India and in uitro germplasm conversation[A]. K M Naidu, et al. Sugarcane Varietal Improvement[C].Coimbatore,India: Sugarcane Breeding Institute.1989.177-194.
    [81]李奇伟,戴耀波.甘蔗×斑茅杂种及其双亲的农艺,工艺,植物学性状和染色体观察[J].云南农业大学学报.1995,10(1):29-34
    [82]郑雪芳,张木清,李奇伟.甘蔗斑茅的杂交利用及其后代鉴定系列研究Ⅱ:蔗斑茅远缘真实杂种的分子鉴定[J].分子植物育种,2004,2(1):35-42
    [83]王丽萍,蔡青,范源洪等.甘蔗(Saccharum)与斑茅(Saccharum arundinaceum)远缘杂交利用研究[J].西南农业学报,2007,20(4):721-726
    [84]Ferriol M.,Pico B.,Nuez F.. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    [85]Li G.,Quiros C. F..Sequence-related amplified polymorphism(SRAP),A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461.
    (86]林忠旭,张献龙,聂以春等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676- 1679,
    [87]Li G, GAO M, YANG B, et al.Gene for gene alignment between the Brassie and Arabidopsis genomes by direct transcriptome mapping[J].Theoretical and Applied Genetics,2003, 107(1):168-180.
    [88]FERRIOL M, PICO B, NUEZ F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theoretical and Applied Genetics.2003a,107(2):271-282.
    [89]RIAZ A, LI G, QURESH Z, et al. Genetic diversity of oilseed Brassica napus inbred lines based on sequence related amplified polymorphism and its relation to hybrid performance[J]. Plant Breeding, 2001,120(5):411-415.
    [90]Doyle J J.DNA protocols for plants-CTAB total DNA isolation. In:Hewitt GM,Johnston A(ed.)Molecular Techniques in taxonomy.Springer-erlag,berlin,Germany/1991,pp283-293
    [91]Yeh,F C, and Boyle T J B. Popgene version 1.31. Microsoft Window-base freeware for population analysis. University of Alberta and Centre for International Forestry Researtch, Edmoonton, AB,1999
    [92]Rohlf F J,NTSYS-pc numerical taxonomy and multivariate analysis system,version 2.1.User Guide.Exeter Software.Setauket, New York,2000
    [93]Hamrick J L, Godt MJ W. ALLozyme diversity in plant species. In:Brown A. H. D., Clegg M. T., Kahler A. L., Weir BS eds. Plant population genetics, breeding and genetic resources. Sinauer Associates, Inc., Sunderland, MA,1990.43-63.
    [94]Loveless M D, Hamrick J L. Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst,1984,15:65-95.
    [95]Hamrick J L, Godt MJ W. ALLozyme diversity in plant species. In:Brown A.H. D., Clegg M. T., Kahler A. L., Weir BS eds. Plant population genetics, breeding and genetic resources. Sinauer Associates, Inc., Sunderland, MA,1990.43-63.
    [96]Liu H F, Gao Y B, Wang D, et al. Genetic differentiation in eight populations of Leymus chinensis in Inner Mongolia Steppe. Acta Ecologica Sinica,2004,24 (3):423-431.
    [97]Nybom H, Bartish I V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants[J]. Perspect Plant Ecol Evol Syst,2000,3: 93-114.
    [98]何顺长.云南省甘蔗野生资源开发利用前景的探讨[J].云南农业大学学报,1987,2(1):105-111
    [99]沈万宽.斑茅的杂交利用价值探讨[J].甘蔗(福建),2002,(3):1-5
    [100]陈逢彩.谈谈蔗茅在甘蔗杂交育种中的价值问题[J].甘蔗糖业,1979(1):12-18
    [101]王洪新,胡志昂,钟敏,等.毛乌素沙地锦鸡几种群形态变异[J].生态学报,1994,14(4):366-370
    [102]葛颂,洪德元.泡沙参复合体(桔梗科)的物种生物学研究:1.表型的可塑性[J].植物分类学报,1994,32(6):489-503
    [103]孟林,张国芳,高洪文.氮磷钾施肥量对饲用菊苣生产性能的影响[J].草地学报,2003,11(4):325-328
    [104]葛颂,洪德元.泡沙参复合体(桔梗科)的物种生物学研究[J].植物分类学报.1995,33(5): 433-443
    [105]葛颂,洪德元.濒危物种裂叶沙参及其近缘广布种泡沙参的遗传多样性研究[J].遗传学报,1999,26(4):410-417
    [106]Kellogg E A. Variation and names in the Poa secunda complex[J]. Journal of Range Management,1997,38(6):516-521
    [107]严学兵,郭玉霞,周禾等.青藏高原垂穗披碱草变异的地理因素分析[J].西北植物学报,2007,27(2):328-333
    [108]杨继.植物种内变态的机制及其研究方法[J].武汉植物研究,1991,20(4):429-434
    [109]王金龙,高玉葆,赵念席等.内蒙古中东部草原克氏针茅形态特征和RAPD遗传分析的相关性分析[J].植物研究,2006,26(6):709-714
    [110]云锦凤,王勇,徐春波等.新麦草新品系生物特征及生产性能研究[J].中国草地学报,2006,28(5):1-7
    [111]杨允菲,李建东.东北羊草草原种群单穗数量性状的生态可塑性[J].生态学报,2001,21(5):753-758
    [112]袁振宏,孔晓英,颜涌捷等.芒草稀硫酸水解工艺条件的正交试验[J].太阳能学报,2006,27(6):631-634
    [113]杨成源张加研,李文政等.滇中高原及干热河谷薪材料树种热值演技研究[J].西南林学院学报,1996,16(4):294-302
    [114]鲍雅静,李政海,韩兴国等.植物热值及其生物生态学属性[J].生态学报,2006,25(9):1095-1103
    [115]李高扬,李建龙,王艳等.优良能源植物筛选及评价探讨[J].可再生资源,2007,25(6):84-89
    [116]宁祖林,陈惠娟,王珠娜等.几种高大禾草热值和灰分动态变化研究[J].草业学报,2010,19(2):241-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700