用户名: 密码: 验证码:
纳米CMOS集成电路单粒子诱导的脉冲窄化及电荷共享效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国航天科技迅速发展,航天器对先进集成电路抗辐照技术的研究需求十分迫切。随着集成电路工艺的不断进步、芯片上集成的晶体管数目不断增加、时钟频率不断增加、工作电压以及节点电容不断降低,电荷共享已逐渐成为纳米集成电路单粒子失效的主要模式之一。
     在纳米工艺下,器件尺寸以及器件间距的缩减使得单个重离子轨迹已经能够同时覆盖多器件,从而导致多个器件同时收集电荷。一方面,电荷共享效应导致的MBU使得目前针对单个节点的加固方法如DICE、TMR等都将面临失效,因此抑制电荷共享效应成为抑制电路发生软错误的重要手段;另一方面,研究表明电荷共享效应可能由于发生脉冲窄化(Pulse Quenching)而导致电路中传播的SET脉冲宽度缩减,因此增强电相关邻近晶体管间的电荷共享效应也成为了单粒子效应加固的一种思路。版图结构、外界粒子、工艺掺杂、电源电压、体偏置等因素都会随着实际应用环境的改变而变化,研究这些因素对电荷共享及脉冲窄化的影响将对抗辐照集成电路设计提供理论依据。此外,由于SRAM存储结构的单粒子效应敏感特性及其加固的重要性,充分考虑此类电路在纳米尺度下的电荷共享效应机理及提出有效的加固策略,对于纳米抗辐照加固集成电路设计具有重要指导意义。本文针对纳米CMOS体硅工艺,对电荷共享效应的物理机理及加固技术进行了深入讨论,主要取得如下几个方面的研究成果:
     (1)发现相邻两个器件的间距和它们之间的信号传播延迟最小时,可以最大的抑制传播的SET脉冲宽度,这为纳米工艺下辐射加固集成电路的设计提供了新的思路。研究了影响脉冲窄化效应的各种关键性因素,结果表明传播的SET脉宽与入射粒子的能量并不成正比关系,因此利用多节点电荷收集进行抗辐射加固电路设计时需要注意电路发生SET/SEU的LET阈值界定,即电路在高LET值时满足抗辐照指标却可能在较低LET值时产生软错误,辐照试验应该对产生最坏响应的LET值进行重点评估。
     (2)发现改变P+深阱掺杂和衬底掺杂将会影响电荷收集量,从而影响到电路中传播的SET脉冲宽度,从抗辐照加固的角度提出在允许的范围内适当降低P+深阱的掺杂浓度或提高衬底的掺杂浓度,可以最大程度的减小传播的SET脉宽。本文研究了P+深阱掺杂和衬底掺杂对电荷共享效应及脉冲窄化的影响,结果表明P+深阱掺杂和衬底掺杂都主要是影响SET电流中的双极放大成份,改变这些浓度对NMOS器件影响不大,而对PMOS器件的影响十分显著。
     (3)发现在电荷共享效应显著的电路中,传播至下一级的SET脉冲宽度随着电源电压的缩减而降低,该结论修正了以往认为超低功耗应用电路对单粒子事件会更加敏感的悲观结论。本文研究了电源电压对电荷收集机理的影响,表明电源电压主要是影响寄生BJT的双极放大增益,源极在SET脉冲的电源电压相关性中起到了重要作用。
     (4)发现对于反向体偏置的低功耗设计技术,P-hit的SEE敏感性保持不变;对于正向偏置的高速电路应用,P-hit的SEE敏感性随着体偏电压的增大会降低,同时N-hit的SEE敏感性却几乎与体偏置无关。本文研究了体硅CMOS双阱工艺中体偏置效应对SET、电荷共享及脉冲窄化的影响,对于发生脉冲窄化的电路,随着体偏电压的增大,传播至下一级的SET脉冲宽度会增加,这与单个节点的变化情况恰好相反。
     (5)发现SRAM单元中由于电荷共享而导致的单粒子翻转恢复效应的新机理,以此为基础提出了一种新型抗SEU的SRAM版图结构。结论表明电荷共享收集在SEU恢复过程中起关键性的作用,更大角度的轰击可能会引起更强的电荷共享效应,从而增强了存储状态发生单粒子翻转恢复的能力。本文提出的版图结构可以在可靠性和面积开销方面同时获得好处,这对于纳米工艺下降低单粒子翻转的抗辐照加固设计具有重要的借鉴价值。
With the rapid development of China's aerospace science and technology, theresearch work of anti-radiation technology for advanced ICs is very urgent forspacecraft. With the continuous development of ICs technology, the number oftransistors integrated on a chip is increasing, clock frequency is increasing, theoperating voltage and the node capacitance are reducing, thus charge sharing hasbecome one of the main failure mode of nano ICs caused by Single Event.
     For nano technology, an ion trajectory has been able to cover more than one devicedue to the reduction of the device feature and the layout spacing, leading to multipledevices simultaneously collect charges. On the one hand, MBU led by the chargesharing effect makes radiation-harden methods such as DICE, TMR, are all facingfailure, thus inhibiting the charge sharing becomes one of the important mean ofinhibiting soft error in circuits. On the other hand, studies have shown that chargesharing may lead to the propagating SET pulsewidths reducing, thus enhancing thecharge sharing effect between the electrically adjacent transistors also becomes aneffective method. Layout structures, particles from the airspace, process doping, supplyvoltage, body bias and other factors will vary with the application environment, andunderstanding the influence of these factors on the charge sharing and Pulse Quenchingcan provide guidance for irradiation ICs design. In addition, due to the sensitivecharacteristics of SRAM cells to SEE, fully considering charge sharing mechanism ofsuch circuit in nanoscale and proposing effective reinforcement strategy are significantfor nano radiation-hardened design. Based on nano CMOS bulk silicon technology, thispaper investigated the physical mechanism of the charge sharing and radiation-hardentechnology in-depth, and mainly achieved the following aspects:
     (1) It is found that the SET pulsewidths can be greatly inhibited by minimizing thelayout spacing and signal propagation delay, which sheds new light on theradiation-hardened ICs design. The impact of key factors on Pulse Quenching wasstudied in depth, and the results show that the SET pulsewidths of propagation are not indirect proportion to the LET of incident particles, thus the defining of the LET thresholdshould be noted when SET/SEU occurs for the radiation-hardened design. Thecapability of anti-radiation meets the demand when LET is high but some soft errorsmay occur when LET is low. Therefore, radiation experiments should be focused onevaluating the LET that demonstrates the worst response to the circuit.
     (2) We have found that P+deep well doping and substrate doping can affect thecharge collection of the active and passive devices in nano-technology, thus affectingthe propagating SET pulsewidths in circuits. The propagating SET pulsewidths can bequenched by reducing the doping of P+deep well or increasing the substrate doping in the appropriate range. The effect of P+deep well doping and substrate doping on chargesharing and Pulse Quenching are investigated, which shows that the doping of P+deepwell mainly affects the bipolar amplification component of SET current, and thatchanging the P+deep well doping has little effect on NMOS but great effect on PMOS.
     (3) We have found that the SET pulse width propagating to subsequent stages in acircuit decreases with reduced power supply voltage, which runs counter to thepessimistic conclusion that ultra-low power applications are much more susceptible todisruption from particle strikes. Supply voltage dependency of SET propagation andmulti-node charge collection phenomena in CMOS ICs were also studied.
     (4) It is found that the sensitivity of SEE for P-hit is kept constant for the reversebody bias used in low power consumption technology while it reduces with theincreasing of body bias voltage for the forward body bias used in high speed circuits. Atthe same time, the susceptivity of SEE for N-hit is independent of the body bias. Theeffect of body bias on SET, charge sharing and Pulse Quenching were analyzed, and it isshown that the effect of body biasing on SET pulsewidths propagation is contrary withthe hit node when Pulse Quenching effect is considered.
     (5) It is found that the multi-node charge collection plays a key role on recoverymechanism, and it is shown that larger angle can bring about stronger charge sharingeffect, thus strengthening the recovery ability. The recovery mechanism of SEU wasstudied and a novel layout has been proposed to reduce the SEU vulnerability inSRAMs. The layout strategy proposed can gain both reliability and area cost benefitsimultaneously.
引文
[1]王长河.单粒子效应对卫星空间运行可靠性影响[J].半导体情报,1998,35(1):1~8.
    [2] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, J. A. Felix. Current and FutureChallenges in Radiation Effects on CMOS Electronics [J]. IEEE Transactions onNuclear Science,2010,57(4):1747~1763.
    [3] R. D. Schrimpf, K. M. Warren, R. A. Weller, R. A. Reed, L. W. Massengill, M. L.Alles, D. M. Fleetwood, X. J. Zhou, L. Tsetseris, S. T. Pantelides. Reliability andRadiation Effects in IC Technologies [C]. IEEE International Reliability PhysicsSymposium,2008:97~106.
    [4] H. L. Hughes, J. M. Benedetto. Radiation effects and hardening of MOStechnology: devices and circuits [J]. IEEE Transactions on Nuclear Science,2003,50(3):500~521.
    [5] J. Benedetto, P. Eaton, K. Avery, et al. Heavy Ion-Induced Digital Single EventTransients in Deep Submicron Processes [J]. IEEE Transactions on NuclearScience,2004,51(6):3480~3485.
    [6] D. G. Mavis, P. H. Eaton. Soft Error Rate Mitigation Techniques for ModernMicrocircuits [C]. IEEE International Reliability Physics Symposium,2003:60~70.
    [7] J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, T. Turflinger, Variationof Digital SET Pulse Widths and the Implications for Single Event Hardening ofAdvanced CMOS Processes [J]. IEEE Transactions on Nuclear Science,2005,52(6):2114~2119.
    [8] P. E. Dodd, L. W. Massengill. Basic Mechanisms and Modeling of Single-EventUpset in Digitial Microelectronics [J]. IEEE Transactions on Nuclear Science,2003,50(3):583~602.
    [9] L. W. Massengill. SEU modeling and prediction techniques [C]. IEEE NSRECShort Course,1993: III-1~III-93.
    [10] S. M. Sze. Physics of Semiconductor Devices [M].2nd edition, Murray Hill, NJ:John Wiley and Sons,1981:74~81.
    [11] O. A. Amusan. Effects of Single-event-induced Charge Sharing in Sub-100nmBulk CMOS Technologies [D]. TN, USA: Vanderbilt University,2009.
    [12] E. Petersen. Soft Errors Due to Protons in the Radiation Belt [J]. IEEETransactions on Nuclear Science,1981,28(6):3981~3986.
    [13] F. Wrobel, J. M. Palau, M. C. Calvet, O. Bersillon, H. Duarte. Incidence ofMulti-particle Events on Soft Error Rates Caused by n-Si Nuclear Reactions [J].IEEE Transactions on Nuclear Science,2000,47(6):2580~2585.
    [14] P. E. Dodd. Basic Mechanisms for Single-Event Effects [C]. IEEE NSREC ShortCourse,1999: II-1~II-85.
    [15] R. A. Reed, P. J. McNulty, W. G. Abdel-Kade. Implications of Angle ofIncidence in SEU Testing of Modern Circuits [J]. IEEE Transactions on NuclearScience,1994,41(6):2049~2054.
    [16] R. A. Reed, P. W. Marshall, H. S. Kim, P. J. McNulty, B. Fodness, T. M. Jordan,R. Reedy, C. Tabbert, M. S. T. Liu, W. Heikkila, S. Buchner, R. Ladbury, K. A.LaBel. Evidence for angular effects in protoninduced single-event upsets [J].IEEE Transactions on Nuclear Science,2002,49(6):3038~3044.
    [17] A. D. Tipton, J. A. Pellish, R. A. Reed, R. D. Schrimpf, R. A. Weller, M.H.Mendenhall, B. Sierawski, A. K. Sutton, R. M. Diestelhorst, G. Espinel, J. D.Cressler, P. W. Marshall, G. Vizkelethy. Multiple-Bit Upset in130nm CMOSTechnology [J]. IEEE Transactions on Nuclear Science,2006,53(6):3259~3264.
    [18] R. A. Reed. Fundamental Mechanisms for Single Particle-Induced Soft Errors.SEU modeling and prediction techniques [C]. IEEE NSREC Short Course,2008:I-8~I-25.
    [19] R. F. Pierret,G. W. Neudecks Eds. Advanced Semiconductor Fundamentals [M].Modular Series on Solid State Devices,1989: vol.6, chapter6.
    [20] R. Baumann. Single-event Effects in Advanced CMOS [C]. IEEE NSREC ShortCourse,2005: II-1~II-59.
    [21] G. C. Messenger. Collection of Charge on Junction Nodes from Ion Tracks [J].IEEE Transactions on Nuclear Science,1982,29(6):2024~2031.
    [22] C. M. Hsieh, P. C. Murley, R. R. O’Brien. A Field-funneling Effect on theCollection of Alpha-particle-generated Carriers in Silicon Devices [J]. IEEEElectron Device Lettter,1981,2(4):103~105.
    [23] C. M. Hsieh, P. C. Murley, R. R. O’Brien. Collection of Charge fromAlpha-particle Tracks in Silicon Devices [J]. IEEE Electron Device Letter,30(6)686~693.
    [24] J. R. Hauser, S. E. Diehl-Nagle, A. R. Knudson, A. B. Campbell, W. J. Stapor, P.Shapiro. Ion Track Shunt Effects in Multi-Junction Structures [J]. IEEETransactions on Nuclear Science,1985,32(6):4115~4121.
    [25] P. E. Dodd, F. W. Sexton, G. L. Hash, M. R. Shaneyfelt, B. L. Draper, A. J.Farino, R. S. Flores. Impact of Technology Trends on SEU in CMOS SRAMs.[J]. IEEE Transactions on Nuclear Science,1996,43(6):2797~2804.
    [26] S. E. Kerns, L. W. Massengill, D. V. Kerns, Jr., M. L. Alles, T. W. Houston, H.Lu, L. R. Hite. Model for CMOS/SOI Single-event Vulnerability [J]. IEEETransactions on Nuclear Science,1989,36(6):2305~2310.
    [27] O. A. Amusan, A. F. Witulski, L. W. Massengill, B. L. Bhuva, P. R. Fleming, M.L. Alles, A. L. Sternberg, J. D. Black, R. D. Schrimpf. Charge Collection andCharge Sharing in a130nm CMOS Technology [J]. IEEE Transactions onNuclear Science,2006,53(6):3253~3258.
    [28] J. S. Fu, C. L. Axness, H. T. Weaver. Memory SEU Simulations Using2-DTransport Calculations [J]. IEEE Electron Device Letter,1985,6(8):422~424.
    [29] R. L. Woodruff, P. J. Rudeck. Three-dimensional Numerical Simulation ofSingle Event Upset of an SRAM Cell [J]. IEEE Transactions on Nuclear Science,1993,40(6)1795~1803.
    [30] B. D. Olson, D. R. Ball, K. M. Warren, L. W. Massengill, N. F. Haddad, S. E.Doyle, D. McMorrow. Simultaneous Single Event Charge Sharing and ParasiticBipolar Conduction in a Highly-scaled SRAM Design [J]. IEEE Transactions onNuclear Science,2005,52(6):2132~2136.
    [31] B. D. Olson, O. A. Amusan, S. Dasgupta, L. W. Massengill, A. F. Witulski, B. L.Bhuva, M. L. Alles, K. M. Warren, D. R. Ball. Analysis of Parasitic pnp BipolarTransistor Mitigation Using Well Contacts in130nm and90nm CMOSTechnology [J]. IEEE Transactions on Nuclear Science,2007,54(4):894~897.
    [32] J. R. Ahlbin. Characterization of the Mechanisms Affecting Single-eventTransients in Sub-100nm Technologies [D]. TN, USA: Vanderbilt University,2012.
    [33] R. C. Baumann. Single Event Effects in Advanced CMOS Technology [C]. IEEENSREC Short Course Text,2005.
    [34] K. P. Rodbell, D. F. Heidel, H. H. K. Tang, M. S. Gordon, P. Oldiges, C. E.Murray. Low-energy Proton-induced Single-event-upsets in65nm Node,Silicon-on-insulator, Latches and Memory Cells [J]. IEEE Transactions onNuclear Science,2007,54(6):2474~2479.
    [35] S. Buchne, M. Baze. Single-event Transients in Fast Electronic Circuits [C].IEEE NSREC Short Course,2001: V-1~V-105.
    [36] N. Seifert, X. Zhu, D. Moyer, D. Moyer, et al. Frequency Dependence of SoftError Rates for Sub-Micro CMOS Technologies [C]. International ElectronDevices Meeting,2001:1441~1444.
    [37] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L. Alvisi. Modeling theEffect of Technology Trends on the Soft Error Rate of Combinational Logic [C].International Conference on Dependable Systems and Networks,2002:389~398.
    [38] J. Ahlbin, J. D. Black, L. W. Massengill, et al. C-CREST Technique forCombinational Logic SET Testing [J]. IEEE Transactions on Nuclear Science,2008,55(6):3347~3351.
    [39] N. N. Mahatme, S. Jagannathan, T. D. Loveless, L. W. Massengill, B. L. Bhuva,S. J. Wen, R. Wong. Comparison of Combinational and Sequential Error Ratesfor a Deep Submicron Process [J]. IEEE Transactions on Nuclear Science,2011,58(6):2719~2725.
    [40] N. N. Mahatme, I. Chatterjee, B. L. Bhuva, J. Ahlbin, L. W Massengill, R.Shuler. Analysis of Soft Error Rates in Combinational and Sequential Logic andImplications of Hardening for Advanced Technologies [C]. IEEE InternationalReliability Physics Symposium,2010:1031~1035.
    [41] N. Seifert, D. Moyer, N. Leland, R. Hokinson. Historical Trends inAlpha-particle Induced Soft Error Rates of the Alpha Microprocessor [C]. IEEEInternational Reliability Physics Symposium,2000:259~265.
    [42] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, C. Dai. Impact of CMOSProcess Scaling and SOI on Soft Error Rates of Logic Processors [C]. IEEESymposium on VLSI Technology,2001:73~74.
    [43] R. Baumann. The Impact of Technology Scaling on Soft Error Rate Performanceand Limits to the Efficacy of Error Correction [C]. IEDM,2002:329~332.
    [44] A. H. Johnston. Radiation Effects in Advanced Microelectronics Technologies[J]. IEEE Transactions on Nuclear Science,1998,45(3):1339~1354.
    [45] D. G. Mavis, P. H. Eaton. SEU and SET Modeling and Mitigation in DeepSubmicron Technologies [C]. IEEE International Reliability Physics Symposium,2007:293~305.
    [46] R. Harboe-Sorensen, E. Daly, F. Teston, et al. Observation and Analysis ofSingle Event Effects on-board the Soho Satellite [J]. IEEE Transactions onNuclear Science,2002,49(3):1345~1350.
    [47] S. DasGupta, A. F. Witulski, B. L. Bhuva, M. L. Alles, R. A. Reed, O. A.Amusan, J. R. Ahlbin, R. D. Schrimpf, L. W. Massengill. Effect of Well andSubstrate Potential Modulation on Single Event Pulse Shape in Deep SubmicronCMOS [J]. IEEE Transactions on Nuclear Science,2007,54(6):2407~2412.
    [48] D. Kobayashi, H. Saito, Kazuyuki, Hirose. Estimation of Single Event TransientVoltage Pulses in VLSI Circuits from Heavy-Ion-Induced Transient CurrentsMeasured in a Single MOSFET [J]. IEEE Transactions on Nuclear Science,2007,54(4):1037~1041.
    [49] D. Kobayashi, K. Hirose, T. Makino. Feasibility Study of a Table-BasedSET-Pulse Estimation in Logic Cells from Heavy-Ion-Induced TransientCurrents Measured in a Single MOSFET [J]. IEEE Transactions on NuclearScience,2007,54(6):2347~2354.
    [50] J. S. Kauppila, A. L. Sternberg, M. L. Alles. A Bias-Dependent Single-EventCompact Model Implemented Into BSIM4and a90nm CMOS Process DesignKit [J]. IEEE Transactions on Nuclear Science,2009,56(6):3152~3157.
    [51] D. Kobayashi, K. Hirose, V. Ferlet-Cavrois. Device-Physics-Based AnalyticalModel for Single-Event Transients in SOI CMOS Logic [J]. IEEE Transactionson Nuclear Science,2009,56(6):3043~3049.
    [52] T. Calin, M. Nicolaidis, R. Velazco. Upset hardened memory design forsubmicron CMOS technology [J]. IEEE Transactions on Nuclear Science,1996,43(6):2874~2878.
    [53] S. Jagannathan, T. D. Loveless, B. L. Bhuva, S.-J. Wen, R. Wong, M. Sachdev,D. Rennie, L. W. Massengill. Single-Event Tolerant Flip-Flop Designin40-nmBulk CMOS Technology [J]. IEEE Transactions on Nuclear Science,2011,58(6):3033~3037.
    [54] Zoutendyk J A, Edmonds L D, and Smith L S. Characterization of Multiple-biterrors from Single-ion Tracks in integrated circuits [J]. IEEE Transactions onNuclear Science,1989,36(6):2267~2274.
    [55] N. P. Seifert, et al. Radiation-Induced Soft Error Rates of Advanced CMOS BulkDevices [C]. IEEE International Reliability Physics Symposium,2006:217~225.
    [56] D. Radaelli. Investigation of Multi-Bit Upsets in a150nm Technology SRAMDevice [J]. IEEE Transactions on Nuclear Science,2005,52(6):2433~2437.
    [57] Y. Kawakami, et al. Investigation of Soft Error Rate including Multi-Bit Upsetsin Advanced SRAM Using Neutron Irradiation Test and3-D Mixed-ModeDevice Simulation [C]. International Electron Device Meeting,2004:945~948.
    [58] A. M. Chugg, M. J. Moutrie, A. J. Burnell, et al. A Statistical Technique toMeasure the Proportion of MBU’s in SEE Testing [J]. IEEE Transactions onNuclear Science,2006,53(6):3139~3144.
    [59] Paul E. Dodd, F. W. Sexton, and P. S. Winokur. Three-dimensional simulation ofcharge collection and multiple-bit upset in Si devices [J]. IEEE Transactions onNuclear Science,1994,41(6):2005~2017.
    [60] D. Giot, G. Gasiot, and P. Roche. Multiple bit upset analysis in90nm SRAMs:Heavy ions testing and3D simulations [C]. RADECS,2006.
    [61] T. Merelle, et al. Monte-Carlo simulations to quantify neutron-induced multiplebit upsets in advanced SRAMs [J]. IEEE Transactions on Nuclear Science,2005,52(5):1538~1544.
    [62] Olson B.D., Ball D.R., Warren K.M., et al. Simultaneous single event chargesharing and parasitic bipolar conduction in a highly-scaled SRAM design [J].IEEE Transactions on Nuclear Science,2005,52(6):2132~2136.
    [63] O. A. Amusan, L. W. Massengill, B. L. Bhuva, et al. Angular effects of chargesharing in a90nm CMOS technology [C]. The Single Event Effects (SEE)Symposium,2007.
    [64] O. A. Amusan, A. L. Sternberg, A. F. Witulski, B. L. Bhuva, J. D. Black, M. P.Baze, L. W. Massengill. Single event upsets in a130nm hardened latch designdue to charge sharing [C]. IEEE International Reliability Physics Symposium,2007:306~311.
    [65] M. P. Baze, J. Wert, A. F. Witulski, D. McMorrow, J. W. Clement, M. G. Hubert.Heavy Ion Test Results on13Shift Registers in a130nm Process [C]. TheSingle Event Effects (SEE) Symposium,2006.
    [66] L. W. Massengill. Scaling vs. SEE Mitigation [C]. The Single Event Effects(SEE) Symposium,2006.
    [67] K. Blotekjaer. Transport Equations for Electrons in Two-valley Semiconductors[J]. IEEE Transactions on Electron Devices,1970,17(1):38~47.
    [68]郭红霞.集成电路电离辐射效应数值模拟及X射线剂量增强效应研究[D].西安:西安电子科技大学,2000.
    [69] P.E. Dodd, M. R. Shaneyfelt, J. A. Felix, J. R. Schwank. Production andPropagation of Single-event Transients in High-speed Digital logic ICs [J]. IEEETransactions on Nuclear Science,2004,51(6):3278~3284.
    [70] K. Mohanram. Simulation of Transients Caused by Single-event Upsets inCombinational Logic [C]. International Test Conference,2005.
    [71] Liu Biwei, Chen Shuming, Liang Bin, Liu Zheng, Zhao Zhenyu. The Effect ofRe-convergence on SER Estimation in Combinational Circuits [J]. IEEETransactions on Nuclear Science,2009,56(6):3122~3129.
    [72] M. J. Bellido-Diaz, J. Juan-Chico, A. J. Acosta, M. Valencia, J. L. Huertas.Logical Modelling of Delay Degradation Effect in Static CMOS Gates [J]. IEEECircuits Devices System,2000,147(2):107~117.
    [73] G. Gasiot, D. Giot, and P. Roche. Multiple Cell Upsets as the Key Contributionto the Total SER of65nm CMOS SRAMs and Its Dependence on WellEngineering [J]. IEEE Transactions on Nuclear Science,2007,54(6):2468~2473.
    [74] M. Omana, G. Papasso, D. Rossi, C. Metra. A Model for Transient FaultPropagation in Combinatorial Logic [C]. IEEE International On-Line TestingSymposium,2003,111~115.
    [75] A. D. Tipton, J. A. Pellish, J. M. Hutson, et al. Device-Orientation Effects onMultiple-Bit Upset in65nm SRAMs [J]. IEEE Transactions on Nuclear Science,2008,55(6):2880~2886.
    [76] Hutson, J.M.; Pellish, J.A.; Tipton, A.D.; Evidence for Lateral Angle Effect onSingle-Event Latchup in65nm SRAMs [J]. IEEE Transactions on NuclearScience,2009,56(1):208~213.
    [77] Chen Shuming, Liang Bin, Liu Biwei, Liu Zheng. Temperature Dependence ofDigital SET Pulse Width in Bulk and SOI Technologies [J]. IEEE Transactionson Nuclear Science,2008,55(6):2914~2920.
    [78]刘凡宇,刘衡竹,刘必慰,梁斌,陈建军.90nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响[J].物理学报,2011,60(4):46106.
    [79] O. A. Amusan. Analysis of Single Event Vulnerabilities in a130nm CMOSTechnology [D]. TN, USA: Vanderbilt University,2006.
    [80] R. Velazco, T. Calin, M. Nicolaidis, S.C. Moss, S. D. LaLumondiere, V.T. Tran,R. Koga. SEU-hardened storage cell validation using a pulsed laser [J]. IEEETransactions on Nuclear Science,1996,43(6):2843~2848.
    [81] T. Calin, R. Velazco, M. Nicolaidis, S. Moss, S. D. LaLumondiere, V. T. Tran, R.Koga. K. Clark. Topology-related upset mechanisms in design hardened storagecells [C]. RADECS,1997:484~488.
    [82] Miskov-Zivanov, Diana Marculescu. Soft Error Rate Analysis for SequentialCircuits [C]. DATE,2007:1~6.
    [83] B. D. Olson, D. R. Ball, K. M. Warren, L. W. Massengill, N. F. Haddad, S. E.Doyle, D. McMorrow. Simultaneous single event charge sharing and parasiticbipolar conduction in a highly-scaled SRAM design [J]. IEEE Transactions onNuclear Science,2005,52(6):2132~2136.
    [84] M. C. Casey, B. L. Bhuva, J. D. Black, L. W. Massengill, O. A. Amusan, A. F.Witulski. Single-Event Tolerant Latch Using Cascode-Voltage Switch LogicGates [J]. IEEE Transactions on Nuclear Science,2006,53(6):3386~3391.
    [85] O. A. Amusan, L. W. Massengill, B. L. Bhuva, S. DasGupta, A. F. Witulski, J. R.Ahlbin. Design Techniques to Reduce SET Pulse Widths in Deep-SubmicronCombinational Logic [J]. IEEE Transactions on Nuclear Science,2007,54(6):2060~2064.
    [86] B. Narasimham, B. L. Bhuva, R. D. Schrimpf, L. W. Massengill, M. J. Gadlage,O. A. Amusan. Effects of Guard Bands and Well Contacts in Mitigating LongSETs in Advanced CMOS Processes [J]. IEEE Transactions on Nuclear Science,2008,55(3):1708~1713.
    [87] B. Narasimham, J. W. Gambles, R. L. Shuler, B. L. Bhuva, L. W. Massengill.Quantifying the Effect of Guard Rings and Guard Drains in Mitigating ChargeCollection and Charge Spread [J]. IEEE Transactions on Nuclear Science,2008,55(6):3456~3460.
    [88] K. Osada, K. Yamaguchi, Y. Saitoh, T. Kawahara. Cosmic-ray multi-errorimmunity for SRAM: based on analysis of the parasitic bipolar effect [C].Symposium on VLSI Circuit Digest of Technical Papers,2003:255~258.
    [89] G. Gasiot, D. Giot, P. Roche. Alpha-induced multiple cell upsets in standard andradiation hardened SRAMs manufactured in a65nm CMOS technology [J]. IEEETransactions on Nuclear Science,2006,53(6):3479~3486.
    [90] J. D. Black, A. L. Sternberg, M. L. Alles. HBD layout isolation techniques formultiple node charge collection mitigation [J]. IEEE Transactions on NuclearScience,2005,52(6):2536~2541.
    [91] K. M. Warren, A. L. Sternberg, R. A. Weller, M. P. Baze, L. W. Massengill, R. A.Reed, M. H. Mendenhall, R. D. Schrimpf. Integrating Circuit Level Simulationand Monte-Carlo Radiation Transport Code for Single Event Upset Analysis inSEU Hardened Circuitry [J]. IEEE Transactions on Nuclear Science,2008,55(6):2886~2894.
    [92] T. Uemura, Y. Tosaka, H. Matsuyama, K. Shono, C. J. Uchibori, K. Takahisa, M.Fukuda, K. Hatanaka. SEILA: Soft error immune latch for mitigatingmulti-node-SEU and local-clock-SET [C]. IEEE International Reliability PhysicsSymposium,2010,218~223.
    [93] H.-H. K. Lee, K. Lilja, M. Bounasser, I. Linscott, U. Inan. Design Framework forSoft-Error-Resilient Sequential Cells [J]. IEEE Transactions on Nuclear Science,2011,58(6):3026~3032.
    [94] A. T. Kelly, P. R. Felming, W. T. Holman, A. F. Witulski, B. L. Bhuva, L. W.Massengill. Differential Analog Layout for Improved ASET Tolerance [J]. IEEETransactions on Nuclear Science,2007,54(6):2053~2059.
    [95] J. R. Ahlbin, L. W. Massengill, B. L. Bhuva, B. Narasimham, M. J. Gadlage, P.H. Eaton. Single Event Transient Pulse Quenching in Advanced CMOS logic [J].IEEE Transactions on Nuclear Science,2009,56(6):3050~3056.
    [96] O. A. Amusan, L. W. Massengill, M. P. Baze, B. L. Bhuva, A. F. Witulski, S.DasGupta, A. L. Sternberg, P. R. Fleming, C. C. Heath, M. L. Alles. DirectionalSensitivity of Single Event Upsets in90nm NMOS Due to Charge Sharing [J].IEEE Transactions on Nuclear Science,2007,54(6):2584~2589.
    [97] N. M. Atkinson, A. F. Witulski, W. T. Holman. Layout Technique forSingle-Event Transient Mitigation via Pulse Quenching [J]. IEEE Transactionson Nuclear Science,2011,58(3):885~890.
    [98] J. R. Ahlbin, M. J. Gadlage, D. R. Ball, A. W. Witulski, B. L. Bhuva, R. A. Reed,G. Vizkelethy, L. W. Massengill. The Effect of Layout Topology on Single-eventtransient pulse quenching in a65nm bulk CMOS process [J]. IEEE Transactionson Nuclear Science,2012,57(6):3380~3385.
    [99] P. Shivakumar, M. Kistler, S. W. Keckler, et al. Modeling the effect oftechnology trends on the soft error rate of combinational logic [C]. InternationalConference Dependable System Networks,2002.
    [100] T. Uemura, Y. Tosaka, S. Satoh. Neutron-induced soft-error simulationtechnology for logic circuits [J]. Japanese Journal of Applied Physics,2006,45(4B):3256~3259.
    [101] The International Technology Roadmap for Semiconductors (2012Edition)
    [Online]. http://www.itrs.net/Links/2012ITRS/Home2012.htm.
    [102] R. C. Baumann, D. Radaelli. Determination of geometry and absorption effectsand their impact on the accuracy of alpha particle soft error rate extrapolations [J].IEEE Transactions on Nuclear Science,2007,54(6):2141~2148.
    [103] P. Roche, G. Gasiot. Impacts of front-end and middle-end process modificationson terrestrial soft error rate [J], IEEE Transactions on Device and MaterialReliability,2005,5(3):382~396.
    [104] B. Narasimham, O. A. Amusan, B. L. Bhuva, et al. Extended SET pulses insequential circuits leading to increased SE vulnerability [J]. IEEE Transactionson Nuclear Science,2008,55(6):3077~3081.
    [105] N. M. Atkinson. Single-Event Characterization of a90-nm Bulk CMOS DigitalCell Library [D]. TN, USA: Vanderbilt University,2010.
    [106] M. Turowski, A. Raman, G. Jablonski. Mixed-mode simulation and analysis ofdigital single event transients in fast CMOS ICs [C].14th InternationalConference on Mixed Design of Integrated Circuits and Systems,2007.
    [107] L. W. Massengill, P. W. Tuinenga. Single-event transient pulse propagation indigital CMOS [J]. IEEE Transactions on Nuclear Science,200855(6):2861~2871.
    [108] G. Wirth, F. L. Kastensmidt, I. Ribeiro. Single event transients in logiccircuits—load and propagation induced pulse broadening [J]. IEEE Transactionson Nuclear Science,2008,55(6):2928~2935.
    [109] P. Saxena, N. Bhat. Process technique for SEU reliability improvement of deepsub-micron SRAM cell [J]. Solid State Elecronics,2003,47(4):661~664.
    [110] J. H. Chern, J. A. Seitchik, P. Yang. Single event charge collection modeling inCMOS multi-junctions structure [C]. IEDM,1986:538~541.
    [111] G. B. Abadir, W. Fikry, H. F. Ragai, O. A. Omar. A Device Simulation andModel Verification of Single Event Transients in n+-p Junctions [J]. IEEETransactions on Nuclear Science,2005,52(5):1518~1523.
    [112] O. A. Amusan, L. W. Massengill, M. P. Baze, et al. Mitigation techniques forsingle-event-induced charge sharing in a90-nm bulk CMOS process [J], IEEETransactions on Device and Material Reliability,2009,9(2):311~317.
    [113] R. Garg, P. Sunil Khatri.3D Simulation and analysis of the radiation tolerance ofvoltage scaled digital circuit [C]. IEEE International Conference on ComputerDesign,2009:498~507.
    [114] O. Flament, J. Baggio, C. D'hose, G. Gasiot, J. Leray.14MeV neutron-inducedSEU in SRAM devices [J]. IEEE Transactions on Nuclear Science,2004,51(5):2908~2911.
    [115] M. C. Casey, B. L. Bhuva, S. A. Nation, O. A. Amusan, T. D. Loveless, L. W.Massengill, D. McMorrow, J. S. Melinger. Single-event effects on ultra-lowpower CMOS circuits [C]. IEEE International Reliability Physics Symposium,2009:194~198.
    [116] H. Fuketa, M. Hashimoto, Y. Mitsuyama, Takao Onoye. Alpha-particle-inducedsoft errors and multiple cell upsets in65-nm10T subthreshold SRAM [C]. IEEEInternational Reliability Physics Symposium,2010:213~217.
    [117] D. F. Heidel, K. P. Rodbell, E. H. Cannon, C. Cabral, Jr., M. S. Gordon, P.Oldiges, H. H. K. Tang. Alpha-particle-induced upsets in advanced CMOScircuits and technology [J]. IBM Journal of Research and Development,2008,52(3):225~232.
    [118] S. DasGupta. Trends in single event pulse widths and pulse shapes in deepsubmicron CMOS [D]. TN, USA: Vanderbilt University,2007.
    [119] Biwei Liu, Shuming Chen, Bin Liang, Zheng Liu, Zhenyu Zhao. Temperaturedependency of charge sharing and MBU sensitivity in130-nm CMOS technology[J]. IEEE Transactions on Nuclear Science,2009,56(4):2473~2479.
    [120] Jan M. Rabaey, Anantha Chandrakasan. Digital Integrated Circuits: A DesignPerspective,3rd edition [M]. Prentice Hall Electronics and VLSI Series,2003:202.
    [121] G. K. Yeap. Practical low power digital VLSI design [M]. Kluwer, London,1998.
    [122] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanazawa, M. Ichida, K.Nogami. Automated low-power technique exploiting multiple supply voltagesapplied to a media processor [J]. IEEE Journal of Solid-State Circuits,1998,33(3):463~472.
    [123] K. Seta, H. Hara, T. Kuroda, M. Kakumu, T. Sakurai.50%active-power savingwithout speed degradation using standby power reduction (SPR) circuit [C].ISSCC,1995:318~319.
    [124] A. P. Chadrakasan, S. Sheng, R. W. Broderson. Low power CMOS digital design[J]. IEEE Journal of Solid-State Circuits,1992,27(4):473~484.
    [125] D. Liu, C. Svensson. Trading speed for low power by choice of supply andthreshold voltages [J]. IEEE Journal of Solid-State Circuits,1993,28(1):10~17.
    [126] N. H. E. Weste, K. Eshraghian. Principles of CMOS VLSI design—a systemsperspective [M]. New York: Addison-Wesley,1993.
    [127] J. B. Burr, J. Shott. A200mV self-testing encoder/decoder using standardultra-low-power CMOS [C]. ISSCC,1994:84~85.
    [128] F. Assaderaghi, D. Sinitsky, S. Parke, J. Bokor, P. K. Ko, C. Hu. A dynamicthreshold voltage MOSFET (DTMOS) for ultra-low voltage operation [C]. IEDM,1994:809~812.
    [129] T. Andoh, A. Furukawa, T. Kunio. Design methodology for low-voltageMOSFETs [C]. IEDM,1994:79~82.
    [130] M. J. Chen, J. S. Ho, T. H. Huang, C. H. Yang, Y. N. Jou, T. Wu. Back-gateforward bias method for low-voltage CMOS digital circuits [J]. IEEETransactions on Electron Device,1996:43(6):904~910.
    [131] A. Srivastava. Back gate bias method of threshold voltage control for the designof low voltage CMOS ternary logic circuits [J]. Microelectronics Reliability,2000,40(12):2107~2110.
    [132] D. A. Hodges, H. G. Jackson. Analysis and design of digital integrated circuits[M]. New York: McGraw-Hill,1983.
    [133] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, et al.Adaptive Body Bias for Reducing Impacts of Die-to-Die and Within-DieParameter Variations on Microprocessor Frequency and Leakage [J]. IEEE JSSC,2002,37(11):1396~1402.
    [134] S. Narendra, A. Keshavarzi, B. A. Bloechel, S. Borkar, V. De. Forward body biasfor microprocessors in130-nm technology generation and beyond [J]. IEEEJSSC,2003,38(5):696~701.
    [135] T. Chen, S. Naffziger. Comparison of Adaptive Body Bias (ABB) and AdaptiveSupply Voltage (ASV) for Improving Delay and Leakage Under the Presence ofProcess Variation [J]. IEEE Transactions on Very Large Scale IntegrationSystems,2003,11(5):888~899.
    [136] R. C. Baumann. Soft errors in advanced computer systems [J]. IEEE Design&Test of Computers,2005,22(3):258~266.
    [137] T. Granlund, B. Granbom, N. G. Olsson, Soft error rate increase for newgeneration of SRAMs [J]. IEEE Transactions on Nuclear Science,2003,50(6):2065~2068.
    [138] J. D. Black, D. R. Ball II, W. H. Robinson et al. Characterizing SRAM SingleEvent Upset in Terms of Single and Multiple Node Charge Collection [J]. IEEETransactions on Nuclear Science,2008,55(6):2943~2947.
    [139] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K.Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, K. W. Guarini, W.Haensch. Stable SRAM Cell Design for the32nm Node and Beyond [C]. IEEESymposium VLSI Technology,2005:128~129.
    [140] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy. A32kb10T Subthreshold SRAMArray with Bit-Interleaving and Differential Read Scheme in90nm CMOS [C].IEEE International Solid-State Circuits Conference (ISSCC),2008:398~399.
    [141] S. M. Jahinuzzaman, D. J. Rennie, M. Sachdev. A Soft Error Tolerant10TSRAM Bit-Cell With Differential Read Capability [J]. IEEE Transactions onNuclear Science,2009,56(6):3768~3773.
    [142] S. Yoshimoto, T. Amashita, S. Okumura, K. Y., M. Yoshimoto, H. Kawaguchi.Bit Error and Soft Error Hardenable7T/14T SRAM with150-nm FD-SOIProcess [C]. IEEE International Reliability Physics Symposium,2011:876~881.
    [143] M. Turowski, A. Raman, G. Jablonski. Mixed-Mode Simulation and Analysis ofDigital Single Event Transients in Fast CMOS ICs [C]. International Conferenceon Mixed Design of Integrated Circuits and Systems,2007:433~438.
    [144] Qin Junrui, Chen Shuming, Liu Biwei, Liang Bin, Chen Jianjun.Device-Physics-Based Analytical Model for SET Pulse in Sub-100nm BulkCMOS Process [J]. Science China Information Science,2012,55(6):1461~1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700