用户名: 密码: 验证码:
Co_3O_4超细粉体的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的加剧,越来越多的研究者致力于开发能够实现能量的高效存储及转化的装置,而锂离子电池和超级电容器就是常用的此类装置。Co_3O_4超细粉体性能优良,是锂离子电池和超级电容器所用的主要原料。Co_3O_4超细粉体的性能直接影响到锂离子电池和超级电容器的性能,因此可应用于锂离子电池和超级电容器的合格的Co_3O_4超细粉体的制备显得非常重要。
     采用电化学方法成功制备了可望应用于锂离子电池的Co_3O_4超细粉体。当煅烧温度为400℃、煅烧时间为2h时,前躯体Co(OH)2基本转化为Co_3O_4。研究了工艺参数如Co(NO3)2浓度、电流密度、添加剂种类及浓度、电解温度及时间对Co_3O_4的粒径分布的影响,并由此得到了最佳工艺参数: Co(NO3)2浓度为0.3mol·L-1、电流密度为600A·m-2、添加剂为0.03mol·L-1NH4H2PO4、电解温度为35℃及电解时间为2h。XRD分析表明:最佳工艺条件下制得的Co_3O_4晶型为面心立方晶型,无杂质峰。SEM结果表明:样品颗粒尺寸为4μm-8μm,形貌为四面体,分散性好。
     采用反相微乳液法成功制备了可望应用于超级电容器的Co_3O_4超细粉体。反相微乳液体系组成部分中的S种类、O种类和AS种类均能影响体系的增溶量,反相微乳液的最佳配方是S为TritonX-100、O为环己烷、AS为正丁醇。研究了m(AS): m(S)、温度、CoCl2浓度及氨水浓度对反相微乳液区域面积的影响,确定了适用于制备超细Co_3O_4的反相微乳液即m(AS):m(S)=1:1、CoCl2浓度为0.5mol·L-1、氨水浓度为5%,体系反应温度为25℃。电导率测试结果表明时间为2h时体系反应基本完成,SEM结果表明R值的变化不仅能改变样品的粒径而且还能改变其形貌。XRD结果表明最佳反应条件下制得的样品为面心立方晶型Co_3O_4,SEM结果表明产品的粒径大小约为190nm,形貌为球形。恒流充放电测试结果表明该材料的最大比电容为216F·g-1。
     采用反相微乳液法成功制备了掺杂锆的Co_3O_4超细粉体,并研究了掺杂量对样品的物相组成、形貌和电化学性能的影响。SEM结果表明锆的掺杂在一定程度上能够降低晶体尺寸,但对样品的形貌不产生影响且均为球形。XRD结果表明掺杂并未改变Co_3O_4的晶相结构,Co_3O_4的晶型均为面心立方型,掺杂量高时XRD谱图中会出现单斜相ZrO2的特征峰。循环伏安、电化学阻抗及恒流充放电测试结果表明锆的适量掺杂能降低电极材料的电荷传递电阻,增强电极材料导电性和可逆性,增大电极材料的比电容。未掺杂的电极材料的最大比电容为216F·g-1,当摩尔比Zr:Co=5:95时,电极材料最高比电容达451F·g-1,即比未掺杂提高了67%。循环800次后,未掺杂的电极材料衰退了22.2%,而掺杂后电极材料的比电容仅衰退了4.21%,即掺杂大大提高了电极材料的循环寿命。
More and more researchers committed to develop a kind of device, which can achieve efficient storage and transformation of energy, with intensified crisis of energy sources. Lithium-ion battery and super capacitor are such devices, which are commonly used. The performance of Co_3O_4 ultra-fine powder is excellent, it can be used as the main raw material to make lithium-ion battery and super capacitor, and the performance of Co_3O_4 ultra-fine powder can directly affect the performance of lithium-ion battery and super capacitor, so it is very important to prepare qualified Co_3O_4 powder to make lithium-ion battery and super capacitor.
     Co_3O_4 ultra-fine powder, which was expected to be used as the main raw material for lithium-ion battery, was successfully prepared by electrochemical method. The precursor Co(OH)2 basiclly converted to Co_3O_4 when calcination temperature was 400℃and calcinations time was 2 hours. The influence of parameters on the distribution of particle size of Co_3O_4 powder was studied, the parameters included the concentration of Co(NO3)2、current density、the kinds and concentration of additive、reaction temperature and reaction time. The optimal parameters was that the concentration of Co(NO3)2 was 0.3mol·L-1, current density was 600A·m-2, the additive was NH4H2PO4 and its concentration was 0.03mol·L-1 , reaction temperature was 35℃, reaction time was 2 hours. The result of XRD showed that the crystal of the product was face centered cubic phase. The result of SEM showed that the range of the particle size of the product was 4μm to 8μm, the morphology was tetrahedron, and it had good dispersion.
     Co_3O_4 ultra-fine powder, which was expected to be used as the main raw material for super capacitor, was successfully prepared by reverse microemulsion method.The components of reverse microemulsion could affect solubilization capacity, the components included the kinds of S、O and AS. The optimal components of reverse microemulsion was that S was TritonX-100, O was cyclohexane, AS was butanol. The influence of parameters on the regional area of reverse microemulsion was studied, the parameters included the mass ratio of AS to S、the concentration of CoCl2、the concentration of ammonia、temperature.The optimal parameters was that the mass ratio of AS to S was 1, the concentration of CoCl2 was 0.5mol·L-1, the concentration of ammonia was 5%, temperature was 25℃. Conductivity test showed that the reaction was basically completed when time was 2 hours. The result of SEM showed that the particle size and the morphology of the product would change when the value of R was changed. The result of XRD showed that that the crystal of the product was face centered cubic phase. The result of SEM showed that the particle size of the product was 190nm, and the morphology was sphere. galvanostatic current charge and discharge test showed that the maximum specific capacitance was 216F·g-1.
     Zr doped Co_3O_4 ultra-fine powder was successfully prepared by reverse microemulsion method. The influence of doping Zr on the morphology, phase composition, electrochemical properties of the products was studied. The result of SEM showed that the particle size of the product was to be smaller with doping Zr to some extent, the morphology of all products was sphere.The result of XRD showed that doping Zr could not change the crystal of the product, the crystal of all products were face centered cubic phase, and it would appear characteristic peak of monoclinic phase ZrO2 with high doping amount. Cyclic voltammetry (CV)、electrochemical impedance spectrometry (EIS) and galvanostatic charge-discharge tests indicated that the charge transfer resistance was to be smaller, the reversible was enhanced, the specific capacitance was increased, and the cycle life was improved with doping certain amount of Zr. The specific capacitance of the undoped product was 216F·g-1, The highest specific capacitance of 451F·g-1 was obtained when the molar ratio of Zr to Co was 5 to 95, which was 67% higher than that of the undoped product. After 800 charge-discharge cycles, the specific capacitance was only decreased 4.21%, while the specific capacitance of the undoped product was decreased 22.2%.
引文
[1]李凤生.超细粉体技术.北京:国防工业出版社, 2000, 2-6
    [2]胡雷,刘志宏.四氧化三钴粉末的制备与应用现状.粉末冶金材料科学与工程, 2008, 13(4): 195-199
    [3]刘兴泉,李淑华,何泽珍等.锂离子蓄电池正极材料LiCoO2的制备与电化学性能研究.化工科技, 2001, 9(5):8-11
    [4] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(3):496-499
    [5]郑洪河,石磊,曲群婷等.锂离子电池纳米负极电极材科.化学通报, 2006, 10(3):741-746
    [6]韩敏,张文莉,石乃恩等.多层多孔Co3O4纳米粒子组装体的合成、表征和电化学性能研究.无机化学学报, 2008, 24(5):797-802
    [7] Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium-ion batteries with high capacity and rate capability. Nano Letters, 2008, 8(1):265-270
    [8] Wu Z S, Ren W C, Wen L, et al.Graphene anchored with Co3O4 nanoparticles as anode of lithium-ion batteries with enhanced reversible capacity and cyclic performance.Nano, 2010, 4(6):3186-3192
    [9] Ding Y H, Zhang P, Long Z L, et al.Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries.Materials Letters, 2008, 62(4):3410-3412
    [10] Gu Y X, Jian F F, Wang X.Synthesis and characterization of nanostructured Co3O4 fibers used as anode materials for lithium ion batteries.Thin Solid Films, 2008, 57(12):652-655
    [11] Zheng J, Liu J, Lv D P, et al.A facile synthesis of ?ower-like Co3O4 porous spheres for the lithium-ion battery electrode.Journal of Solid State Chemistry, 2010, 183(9):600-605
    [12]张治安,邓梅根,胡永达等.电化学电容器的特点及应用.电子元件与材料, 2003, 22(11): 1-5
    [13]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超级电容特性.无机化学学报, 2002, 18(5):513-517
    [14]俞颖,姬广斌,赵宇等.特殊形貌Co3O4纳米片的制备及其电化学性能.化工新型材料, 2008, 36(7): 45-47
    [15]王兴磊,欧阳艳,罗新泽等.四氧化三钴超级电容器电极材料的制备与研究.无机盐工业, 2009, 41(9): 15-17
    [16] Wang L, Liu X H, Wang X, et al.Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials.Current Applied Physics, 2010, 10(11):1422-1426
    [17] Xu J, Gao L, Cao J Y, et al.Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material.Electrochimica Acta, 2010, 56(31):732-736
    [18]曹全喜,周晓华,蔡式东等. Co3O4在ZnO压敏陶瓷中的作用和影响.压电与声光, 1996, 18(4):260-263
    [19] Patil D, Patil P, Subramanian V, et al.Highly sensitive and fast responding CO sensor based on Co3O4 nanorods.Talanta, 2010, 81(13):37-43
    [20] Teng F, Yao W Q, Zheng Y F, et al . Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.Talanta, 2008, 76(2):1058-1064
    [21] Abe S, Choi U S, Shimanoe K, et al.In?uences of ball-milling time on gas-sensing properties of Co3O4/SnO2 composite.Sensors and Actuators B, 2005, 107(16):516-522
    [22] Park J, Shen X P, Wang G X, et al.Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres.Sensors and Actuators B: Chemical, 2009, 136(2):494-498
    [23]饶岩岩,张久兴,王澈等.钨/钴氧化物SPS直接碳化原位合成超细WC-Co硬质合金,稀有金属与硬质合金, 2006, 34(1): 18-21
    [24]徐勇.蓝色料生产的技术与应用.玻璃与搪瓷, 2006, 34(4):19-20
    [25]娄向东,韩珺,楚文飞等.用Co3O4催化剂光催化氧化活性染料.化工环保, 2007, 27(2): 117-120
    [26]陈伟凡,李凤生,刘建勋等.纳米Co3O4的制备及其对高氯酸铵热分解的催化性能.催化学报, 2005, 26(12): 1073-1077
    [27] Konagai N, Takeshita T, Azuma N, et al.Preparation of Fe-Cr wires with dispersed Co3O4 as an electrically heated catalyst for cold-start emissions . Industrial & Engineering Chemistry Research , 2006, 45(8):2967-2972
    [28] Lopes I, Davidson A, Thomas C.Calibrated Co3O4 nanoparticles patterned inSBA-15 silicas:accessibility and activity for CO oxidation . Catalysis Communications, 2007, 8(15):2105-2109
    [29] Zhou LP, Xu J, Miao H, et al.Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen.Applied Catalysis A, 2005, 292(5):223-228
    [30] Cao D X, Chao J D, Sun L M, et al . Catalytic behavior of Co3O4 in electroreduction of H2O2.Journal of Power Sources, 2008, 179(4):87-91
    [31] Tanaka K, Nirhira H, Ozaki A . Hydrogennation of ethylene over cobalt oxide.The Journal of Physical Chemistry, 1970, 74(26):4510-4517
    [32] Heman L, Morales J, Tirado L.Crystallite size and microstrains of Co3O4 derived from CoOOH and Co(OH)2.Joumal of Solid State Chemistry, 1985, 59(6):388-392
    [33]梁春发,梁勇,陈辉煌.由草酸钴热分解制备Co3O4及其物性表征.中国有色金属学报, 2004, 14(12): 2131-2135
    [34]庄稼,迟燕华,王曦等.室温固相反应制备纳米Co3O4粉体.无机材料学报, 2001, 16(6):1203-1206
    [35]杨华明,李云龙,唐爱东等.固相合成Co3O4纳米晶及晶化动力学研究.材料热处理学报, 2005, 26(4):1-4
    [36]胡启阳,袁志鹿,李新海等.固相反应共生-升华氯化铵法制备纳米四氧化三钴.现代化工, 2004, 26(4): 46-47
    [37]郭学益,郭秋松,冯庆明等.溶液雾化氧化法制备超细Co3O4粒子及其性能表征.中南大学学报(自然科学版), 2010, 41(1): 60-65
    [38] Kim D Y, Ju S H, Koo H Y, et al.Synthesis of nanosized Co3O4 particles by spray pyrolysis.Journal of Alloys and Compounds, 2006, 147(10):254-258
    [39] Guo Q S, Guo X Y, Tian Q H.Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting method.Advanced Powder Technology, 2010, 21(7):529-533
    [40] Bahlawane N, Rivera E F, H?inghau K K, et al.Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition.Applied Catalysis B: Environmental, 2004, 53(2):245-255
    [41] Rivera E F, Atakan B, H?inghaus K K.CVD deposition of cobalt oxide (Co3O4) from Co(acac)2.Journal de Physique IV, 2001, 11(3):629-635
    [42]黄峰,王艳芬.流变相-前驱物法制备纳米Co3O4.武汉科技大学学报(自然科学版), 2003, 26(1): 21-23
    [43]钟文彬,杨玉玺,张昭.湿化学法制备四氧化三钴的研究-热力学分析.四川有色金属, 2000, 1(6):23-26
    [44]钟文彬,杨玉玺,张昭.湿化学法制备四氧化三钴的研究-实验部分.四川有色金属, 2000, 2(6): 37-41
    [45]李亚栋,贺蕴普,李龙泉等.液相控制沉淀法制备纳米级Co3O4微粉.高等学校化学学报, 1999, 20(4): 519-522
    [46]张明月,廖列文.均匀沉淀法制备球链状纳米Co3O4.化工装备技术, 2004, 25(4): 39-42
    [47]崔正刚.微乳化技术与应用.北京:中国轻工业出版社, 1999, 13-16
    [48]史苏华,张岩,邹炳锁等.微乳液法合成单分散性Co3O4超微粒子及表征.吉林大学学报(自然科学版), 1991, 12(4):78-81
    [49] Xu R, Wang J W, Li Q Y, et al.Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries.Journal of Solid State Chemistry, 2009, 182(10):3177-3182
    [50]王晓慧,王子忱,李熙等.超微粒Co3O4的合成与表征.高等学校化学学报, 1991, 12(10):1421-1424
    [51] Spinolo G, Ardizzone S, Trasatti S.Surface characterization of Co3O4 electrodes prepared by the sol-gel method.Journal of Electroanalytical Chemistry, 1997, 423(7):49-57
    [52] Svegl F, Orel B, Svegl I G, et al.Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route.Electrochimica Acta, 2000, 45(3): 4359-4371
    [53]夏志美.电化学方法制备Co3O4超细粉体:[中南大学硕士学位论文] .长沙:中南大学冶金科学与工程学院, 2005, 10-37
    [54]黄庆利,陈虎,张永才.孔状Co3O4纳米片和纳米棒的选择性合成和表征.无机化学学报, 2010, 26(9):1394-1398
    [55]张立,余贤旺,吴厚平等.高压水热合成法制备纳米Co3O4粉末及其过程机理.粉末冶金材料科学与工程, 2009, 14(5): 306-309
    [56] Liu Y, Mi C H, Su L H, et al.Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries . Electrochimica Acta, 2008, 53(1):2507-2513
    [57] Tripathy S K, Christy M, Park N H, et al . Hydrothermal synthesis of single-crystalline nanocubes of Co3O4.Materials Letters, 2008, 62(4):1006–1009
    [58] Zhao W W, Liu Y, Li H L, et al.Preparation and characterization of hollow Co3O4 spheres.Materials Letters, 2008, 62(13):772-774
    [59]黄可龙,刘人生,杨幼平等.形貌可控的四氧化三钴溶剂热合成及反应机理.物理化学学报, 2007, 23(5):655-658
    [60]陈友存,张元广. Co3O4纳米棒的溶剂热合成及形成机理分析.化学物理学报, 2004, 17(4): 481-484
    [61] Wang X, Chen X Y, Gao L S, et al . One-dimensional arrays of Co3O4 nanoparticles:synthesis, characterization, and optical and electrochemical properties.The Journal of Physical Chemistry B, 2004, 108(14):16401-16404
    [62] Askarinejad A, Morsali A.Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4.Ultrasonics Sonochemistry, 2009, 16(14):124-131
    [63] Li L, Ren J C.Rapid preparation of spinel Co3O4 nanocrystals in aqueous phase by microwave irradiation . Materials Research Bulletin, 2006, 1(5):2286-2290
    [64]王剑锋.电池级四氧化三钴的实验研究及中试: [中南大学硕士学位论文].长沙:中南大学冶金科学与工程学院, 2005, 18-19
    [65] Lam A C, Schechter R S.The theory of diffusion in microemulsion. Journal of Colloid and Interface Science, 1987, 120(1):56-63
    [66] Fletcher P D, Robinson B H . Dynamic processes in water-in-oil microemulsions.Ber Bunsenges Phys Chem, 1981, 85(3):863-867
    [67] Lada A, Lang I, Zana R.Relation between electric percolation and rate constant for exchange of material between droplets in water in oil microemulsions.The Journal of Physical Chemistry A, 1989, 93(8):10-16
    [68] Cason J P, Miller M E, Thompson J B, et al.Solvent effects on copper nanopanicle growth behavior in AOT reverse micelle systems.The Journal of Physical Chemistry B, 200l, 105(12):2297-2302
    [69]葛鑫,陈野,张春霞等.掺铝Co3O4的制备及其电容性能研究.电化学, 2007, 13(3): 249-255
    [70] Shan Y, Gao L . Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors.Materials Chemistry and Physics, 2007, 103(2):206-211
    [71] Kim Y J, Cho J P, Kim T J, et al.Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings . Journal of the Electrochemical Society, 2003, 105(12):1723-1726
    [72] Lu Y, Yang L, Wei M, et al.Studies on structure and electrochemical properties of pillared M-MnO2(M=Ba2+,Sr2+,ZrO2+).Journal of Solid State Electrochemistry, 2007, 11(9):1157-1162
    [73] Nunez F, Angel G D, Tzompantzi F, et al.Catalytic wet-air oxidation of p-cresol on Ag/Al2O3-ZrO2 catalysts.Industrial and Engineering Chemisry Research, 2010, 12(3):120-122
    [74] Lin C, Ritter J A, Popov B N.Characterization of sol‐ gel‐derived cobalt oxide xerogels as electrochemical capacitors.Journal of the Electrochemical Society, 1998, 145(12):4097-5001
    [75] Tang X, Qian J S, Huang J M, et al.Application of tetrahydrofuran dispersant in microemulsion for fabricating titania mesoporous thin film. Journal of Colloid and Interface Science, 2007, 314(2):584-588
    [76] He T, Chen D R, Jiao X L.Controlled synthesis of Co3O4 anoparticles through oriented aggregation.Chemistry of Materials, 2004, 16(13):737-743
    [77] Ahmed J, Ahmad T, Ramanujachary K V, et al . Development of a microemulsion-based process for synthesis of cobalt(Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate.Journal of Colloid and Interface Science, 2008, 321(21):434-441
    [78] Liu Y K, Wang G H, Xu C K, et all.Fabrication of Co3O4 nanorods by calcination of precursor powders prepared in a novel inverse microemulsion.Chemical Communications, 2002, 15(13):1486-1487
    [79] Dickinson C, Zhou W Z, Robert P, et al.Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica.Chemistry of Materials, 2006, 18(14):3088-3095
    [80] Kim G J, Guo X F.Fabrication and application of highly ordered mesoporous Co3O4, NiO, and their metals.Journal of Physics and Chemistry of Solids, 2010, 71(15):612-615
    [81] Jang K S, Kim J D.An anionic surfactant-templated synthesis and lamellar ordering of Co(OH)2 and Co3O4 nanodisks.Materials Chemistry and Physics, 2011, 125(1):777-783
    [82] Abarca C V, Lavela P, Tirado J L.Cobalt oxide nanoparticles prepared from reverse micelles as high-capacity electrode materials for Li-ion cells.Electrochemical and Solid-State Letters, 2008, 11(11):198-201
    [83] Aragón M J, Lavela P, León B,et al.On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries . Journal of Solid State Electrochemistry, 2010, 20(9):23-26
    [84] Thota S, Kumar A, Kumar J.Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derivedoxalates.Materials Science and Engineering B, 2009, 164(19):30-37
    [85] Yaghmur A, Aserin A, Garti Nissim.Phase behavior of icroemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209(12):71-81
    [86] Zhao Y L, Wang J M, Chen H,et al.Al-substitutedα-nickel hydroxide prepared by homogeneous precipitation method with urea . International Journal of Hydrogen Energy, 2004, 29(3):889-896
    [87] Li Q, Li K X, Sun C G, et al.An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors.Journal of Electroanalytical Chemistry, 2007, 611(4):43-50
    [88] Madhavi S, Subba G V, Rao B V, et al.Effect of Cr dopant on the cathodic behavior of LiCoO2.Electrochimica Acta, 2002, 48(2):219-226
    [89] Meng Y D, Chen D R, Jiao X L, et al.Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites.The Journal of Physical Chemistry B, 2006, 110(20):15212-15217
    [90] Yang Y, Zhu Q Y, Jin A P, et al.High capacity and contrast of electrochromic tungsten-doped vanadium oxide films . Solid State Ionics, 2008, 179(8):1250-1255
    [91] Minakshi M . Improved performance of Bi2O3-doped MnO2 cathode on rechargeability in LiOH aqueous cell.Journal of Solid State Electrochemistry, 2009, 13(8):1209-1214
    [92] Valanarasu S, Chandramohan R.Improvement of the cycle life of LiCoO2 powder by Sr doping.Journal of Alloys and Compounds, 2010, 494(5):434-438
    [93] Xu C Q, Tian Y W, Zhai Y C, et al.In?uence of Y3+ doping on structure and electrochemical property of the LiMn2O4.Materials Chemistry and Physics, 2006, 98(10):532-538
    [94] Svegl F, Orel B.Structural and electrochromic properties of Co-oxide and Co/Al/Si-oxide films prepared by the sol-gel dip coating technique.Journal of Sol-Gel Science and Technology, 1997, 8(1):765-769
    [95] Sharma M M, Krishnan B, Zachariah S, et al . Study to enhance the electrochemical activity of manganese dioxide by doping technique.Journal of Power Sources, 1999, 79(6):69-74
    [96] Shobaky G A E, Radwan N R E, Shall M S E, et al . Synthesis and characterization of pure and ZrO2-doped nanocrystalline CuO-NiOsystem.Applied Surface Science, 2008, 254(1):1651-1660
    [97] Kim B Y, Shim I B, Araci Z O, et al.Synthesis and colloidal polymerization of ferromagnetic Au-Co nanoparticles into Au-Co-O nanowires.Journal of the American Chemical Society, 2010, 132(13):3234-3235
    [98] Couper A M.Electrode materials for electrosynthesis.Chemical Reviews, 1990, 90(16):837-865
    [99]褚道葆,周幸福,林昌健等.电化学合成金属醇盐的研究.高等学校化学学报, 2001, 21(15): 133-135
    [100] Xu Z P, Zeng H C.Control of surface area and porosity of Co3O4 via intercalation of oxidative or nonoxidative anions in hydrotalcite-like precursors.Chemistry of Materials, 2000, 12(5):3459-3465
    [101] Brossard L.Oxygen evolution in 30% KOH at 70℃on nickel anodically coated with CoOOH/ Co3O4 . Journal of Applied Electrochemistry, 1991, 21(4):612-618
    [102] Niculescu M, Vaszilcsin N, B?rzescu M, et al . Thermal and structural investigation of the rection between 1,2-propanediol and Co(NO3)2·6H2O . Journal of Thermal Analysis and Calorimetry, 2001, 65(9):881-889
    [103]彭春玉,周海晖,曾伟等.影响反相微乳液导电性能的因素.物理化学学报, 2006, 22(4):409-413
    [104] Maitra A, Mathew C, Varshney M.Closed and open structure aggregates in microemulsions and mechanism of percolative conduction. The Journal of Physical Chemistry B, 1990, 94(2):5290-5292
    [105]张积树,陈宗淇,孟祥蕾等.以非离子型表面活性剂组成的W/O型微乳液的渗滤现象.化学学报, 1996, 54(12):132-139
    [106]染蕊,韩恩山,朱令之等.电解质对非离子型微乳液的影响.高等学校化学学报, 2001, 22(15):55-58
    [107] Conway B E. Electrochemical supereapacitors scientific fundamentals and technological.New York: Kluwer academic Press, 1999, 1-4.
    [108] Ftitts D H . Ananalysis of electrochemical capacitors . Joumal of the Electrichemcal Society, 1997, 144(6):2233-2247
    [109]汪形燕,王先有,黄伟国.超级电容器电极材料研究.电池, 2004, 34(3): 192-193
    [110] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors.Journal of the Electrochemical Society, 1995, 146(1):6-10
    [111] Ke X F, Gao J M, Zhang M B, et al.Moltensalt synthesis of single-crystal Co3O4 nanorods.Materials Letters, 2007, 61(18):3901-3903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700