用户名: 密码: 验证码:
典型半导体器件的高功率微波效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波(High Power Microwave,HPM)是极具应用前景的新概念技术。由于其固有的物理特性,HPM能够干扰、压制、摧毁电子信息系统。HPM对电子信息系统的作用,根本原因是HPM对电子器件(特别是半导体器件)的作用。本文在研究HPM非线性效应的基础上,重点研究了双极型晶体管和MOS晶体管的非线性损伤效应,对半导体器件的抗HPM加固设计具有重要意义。
     系统研究了半导体器件的HPM非线性效应,指出非线性效应是HPM能量耦合到半导体器件内部并产生破坏效应的最根本机制,半导体器件在不同HPM功率作用下表现出不同程度的非线性效应:小功率时为非线性检波、非线性变频和非线性压缩效应,大功率时为非线性损伤效应;非线性检波、非线性变频是高频HPM能量转换成低频能量对低频电子系统发生干扰、扰乱效应的主要机制,获得了非线性检波/变频电压随HPM功率增大而增大但增长速率变慢的效应规律,得出检波/变频电压与微波功率的经验公式,获得了检波效率随带外微波频率增大而减小的效应规律;非线性压缩效应是微波器件HPM干扰效应的主要机制,获得了微波器件增益损耗随HPM功率增大而增大的效应规律及经验公式;非线性损伤效应是造成半导体HPM损伤效应主要机制,实验与仿真研究发现,半导体内部不可避免存在缺陷,缺陷使半导体PN结或氧化层局部HPM击穿损伤,在PN结或氧化层内部形成低电阻通道,对正常信号旁路分流,使半导体器件损伤降级;半导体损伤电流、损伤耗散功率、损伤程度随HPM功率增大而增大,损伤电阻随HPM功率增大而减小,得出了相应经验公式。
     深入研究了双极型晶体管的HPM效应。通过效应实验和失效分析,揭示了发射结损伤是HPM作用致双极型晶体管失效的基本机制。建立了HPM作用于双极型晶体管的物理过程与模型,并通过器件仿真分析确定了HPM引起器件失效的主要原因是HPM产生的感应电压脉冲引起双极型器件基区烧毁形成熔丝和产生大量缺陷。基区烧毁面积与缺陷数量随高功率微波作用的时间与功率增大而增大,不同的烧毁面积引起失效器件的直流特性将发生变化。器件仿真与实验结果吻合较好。
     深入研究了MOS晶体管的HPM效应。通过效应实验和失效分析,揭示了栅氧化层击穿及沟道穿通作用致MOS晶体管失效的基本机制。建立了nMOSFET在HPM作用下的二维电热模型,获得了器件内部电场、电流密度以及温度对HPM作用的响应规律,分析了源-衬底PN结、漏-衬底PN结附近器件内部温度分布随HPM作用时间的变化关系。结果表明nMOSFET器件漏极注入HPM时器件内部峰值温度出现在漏端PN结附近,且具有累积效应。当温度达到硅材料硅熔点,器件内部漏端PN结表面附近形成熔丝,器件损毁。该机理分析得到的器件特性变化与器件HPM损伤实验的测试结果相吻合。
     研究了集成电路的HPM效应。通过效应实验、参数测试和失效分析,揭示了片内晶体管PN结击穿致集成电路失效的基本机制。效应后参数测试结果表明,在哪个模块的引脚注入微波,则这个模块的相应参数出现异常,即此模块出现损伤。失效分析结果也验证了这一点。最后给出了抗强电磁脉冲设计初步建议。
High power microwave(HPM) is a promising novel technology for future use.Owing to its inherent character, HPM is able to disturb, suppress or damage electronicequipment. The effects of HPM on electronic equipment are finally added on electronicdevices, mainly on semiconductor devices. Based on the HPM nonlinear effects, theeffects on bipolar transistors and MOSFETs are selectively studied to aid anti-HPMdesign of semiconductor devices.
     HPM nonlinear effects are studied systematically and it is pointed out thatnonlinear effect is an essential mechanism when HPM energy is coupled into electronicsystems and further destroys its inner semiconductors. When the power level is low,semiconductors have nonlinear-demodulation effect, nonlinear-frequency-conversioneffect and nonlinear-compression effect; with the power increasing to certain threshold,nonlinear-damage effect takes place. The nonlinear-demodulation effect andnonlinear-frequency-conversion effect are the main mechanism when High Frequency(HF) HPM energy converts to Low Frequency (LF) energy and interferes or disturbs LFelectronic system. Experimental results show that demodulation voltage orfrequency-conversion voltage increases as HPM power increases, while the increasingrate decreases. Furthermore, the empirical formula of demodulation voltage orfrequency-conversion voltage vs. HPM power, and the effect law that demodulationefficiency decreases with the increases of out-band microwave frequency is summarized.The nonlinear–compression effect is the main mechanism when HPM acts onmicrowave components. Simulation and experiment results show that the gain loss ofmicrowave components increases as input HPM power increases. Then the empiricalformula describing gain loss vs. input power is obtained. The nonlinear-damage effectis the primary mechanism when HPM damage occurs in semiconductor. Researchshows that the defects cannot be avoided inside the semiconductor. And it is the defectsthat cause HPM breakdown in PN junction or oxide layer, then low resistance channelsform in these positions, finally result in degradation or damage of semiconductordevices. The higher of HPM power acts on semiconductor, the larger damage current,damage dissipation power and damage levels, and related empirical formulas are alsoobtained.
     HPM effects on bipolar transistors have been intensively studied throughexperiments, failure analysis and simulation, and the results show that the breakdown ofBE junction is the fundamental mechanism of bipolar failure induced by HPM. The physical process and model are proposed based on the experimental phenomena ofinjecting HPM into the BJT from base. The simulation result shows that the mainmechanism of failure and degradation of BJT caused by HPM is that the inducedvoltage pulses generated by HPM lead to the burn-up and the formation of the fuseelement and defect in the base. The burn area and defect number vary with the powerduring time of HPM on the devices, and cause the devices failure and the change of theDC characteristics.The simulation results match much well with the phenomena of theBJT HPM effect experiment,which indicates that the analysis in this paper is correct.
     HPM effects on MOSFETs have been intensively studied through experiments,failure analysis and simulation, and the results show that the breakdown of grid-oxideand channel burnout are the fundamental mechanism of MOSFETs’ failure caused byHPM. A two-dimensional electro-thermal model is established for the typicalsilicon-based MOSFET under HPM influence. Using the model, the responses of theinternal electric field, the current density and the temperature of devices to HPMinjection are obtained. Then the changes of the internal temperature distributions insidedevices with the HPM injection time is analyzed.The simulation and analysis resultsshow that the peak temperature occurs near the drain-substrate PN junction. Because theinternal peak temperature of devices continually increase to the melting point of thesilicon material under HPM injection, the fuse resistor forms in the region near thedrain-substrate PN junction firstly. As a result, the device is damaged because of thefuse generation. At last, through comparison of the I-V characteristics of the devicesconsidering the fuse structure in devices caused by HPM with the damaged devices inHPM injection experiment, the damage mechanism of devices under HPM injectionintroduced in this paper is confirmed.
     HPM effects on ICs are also studied. Results of experiments, parametersmeasurement and failure analysis show that breakdown of PN junctions in the IC is thefundamental mechanism of IC failure. Abnormal parameters appearing at damagedfunction module in IC Failure analysis confirm it.
引文
[1]刘国治.试验与研究.2000,1,23(1),1-4.
    [2]黄裕年.第二届全国高功率微波学术研讨会论文集.长沙:1996.450-460.
    [3]谢文楷.首届410-7HPM专题学术研讨会论文集(下).西安:1994.150-161.
    [4] James N. Benford, et al. Defense Nuclear Agency Alexandria. DNA-TR-94-49.1995.
    [5] Zeynep Dilli, Nuttiiya Seekhao, Jone C. Rodgers. An Introduction to theEvaluation of High Power Microwave Signals on Signaling Systems[C].International Semiconductor Device Research Symposium,2011,1-2.
    [6]陈昌华.带Bragg反射器高功率微波相对论返波管理论和实验研究[D].西安:西北核技术研究所,2005.
    [7] Neil, H.E.Weste and David Harris. CMOS VLSI Design:A Circuits and SystemsPerspective[M]. USA: Pearson Eduction.Inc,2006.
    [8] Jan M.Rabaey and Anantha Chandrakasan. Digital Integrated Circuits: A DesignPerspective[M]. second edition. USA: Prentice-Hall Publication,ISBN,2003.
    [9]李惠军.现代集成电路制造技术原理与实践[M].北京:电子工业出版社,2009.
    [10]李平.电子对抗第七届学术年会论文集.成都:1997.120-126.
    [11] James N. Benford, John A. Swegle and Edl Schamiloglu. High PowerMicrowaves[M]. Second Edition. USA:Taylor&Francis Group,LLC,2007.
    [12]丁武.第二届全国高功率微波学术研讨会论文集.长沙:1996.400-445.
    [13]李平,方进勇,刘国治等.试验与研究.2000,23(1),70-77.
    [14]方进勇,刘国治,李平等.强激光与粒子束.1999,10,11(5),639-642.
    [15]李平,刘国治,黄文华等.强激光与粒子束.2001,5,13(3),353-356.
    [16]李平,黄文华,刘国治.试验与研究.2000,1,23(1),78-85.
    [17]申菊爱,李平,宋志敏等.试验与研究.2000,1,23(1),105-111.
    [18]申菊爱,李平,刘小龙等.试验与研究.2000,1,23(1),112-115.
    [19]章勇华,杨志强,李平等.强激光与粒子束.2005,2,17(2),233-236.
    [20] G. Masetti, M. Severi, and S. Solmi. IEEE Transactions on Electron Devices.1983,ED-30,764–769.
    [21] C. Canali, G. Majni, R. Minder, and G. Ottaviani. IEEE Trans. On ElectronDev.1975,ED-22,1045-1047.
    [22]杨雨川,谭吉春,盛定仪等.强激光与粒子束.2008,4,20(4),649-652.
    [23] Erik C. Becker, Scott D. Kovaleski, John M. Gahl. High Power S-BandMicrowave Radiation from Small Body Waveguides[C]. IEEE Pulsed PowerConference.1999, JUNE,519-523.
    [24] Sharon Weinberger. Nature.2012,9,Vol.489,198-200.
    [25] James Benford. Space Applications of High-Power Microwaves[J]. IEEE Trans.On Plasma Science.2008,36(3),569-581.
    [26] J. Walker, M. McQuage. Directed Energy Using High-Power MicrowaveTechnology[R]. ADA557875,2012, u1217,78-81.
    [27] V.V.Rostov, E.M.Totmeninov and M.I.Yalandin. Technical Physics.2008,11(53),1471-1478.
    [28] R. L. Seaman. Review of Literature on High Power Microwave Pulse BiologicalEffects[R]. ADA512553,2009, u1010,24P.
    [29] N. A. Estep. High Power Microwave (HPM) and Ionizing Radiation Effects onCMOS Devices[R]. ADA518384,2010, u1017,129P.
    [30] M. A. Holloway. Characterization and Modeling of High Power MicrowaveEffects in CMOS Microelectronics[R]. ADA564046,2010, u1302,207P.
    [31]杨德秀等译.高功率微波系统和效应[M].绵阳:中物院科技信息中心,1995.
    [32] W. C. Ng. Report Lawrence Livernore National Lab UCID-21687TechnicalReport.1989,5.
    [33] Robert J. Barker, Edl Schamiloglu. High-Power Microwaves Sources andTechnolgies[M]. USA:EISBN0-7803-6006-9,2001.
    [34] Eugene M. Totmeninov, Alexander V. Gunin, et al. X-Band RelativisticBWO-RR With Controlled Microwave Pulse Duration[J]. IEEE Trans. OnPlasma Science.2012,40(6),1590-1593.
    [35] Orvis W.J.et al. Final Report Lawrence Livernore National Lab UCRL-53573,1984.
    [36] Richard Zacharias and Steve Pennock, et al. IEEE AES systems magazine.1992,1,24-31.
    [37] Backstrom M.G,Lovstrand K.G. IEEE Trans. On Electromagnetic Compatibility.2004,3,46(3),396-403.
    [38]陈权.集成器件的高功率微波效应研究与相应防护[D].西安:西安电子科技大学,2013.
    [39]邓永孝.半导体器件失效分析[M].北京:宇航出版社,1991.
    [40]孔学东,恩云飞.电子元器件失效分析与典型案例[M].北京:国防工业出版社,2006.
    [41] V.M.Dwyer, A.J.Franklin and D.S.Compell. Thermal Failure inSemiconductor[J]. Device Solid state Elect.1990,33(5),533-560.
    [42]郭红霞,陈雨生,张义门.核电子学与探测技术.2004,11,24(6),608-611.
    [43]周怀安,杜正伟,龚克.强激光与粒子束.2005,5,17(5),783-787.
    [44]周怀安,杜正伟,龚克.强激光与粒子束.2005,12,17(12),1861-1864.
    [45]周怀安,杜正伟,龚克.强激光与粒子束.2006,4,18(4),689-692.
    [46]陈曦,杜正伟,龚克.强激光与粒子束.2007,7,19(7),1197-1202.
    [47] B.Goplen and J.McDonald. DIODE2D-A Two Dimensional Code forSemiconductor Simulations. MRC/WDC-R-062, Mission Research corp.Alexandria,VA,Sept.,1983.
    [48] W. J. Orvis,J.H.Yee. Semiconductor Device Modeling with BURN42,AOne-dimensional code for Modeling Solid State Devices. UCID-20602(1985).Synopsys. Inc. Taurs-Medici User Guide. Version X-2005.10,October2005.
    [49]贡顶,王建国,张殿辉.计算物理.2007,3,24(2),247-252.
    [50] L.R.McMurray and C.T.Kleiner. IEEE Tran. on Nuclear Science.1972,6,19(6),76-81.
    [51] J.J.Whalen, J.G.Tront, C.E.Larson et al. IEEE Transaction on ElectromagneticCompatibility.1979,Vol. EMC-21(4),291-297.
    [52]章勇华,黄文华,李平.强激光与粒子束.2009,4,21(4),560-564.
    [53]王文祥.微波工程技术[M].北京:国防工业出版社,2009.
    [54]李平,黄文华,刘国治.微波器件和微波接收机HPM效应数据总结报告[R].西安:西北核技术研究所,2006.
    [55]张肇仪等译.微波工程[M].北京:电子工业出版社,2009.
    [56]沈致远.微波技术[M].北京:国防工业出版社,1980.
    [57]王广发.半导体器件物理基础[M].成都:电子科技大学出版社,1994.
    [58]赵保经.微波集成电路[M].北京:国防工业出版社,1995.
    [59]郝崇骏,韩永宁,袁乃昌等.微波电路[M].长沙:国防科技大学出版社,1999.
    [60]邓宁,田立林,任敏译.半导体器件基础[M].北京:清华大学出版社,2008.
    [61]黄如,王漪,王金延等译.半导体器件基础[M].北京:电子工业出版社,2004.
    [62]赵毅强,姚素英,解晓东等译.半导体物理与器件[M].北京:电子工业出版社,2005.
    [63]薛正辉,杨仕明,李伟明等.微波固态电路[M].北京:北京理工大学出版社,2004.
    [64]顾墨琳.固态微波电路设计[M].南京:《SSS》丛书编辑部出版,1991.
    [65]王子宇,张肇仪,徐承和等译.射频电路设计与应用[M].北京:电子工业出版社,2002.
    [66] Jack.K Keller. Protection of MOS Integrated Circuits from Destruction byElectrostatic Discharge. Electeical Overstress/Electrostatic Discharge SymposiumProceedings,SEP.1980.
    [67]王宏宝,于红云,刘俊岭译.电子电路分析与设计[M].北京:清华大学出版社,2009.
    [68]鲍景富,何松柏等译.射频微波功率场效应管的建模与特征[M].北京:电子工业出版社,2009.
    [69]童诗白.模拟电子技术基础[M].北京:高等教育出版社,1988.
    [70]周润德等译.数字集成电路-电路、系统与设计[M].北京:电子工业出版社,2009.
    [71]尹雪飞,陈克安.集成电路速查大全[M].西安:西安电子科技大学出版社,1997.
    [72]赖祖武.抗辐射电子学-辐射效应与加固原理[M].北京:国防工业出版社,1998.
    [73]杜武林.高频电路原理与分析[M].西安:西安电子科技大学出版社,1986.
    [74] A.J.Franklin,V.M.Dwyer and D.S.Campbell. Solid-State Electronics.1990,8,33(8),1055-1064.
    [75] Wallace B.Smith, Duane H.Pontius and Paual P.Budenstein. IEEE Transactionson Electron Devices.1973,8, VOL.ED-20(8):721-744.
    [76]阎石.数字电子技术基础[M].北京:高等教育出版社,1981.
    [77] D.C.Wunsch and R.R.Bell. IEEEE Trans. Nucl. Sci.1968,15(6),244-259.
    [78] M. Gonschorek, J.–F. Carlin, and E. Feltin, et al. Self heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IVcharacteristics[J]. Journal of Applied Physics.2011,109(6),
    [79]任瑞涛.集成电路HPM损伤的计算机模拟[D].沈阳:沈阳理工大学,2008.
    [80] Robert F. P.半导体器件基础[M].北京:电子工业出版社,2010,440-448.
    [81]查薇. MOS器件的HPM辐照效应研究[D].西安:西安电子科技大学,2008.
    [82]游海龙,蓝建春,范菊平等.物理学报.2012,61(10),108501(1-7).
    [83]马晓华.90nm CMOS器件强场可靠性研究[D].西安:西安电子科技大学,2006.
    [84] Pradeep Lall等著,贾颖等译.温度对微电子和系统可靠性的影响[M].北京:国防工业出版社,1997,68-69.
    [85] Zhao Cezhou, Zhang Desheng, Shi Baohua. Hot carrier effect model, mechanismand effects on C-V and I-V characteristics in MOS structure.1996,36,493-49.
    [86]方进勇,宁辉,张世龙.物理学报.2003,52(4),911-913.
    [87]蓝建春.高功率微波引起MOSFET失效典型机理研究[D].西安:西安电子科技大学,2013.
    [88] G. Masetti, M. Severi, and S. Solmi. IEEE Transactions on Electron Devices.1983,ED-30,764–769.
    [89]杨雨川,谭吉春,盛定仪等.强激光与粒子束.2008,4,20(4),649-652.
    [90] Neamen Donald A. semiconductor physics and devices basic principles[M]. NewYork:McGraw-Hill,2002,537-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700