用户名: 密码: 验证码:
SUS316和NIMONIC263焊接接头晶粒长大MONTE CARLO模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接接头由于受到不均匀加热冷却过程的影响,其组织转变过程复杂,主要包括焊接热影响区内晶粒粗化、相变以及焊缝金属的熔化凝固。这些转变导致焊接接头性能发生变化。在一些单相合金如奥氏体不锈钢SUS316和高温镍基合金Nimonic263中,焊接热影响区内无相变过程,因此晶粒长大成为焊接热影响区组织演变的主要现象。为了深入研究无相变合金焊接热过程对焊接接头晶粒长大的影响规律,本文建立了焊接热影响区和焊缝三维MonteCarlo(MC)晶粒长大模型。同时,为了获得MC模拟所需要的焊接热循环曲线,建立了三种不同的流场温度场模型,对焊接接头的流场和温度场分布进行模拟。并进一步设计了焊接接头晶粒长大模拟系统,实现了钨极气体保护焊(TIG)热过程及接头组织演变过程的模拟,三维再现了焊接接头晶粒长大过程。该系统可预测TIG焊接头晶粒尺寸,为焊接工艺参数的优化提供参考。
     首先,综合考虑了表面张力、电磁力、浮力等驱动力的作用,采用流体计算软件PHOENICS建立了TIG焊流场温度场模型。分别采用导热模型、层流模型和紊流模型模拟了Nimonic263 TIG焊热过程,分析了这几种模型的模拟精度及适用范围。结果表明紊流模型的模拟结果与实验结果更为接近。进一步采用紊流模型模拟了SUS316不锈钢焊接热过程,通过研究有效粘度和有效导热的分布,揭示了熔池内液态金属紊流时导热与对流传输热量的变化规律。模拟结果表明,紊流模型中随着流速的增加,金属液体导热能力不断增加而对流散热能力则因粘度的增加而相对下降。根据模拟结果,对部分凝固参数进行分析得出,随着焊接热输入的增加,界面前沿的不稳定性也随之增加,导致熔池凝固界面前沿晶粒生长并不是以平面生长方式进行。
     在流场温度场模型的基础上,模拟了活性剂焊接(A-TIG)传热和传质过程,根据流场温度场分布分析了Nimonic263平板A-TIG焊接熔深增加机理。模拟结果表明:电弧收缩对熔池形状的改变影响很小,A-TIG焊接熔深增加机理主要体现在两方面:第一,表面活性元素O、S等元素的存在,改变了表面张力温度系数,当表面张力温度系数由负值变为正值时,熔池内液体的流动方向发生改变;第二,与传统TIG焊接不同,在A-TIG焊接中,熔池内液体更接近于层流流动。这两方面因素的综合作用是熔深增加的主要原因。
     进一步采用Monte Carlo技术,建立了焊接热影响区晶粒长大模型。分别通过晶界扩散模型(GBM)和基于实验数据模型(EDB)建立了SUS316不锈钢Monte Carlo时间步和真实时间温度的关系,模拟了SUS316不锈钢焊接热影响区的晶粒长大过程。这两种模型的模拟结果均与实际SUS316焊接热影响区晶粒长大存在较大差别,由此可以得出如下结论:首先,由于GBM模型主要针对纯金属晶粒长大过程的模拟,模拟与实验结果的差别说明SUS316焊接热影响区晶粒长大与纯金属的晶粒长大存在着较大的偏差;其次,由EDB模型的模拟与实验结果的偏差推测位于晶界处的沉淀相如M23C6等阻碍了晶粒的长大,受焊接热循环的作用,晶粒只有在这些晶界沉淀溶解后才开始长大。考虑到沉淀的影响,对EDB模型进一步修正,修正后的模拟结果与实验结果的吻合验证了这种假设的正确性。在分别对Nimonic263 TIG和A-TIG焊接热影响区的模拟结果显示,Nimonic263热影响区晶粒长大,同样也受到晶界沉淀相的影响,而涂敷剂的存在虽然可明显改变熔池形状,但对焊接热影响区晶粒尺寸变化没有明显影响。
     应用Monte Carlo法,对三维熔池凝固结晶过程的模拟进行了初步探索,建立了焊接熔池凝固组织转变模型。在假设熔池内无自发形核、溶质均匀分布的基础上,模拟熔池内液体形核生长过程。根据晶粒生长动力学理论,考虑温度梯度对晶粒生长的影响,动态地再现了SUS316 TIG焊接和Nimonic263TIG/A-TIG焊接熔池晶粒长大过程,并发现在中厚板TIG/A-TIG焊接时,通常在横断面看到的圆形或椭圆形的晶粒剖面并不一定是等轴晶,而是熔池尾部的柱状晶的一个横断面。模拟结果和试验结果均显示,焊接热输入越大时,焊缝越容易形成粗大的柱状晶。
     根据上述流场温度场模型、焊接热影响区晶粒长大模型和焊缝凝固结晶模型,建立了单相合金焊接接头晶粒长大模拟系统。该模型可适用于无固态相变合金的焊接接头晶粒长大过程模拟,使动态再现焊接接头晶粒长大过程、从三维尺度深入了解焊接接头的晶粒长大形态成为可能。
Microstructure evolution in the welded joints is complex because of local andinstantaneous heating and cooling process. The evolution includes the melting andsolidification in the weld bead, the solid-state phase transformation and grain growthin the Heat Affected Zone (HAZ), which strongly in?uences the materials physicalproperties. In some single-phase alloys, such as austenitic stainless steel SUS316 andnickel-based superalloy Nimonic263, there is no solid-state transformation in HAZ,so grain growth becomes the main microstructure evolution in HAZ during weldingprocess. In order to study how welding thermal process of single-phase alloys in?u-ences the grain growth in welded joints, three dimensional Monte Carlo(MC) modelsare built for simulating grain growth in both HAZ and Fusion Zone (FZ). Meanwhile,three kinds of models are built to simulate the ?uid ?ow and thermal fields of weldedjoints to get reasonable thermal cycles for MC simulation. Additionally, a three di-mensional grain growth simulation system is established to simulate the thermal pro-cess and microstructure evolution of welded joints for Tungsten Inert Gas (TIG) weld-ing, which can describe the process of grain growth and estimate the grain sizes. Thesoftware system will be helpful in optimizing the welding process parameters.
     By considering surface tension, electromagnetic force and buoyancy, the soft-ware PHOENICS is used to model heat transfer and ?uid ?ow process in TIG welding.The conduction model, the laminar model and the turbulence model are constructedto simulate the heat transfer process of Nimonic263 in TIG welding. The accuracyof simulated results and the conditions in which the models can be used are there-fore analyzed. It shows that the simulated results with turbulence model are closer tothe experimental ones. By using turbulence model, the thermal process of SUS316TIG welding is simulated, the distributions of effective viscosity and effective ther-mal conductivity are studied, and the heat transfer by convection and conduction ofturbulent liquid metal in welding pool are given too. The simulated results obtainedby turbulence model shows that, with the increase of traveling velocity the ability ofthermal conduction in the liquid metal is correspondingly enhanced, while the heattransfer with convection is relatively reduced because of viscosity increase. Accord- ingly, with the increase of welding heat inputs the instability of front plane increasesduring welding molten pool solidification, the grain growth in front plane of weld poolis non-planer.
     The heat and mass transfer process in Active ?ux TIG (A-TIG) welding is simu-lated with the heat transfer and ?uid ?ow model. The distribution of heat transfer and?uid ?ow is used to investigate the mechanism of the penetration increase in A-TIGwelding Nimonic263 plate. The simulated results show that the arc constriction workslittle on weld pool shape, and the following two factors contribute much more to thepenetration increase in A-TIG welding. For one thing, the active elements such as Oand S in the weld pool change the surface tension temperature coefficient from nega-tive to positive, and thereby the convection direction of the ?uid ?ow varies; Next, theliquid metal ?ow in A-TIG weld pool is more likely in laminar way, which is quitedifferent from conventional TIG welding.
     Monte Carlo (MC) technique is further employed to establish the grain growthmodel in HAZ. Based on Grain Boundary Migration (GBM) model and Experimen-tal Data Based (EDB) model, the relation between simulation iteration steps and thereal time-temperature history is obtained respectively and the grain growth process inHAZ of SUS316 is simulated. The results are much different from the actual graingrowth of HAZ in SUS316, so it can be deduced the following conclusions. Firstly,as GBM model is mainly designed to simulate the grain evolution of pure metal, thedifference between simulated result with GBM model and experimental result indi-cates that the grain growth in HAZ of SUS316 is quite different from the pure metal;Secondly, from the deviation between the results of EDB model and the experimentalones, it can be speculated that the grains boundary penetrate, such as M23C6, impedethe grains growth process, and because of the effect of welding thermal cycle, onlywhen the temperature is high enough to dissolve the precipitates does the grain beginto grow. Considered the in?uence of precipitates, the EDB model is modified, andthe experimental result coincides well with the simulated ones after its modification,which verifies the validity of the precipitates effect. The simulation of grain growthprocesses in TIG and A-TIG HAZ of Nimonic263 shows that HAZ grain growth ofNimonic263 is also in?uenced by the grain boundary penetration. Although the active?ux can change the shape of the weld pool significantly, it has little effect on the graingrowth in HAZ.
     By using MC technique, crystallization and solidification process in three-dimensional weld pool is also simulated and the microstructure evolution model dur-ing solidification process in weld pool is established. Based on the assumption thatthere is no heterogeneous nucleation and the solute is evenly distributed in the wholeweld pool, the liquid nucleation and growth in the weld pool are simulated. Accordingto grain growth kinetics, the temperature gradient, which in?uences the grain growth,is considered in simulating the dynamic process of the columnar grains formation inSUS316 TIG and Nimonic263 TIG/A-TIG weld pools. The simulation shows that inTIG/A-TIG welding of the plate, the circle or elliptic grains in the cross section of theweld bead are not always equiaxed grains, but the sections of columnar grains in therear of the weld pool. The simulated and experimental results show that the larger thewelding heat input the easier the large columnar grain forms.
     Finally, a grain growth system of singe-phase welded joints is established andthree-dimensional simulation of grain growth in welded joints is realized based onthe above models, they are the heat transfer and ?uid ?ow model, HAZ grain growthmodel and weld pool solidification model. The system can be used to simulate thegrain growth process in welded joints where no solid-state transformation occurs inthe alloys. It can dynamically replay the process of grain growth in welded jointsand provide an available way to understand the grain evolution of the welded joints inthree-dimensional scale.
引文
1 Y. H. Wei, Z. B. Dong. Three Dimensional Numerical Simulation of WeldSolidification Cracking. Modeling and Simulation in Materials Science andEngineering. 2005, 13(3):437–454
    2 Y. H. Wei, Z. B. Dong. Modeling the Trans-Varestraint Test with Finite ElementMethod. Computational Materials Science. 2006, 35:84–91
    3 K. Mundra, T. DebRoy, S. S. Babu. Weld Metal Microstructure Calculationsfrom Fundamentals of Transport Phenomena in the Arc Welding of Low AlloySteels. Welding Journal Research Supplement. 1997, 76(4):163s–171s
    4 S. Mishra, T. DebRoy. Measurements and Monte Carlo Simulation of in theHeat-affected Zone of Ti-6Al-4V Welds. Acta Materialia. 2004, 52:1183–1192
    5 S. Mishra, T. DebRoy. Grain Topology in Ti-6Al-4V Welds - Monte CarloSimulation and Experiments. Journal of Physics D: Applied Physics. 2004,37:2191–2196
    6 T. Hong, W. Pitscheneder, T. DebRoy. Quantitative Modeling of InclusionGrowth in the Weld Pool by Considering Their Motion and Temperature Gy-rations. Science and Technology of Welding and Joining. 1998, 3(1):33–41
    7 M. Pastor, H. Zhao, R. P. Martukanitz, et al. Porosity, Underfill, and MagnesiumLoss During Continuous Wave Nd:YAG Laser Welding of Thin Plates of Alu-minum Alloys 5182 and 5754. Welding Journal Research Supplement. 1999,78(6):207s–216s
    8 K. Mundra, T. DebRoy. A General Model for Partitioning of Gases between aMetal and its Plasma Environment. Metallurgical and Materials Transactions.1995, 26B:149–157
    9 K. Hong, D. C. Weckman. Vorticity Based Turbulence Model for Thermo?uidsModeling of Welds. Science and Technology of Welding and Joining. 2003,8(5):313–323
    10 W. H. Kim, S. J. Na. Heat and Fluid Flow in Pulsed Current GTA Weld Pool.International Journal of Heat and Mass Transfer. 1998, 41:3213–3227
    11曹振宁. TIG/MIG焊接熔透熔池流场与热场的数值分析.哈尔滨工业大学博士论文. 1993:5–7
    12 E. J. Ha, W. S. Kim. A Study of Low Density Laser Welding Process withEvolution of Free Surface. International Journal of Heat and Fluid Flow. 2005,26:613–621
    13 S. Lu, F. Hidetoshi, N. Kiyoshi. Marangoni Convection and Weld Pool ShapeVariations in Ar-O2 and Shield GTA Ar-O2 Welding. Materials Science andEngineering. 2004, A308:290–297
    14刘凤尧,杨春利,林三宝,等.活性化TIG焊熔深增加机理的研究.金属学报. 2003, 36:661–665
    15 G. Ravichandran, V. P. Raghupathy, N. Gancsan. Ananlysis of Temperature Dis-tribution During Circumferential Welding of Cylindrical and Spherical Com-ponents Using the Finite Element Method. Computer & Structures. 1996,59(2):225–255
    16 M. A. Wahab, M. J. Painter, M. H. Davies. The Prediction of the TemperatureDistribution and Weld Pool Geometry in the Gas Metal Arc Welding Process.Journal of Materials Processing Technology. 1998, 77:233–239
    17 G. Brüggemann, A. Mahrle, T. Benziger. Comparison of Experimental Deter-mined and Numerical Simulated Temperature Fields for Quality Assurance atLaser Beam Welding of Steels and Aluminium Alloyings. NDT&E Interna-tional. 2000, 33:453–463
    18 S. A. David, T. DebRoy. Current Issues and Problems in Welding Science.Science. 1992, 257:497–502
    19 W. Pitscheneder, T. DebRoy, K. Mundra, et al. Role of Sulfur and ProcessingVariables on the Temporal Evolution of Weld Pool Geometry During Multi-Kilowatt Laser Welding of Steels. Welding Journal Research Supplement. 1996,75(3):71s–80s
    20 G. M. Oreper, T. W. Eagar, J. Szekely. Convection in Arc Weld Pool. WeldingJournal. 1983, 62(1):307–312
    21 I. S. Kim, A. Basu. A Mathematical Model of Heat Transfer and Fluid Flow inthe Gas Metal Arc Welding Process. Journal of Materials Processing Technol-ogy. 1998, 77:17–24
    22 H. G. Fan, H. L. Tsai, S. J. Na. Heat Transfer and Fluid Flow in a Partially OrFully Penetrated Weld Pool in Gas Tungsten Arc Welding. International Journalof Heat and Mass Transfer. 2001, 44:417–428
    23曹振宁,武传松,吴林. TIG焊接熔透熔池的数学模型.焊接学报. 1996,62(1):62–70
    24曹振宁,武传松,吴林.熔滴冲击下MIG焊接熔池的计算机模拟.金属学报. 1994, 30(2):B537–B542
    25武传松, Dorn.熔滴冲击力对MIG焊接熔池表面形状的影响.金属学报.1997, 33(7):774–780
    26邹增大,孙俊生,李宁洋. MIG焊缝几何尺寸的数值模拟.济南交通高等专科学校学报. 1999, 7(1):2–7
    27范成磊,方洪渊,刘志华,等. TC4合金空心阴极真空焊接熔池动态行为的数值模拟.材料科学与工艺. 2001, 9(3):293–296
    28孙俊生,武传松,高进强.熔滴热焓量分布模式对熔池流场的影响.金属学报. 1999, 35(9):964–970
    29李永兵,王雅生,陈关龙,等.外加纵向磁场移动焊接熔池流场和传热耦合分析.西安交通大学学报. 2003, 37(5):483–487
    30 F. Lu, S. Yao, S. Lou, et al. Modeling and Finite Element Analysis on GTAWArc and Weld Pool. Computational Materials Science. 2004, 29:371–378
    31 M. Malinowski-Brodnicka, G. den Ouden, W. J. P. Vink. Effects of Electro-magnetic Stirring on GTA Welds in Austenitic Stainless Steel. Welding Journal.1990, 69:52–69
    32 R. Choo, J. Szekely. The Possible Role of Turbulence in GTA Weld Pool Be-havior. Welding Journal. 1994, 73(2):25–31
    33 Z. Yang, S. Sista, J. W. Elmer. Three Dimensional Monte Carlo Simulation ofGrain Growth During GTA Welding of Titanium. Acta Mater. 2000, 48:4813–4825
    34 A. Paul, T. DebRoy. Free Surface Flow and Heat Transfer in Conduction ModeLaser Welding. Metall. Trans. 1988, 19(B):851–858
    35 S. Mishra, T. DebRoy. A Heat-transfer and Fluid-?ow-based Model to Obtaina Specific Weld Geometry Using Various Combinations of Welding Variables.Journal of Applied Physics. 2005, 98(044902):1–10
    36武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟.金属学报. 1998, 34(4):416–422
    37 P. J. Modenesi, E. R. Apolinário, I. M. Pereira. TIG Welding with Single-component Fluxes. Journal of Materials Processing Technology. 2000, 99:260–265
    38张瑞华,樊丁,余淑荣.低碳钢A-TIG焊的活性剂研制.焊接学报. 2003,24(2):15–18
    39 P. Sahoo, T. DebRoy, M. J. McNallan. Surface Tension of Binary Metal-surfaceActive Solute Systems under Conditions Relevant to Welding Metallurgy. Met-all. Trans. 1988, 19B:483–491
    40 E. J. Ha, W. S. Kim. A Study of Low-power Density Laser Welding Processwith Evolution of Free Surface. International Journal of Heat and Fluid Flow.2005, 26:613–621
    41 K. Hong, D. C. Weckman, A. B. Strong. The In?uence of Thermo?uids Phe-nomena in Gas Tungsten Arc Welding in High and Low Thermal ConductivityMetals. Canadian Metallurgical Quarterly. 1998, 37(3–4):293–303
    42赵玉珍,雷永平,史耀武. A-TIG焊中氧含量对熔池流动方式影响的数值模拟.金属学报. 2004, 40(10):1085–1092
    43 S. M. Fadden, D. J. Browne. Meso-scale Simulation of Grain Nucleation,Growth and Interaction in Castings. Scripta Materialia. 2006, 55:847–850
    44 M. P. Anderson, D. J. Srolovitz, G. S. Grest, et al. Computer Siumulation ofGrain Growth-Ⅱ: Grain Size Distribution, Topology, and Local Dynamics.Acta Metal. 1984, 32(5):793–802
    45 S. G. R. Brown, J. A. Spittle. Computer Simulation of Grain Growth andMacrostructure Development During Solidificaiton. Materials Science andTechnology. 1989, 5:362–386
    46 B. Radhakrishnan, T. Zacharia. Simulation of Curvature-riven Grain Growth byUsing a Modified Monte Carlo Algorithm. Metallurgical and Materials Trans-actions A. 1995, 26A(1):167–180
    47陈伟元,钟晓征,谭锐,等.多晶材料晶粒生长的计算机模拟研究.原子与分子物理学报. 2000, 17(2):297–302
    48叶日晴,赵建华,何陵辉.退火过程中晶粒生长的二维计算机模拟.无机材料学报. 2001, 16:122–127
    49张继祥,关小军.异常晶粒长大的Monte Carlo模拟.中国有色金属学报.2006, 16(10):1689–1697
    50金俊泽,王宗廷,郑贤淑,等.金属凝固组织形成的方针研究.金属学报.1998, 34(9):928–932
    51郭靖原,洪泽恺,陈民,等.金属凝固与晶体生长过程的蒙特卡罗模拟.工程热物理学报. 2001, 22(6):725–728
    52胡坤太,仇圣桃,张慧,等.用蒙特卡罗法模拟连铸坯的凝固组织.钢铁研究学报. 2004, 16(2):27–32
    53丁恒敏,刘瑞祥,陈立亮,等. Monte-Carlo时间步长的求解与铸件截面组织模拟.铸造技术. 2005, 26(6):535–537
    54丁雨田,王海南,许广济,等.定向凝固微观组织的Monte Carlo模拟.甘肃工业大学学报. 2001, 27(3):15–18
    55 S. G. R. Brown, T. William, J. A. Spittle. Cellular Automaton Model of theSteady-state’free’Growth of a Non-isothermal Dendrite. Acta Metallurgica etMaterialia. 1994, 48(2):2893–2898
    56 S. G. R. Brown, N. B. Bruce. Three-dimensional Cellular Automaton Models ofMicrostructural Evolution During Solidification. Journal of Materials Science.1995, 30(5):1144–1150
    57 C. H. J. Davis. The Effect of Neighbourhood on the Kinetics of a CellularAutomaton Recrystallisation Model. Scripta Metallurgica et Materialia. 1995,33(7):1137–1143
    58 M. Rappaz, C. A. Gandin, J. DesbiollesL, et al. Prediction of Grain Structuresin Various Solidification Processes. Metallurgical and Materials TransactionsA: Physical Metallurgy and Materials Science. 1996, 27A(3):695–705
    59 Y. H. Chang, S. M. Lee, K. Y. Lee, et al. Three-dimensional Simulation ofDendritic Grain Structures of Gas-atomized Al-Cu Alloy Droplets. ISIJ Inter-national. 1998, 38(1):63–70
    60 N. Govindaraju, B. Q. Li. A Macro/micro Model for Magnetic Stirring andMicrostructure Formation During Solidification. Energy Conversion and Man-agement. 2002, 43(3):335–344
    61 M. Qian, X. Z. Guo. Cellular Automaton Simulation of Microstrctural Evolu-tion During Dynamic Recrystallization of an HY-100 Steel. Materials Scienceand Engineering. 2004, A365:180–185
    62 G. Guillemot, C. A. Gandin, H. Combeau. Modeling of Macrosegregation andSolidification Grain Structures with a Coupled Cellular Automaton - Finite El-ement Model. Solidification Processes and Microstructures: A Symposium inHonor of Wilfried Kurz. 2004:157–163
    63夏维国.晶粒长大动力学的计算机模拟.株洲工学院学报. 2003, 17(5):36–47
    64郭洪民,刘旭波,杨湘杰.元胞自动机方法模拟微观组织演变的建模框架.材料工程. 2003, 8:23–27
    65张林,张彩碚,王元明,等.连续冷却过程中低碳钢奥氏体→铁素体相变的元胞自动机模拟.金属学报. 2004, 40(1):8–13
    66 Y. H. Wei, X. H. Zhan, Z. B. Dong, et al. Numerical Simulation of Colum-nar Dendritic Grain Growth During Weld Solidification Process. Sicience andTechnology of Welding and Joining. 2007, 12(2):138–146
    67 I. S. Habib, S. Thynell. Heat Transfer in Melting, Solidification, and CrystalGrowth-1993. American Society of Mechanical Engineers. 1993, 234:21–33
    68 Y. Sasajima, M. Ichimura. Two Dimensional Simulation of Dendrite Morphol-ogy. Acta Metallurgica et Materialia. 1994, 42(7):2381–2386
    69 Y. Sasajima, M. Ichimura. Computer Simulation on Isothermal DendriticGrowth Process of Al-Cu Binary Alloy Using Phase-field Method. Keikin-zoku/Journal of Japan Institute of Light Metals. 2002, 52(2):58–63
    70 J. C. Ramirez, C. Beckermann. Examination of Binary Alloy Free DendriticGrowth Theories with a Phase-field Model. Solidification Processes and Mi-crostructures: A Symposium in Honor of Wilfried Kurz. 2004:373–378
    71 J. Tiaden, B. Nestler, H. J. Diepers, et al. Multiphase-field Model with an Inte-grated Concept for Modelling Solute Diffusion. Physica D: Nonlinear Phenom-ena. 1998, 115(1–2):73–86
    72 J. Tiaden. Phase Field Simulations of the Peritectic Solidification of Fe-C. Jour-nal of Crystal Growth. 1999, 198–199(pt2):1275–1280
    73 T. M. Guo, H. J. Xu, T. Kyu, et al. Experimental Observation and Phase-fieldModeling of Interface Morphological Transition in Unidirectional Solidifica-tion. Solidification Processes and Microstructures: A Symposium in Honor ofWilfried Kurz. 2004:393–399
    74 D. Marcus, R. Folch, A. Parisi, et al. Three-dimensional Phase-field Simulationsof Directional Solidification. Solidification Processes and Microstructures. ASymposium in Honor of Wilfried Kurz. 2004:387–392
    75 N. Ma, A. Kazaryan, S. A. Dreqia, et al. Computer Simulation of TextureEvolution During Grain Growth: Effect of Boundary Properties and Initial Mi-crostructure. Acta Materialia. 2004, 52(13):3869–3879
    76赵代平,荆涛,柳百成.相场方法模拟铝合金三维枝晶生长.物理学报.2003, 52(7):1737–1742
    77张光跃,荆涛,柳百成.用相场方法模拟铝合金枝晶生长形貌.中国有色金属学报. 2002, 12(5):875–877
    78 J. H. Gao, R. G. Thompson. The Relationship between Real Time and MonteCarlo Time. Acta Mater. 1996, 44:4565–4575
    79 M. Y. Li, J. E. Kannatey-Asibu. Monte Carlo Simulation of Heat-Affected ZoneMicrostructure in Laser-Beam-Welded Nickel Sheet. Welding Journal. 2002,81(3):37–44
    80莫春立,钱百年,李殿中,等.铁素体不锈钢焊接HAZ的晶粒长大模型.材料研究学报. 2001, 15(3):343–347
    81温俊芹,刘新田,莫春立,等.焊接热影响区晶粒长大过程的微观组织模拟.焊接学报. 2003, 24(3):48–51
    82 D. Chen, Y. P. Lei, X. Y. Li, et al. Three Dimension Monte Carlo Simulation ofAustenite Grain Growth in CGHAZ of an Ultrafine Grain Steel. J. Mater. Sci.Technol. 2003, 19(4):309–312
    83 E. Bayraktar, D. Kaplan, L. Devillers, et al. Grain Growth Mechanism Dur-ing the Welding of Interstitial Free (if) Steels. Journal of Materials ProcessingTechnology. 2007, 189:114–125
    84 V. Y. Novikov. Grain Growth Controlled by Mobile Particles on Grain Bound-aries. Scripta Materialia. 2006, 55:243–246
    85 M. Ferry, N. E. Hamilton, F. J. Humphreys. Continuous and DiscontinuousGrain Coarsening in a Fine-grained Particle-contianing Al-Sc Alloy. Acta Ma-terialia. 2005, 53:1097–1109
    86 M. P. Anderson, G. S. Grest, D. J. Srolovitz. Computer Simulation of Nor-mal Grain Growth in Three Dimeensions. Philophical Magazine B. 1989,59(3):298–329
    87张世兴,邓鹏辉,刘新田.超纯铁素体不锈钢焊接热影响区晶粒生长的模拟.机械. 2005, 32(12):58–60
    88 T. Koseki, H. Inoue, Y. Fukuda, et al. Numerical Simulation of Equiaxed GrainFormation in Weld Solidification. Science and Technology of Advanced Mate-rials. 2003, 4:183–195
    89 D. Li, R. Li, P. Zhang. A Cellular Automaton Techique for Modeling of aBinary Dendritic Growth with Convection. Applied Mathematical Modelling.2007, 31:971–982
    90 Y. Suwa, Y. Saito, H. Onodera. Three-dimensional Phase Field Simulation of theEffect of Anisotropy in Grain Boundary Mobility on Growth Kinetics and Mor-phology of Grain Structure. Computational Materials Science. 2007, 40:40–50
    91 J. Li, J. Wang, G. Yang. Phase-field Simulation of Microstructure DevelopmentInvolving Nucleation and Crystallographic Orientations in Alloy Solidification.Jounrnal of Crystal Growth. 2007, 309:65–69
    92 S. Raghavan, S. S. Sahay. Modeling the Grain Growth Kinetics by CellularAutomation. Materials Science and Engineering A. 2007, 445–446:203–209
    93 P. Zhu, R. W. Smith. Dynamic Simulation of Crystal Growth by Monte CarloMethod-II: Ingot Microstructures. Acta Metall. 1992, 40(12):3369–3379
    94 P. S. Wei, F. K. Chung. Unsteady Marangoni Flow in a Molten Pool WhenWelding Dissimilar Metals. Metallurgical and Materials Transactions. 2000,31(6):1387–1403
    95 T. DebRoy, A. K. Majumdar, D. B. Spalding. Numerical Prediction of Re-circulating Flows with Free Convection Encountered in Gas-stirred Reactors.Applied Mathematical Modelling. 1978, 2:146–150
    96 T. DebRoy, A. K. Majumdar. Predicting Fluid Flow in Gas Stirred Systems.Journal of Metals. 1981, 33(11):42–47
    97 V. Pavelic, R. Tanbakuchi, O. Auyehara. Experimental and Computed Temper-ature Histories in Gas Tungsten Arc Welding of Thin Plateds. Welding JournalResearch Supplement. 1969, 48(7):295–305
    98 D. Zeng, W. P. Latham, A. Kar. Two-dimensional Model for Melting andVaporization During Optical Trepanning. Journal of Applied Physics. 2005,
    97(10):104912–1–104912–7
    99 J. G. Yeo, Y. G. Jung, S. C. Choi. Desigh and Microstructure of ZrO2/SUS316Functionally Graded Materials by Tape Casting. Materials Letters. 1998,37:304–311
    100 P. S. Wei, C. Y. Ho, M. D. Shian, et al. Three-dimensional Analytical Tempera-ture Field and its Application to Solidification Characteristics in High-or Low-power-density-beam Welding. International Journal of Heat and Mass Transfer.1997, 40(10):2283–2292
    101 S. P. Lu, H. Fujii, M. Tanaka, et al. Weld Shape Variation in Ar-O2 and Ar-CO2Shielded GTA Welding. Transactions of JWRI. 2004, 33(3):5–7
    102 S. Ling, M. P. Anderson. Monte Carlo Simulation of Grain Growth and Recrys-tallization in Polycrystalline Materials. JOM. 1992, 9:30–36
    103 Y. Saito, M. Enomoto. Monte Carlo Simulation of Grain Growth. ISIJ Interna-tional. 1992, 32(3):267–274
    104石德珂.材料科学基础. 1998:229–230
    105徐洲,姚寿山.材料加工原理. 2002:53–54
    106 T. Nakazawa, H. Kimura, K. Kimura, et al. Advanced Type Stainless Steel316FR for Fast Breeder Reactor Structures. Journal of Materials ProcessingTechnology. 2003, 143-144:905–909
    107黄开金,林鑫,谢长生.薄板012Al模具钢脉冲Nd: YAG激光熔凝的研究.中国机械工程. 2006, 17:327–330
    108 Y. N. Vladimir. Grain Growth Controlled by Mobile Particles on Grain Bound-aries. Scripta Materialia. 2006, 55:243–246
    109 Y. W. Shi, D. Chen, Y. P. Lei, et al. HAZ Microstructure Simulation in Weldingof a Ultra Fine Grain Steel. Computational Materials Science. 2000, 31:379–388110 H. C. Ming, C. L. Joanne, B. S. U. Patnaik, et al. Monte Carlo Simulation ofGrain Growth in Polycrystalline Materials. Applied Surface Science. 2006,252:3997–4002
    111 J. Moon, J. Lee, C. Lee. Prediction for the Austenite Grain Size in the Presenceof Growing Particles in the Weld HAZ of Ti-microsalloyed Steel. MaterialsScience and Engineering A. 2007, 459:40–46
    112 T. Watanabe, K. Shoubu, F. Egorov. Interphase Interaction in Materials of TiC-C and TiC-Cr2O3 System. Solid State Phenom. 1989, 8:383–396
    113 M. Shome, O. P. Gupta, O. N. Mohanty. A Modified Analytical Approach forModeling Grain Growth in the Coarse Grain HAZ of HSLA Steels. ScriptaMater. 2004, 50:1007–1010
    114刘艳,彭志方,任遥遥,等.一种测量相含量的方法.金属学报. 2002,38(2):131–134
    115赵双群,张麦仓,董建新,等.新型高温合金700?C实效组织及力学性能.稀有金属材料与工程. 2003, 32(12):921–924
    116刘会杰.焊接冶金与焊接性. 2007:43–48
    117 J. D. Hunt. Steady State Columner and Equiaxed Growth of Dendritic andEutectic. Materials Science and Engineering. 1984, 65:75–83
    118崔忠圻.金属学与热处理. 1989:38–46
    119 P. Zhu, R. W. Smith. Dynamic Simulation of Crystal Grwoth by Monte CarloMethod-I: Model Disription and Dinetics. Acta Metall. 1992, 40(4):683–692
    120宋小艳,刘国权,谷南驹.一个新的三维材料晶粒长大的图像仿真算法.计算机辅助设计与图形学学报. 2002, 17(2):297–302
    121姜寿文,赵国群,关小军,等.冷轧薄钢板退火在结晶的计算机模拟.特殊钢. 2002, 23(1):7–10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700