用户名: 密码: 验证码:
树枝状聚合物负载后过渡金属催化剂的制备及其在1-己烯氢甲酰化反应中的回收利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均相催化剂的催化活性虽然较高,但是催化剂与有机小分子反应物及产物的分离以及催化剂的回收再循环利用仍然是制约均相催化剂应用的一大因素。常规的分离方法如蒸馏、萃取等对某些特殊反应不能适用,比如,沸点较高的产物,以及在萃取过程中催化剂的失活再生等。非均相催化剂的回收循环利用较容易,但是由于催化剂与反应物接触受到接触面积的限制,使催化效率及催化活性受到限制。基于此,我们设计制备以树枝状聚合物为载体,通过离子交换将小分子催化剂负载到树枝状聚合物上形成均相催化体系的树枝状负载催化剂。并将此催化剂用于烯烃的甲酰化反应。具体内容如下:
     以9,9-二甲基氧杂蒽为原料制备含有磷酸基团或磺酸基团的二苯基氧杂蒽膦配体,并对所合成的产物结构用NMR和IR表征,结果表明,含有磷酸基团的二苯基氧杂蒽膦配体较难合成,而含有磺酸基团的二苯基氧杂蒽膦配体成功合成。
     以树枝状聚甘油为原料,经一锅法与1,2-二甲基咪唑、6-溴己酰氯反应制备端基含阳离子的树枝状聚合物。将合成的含磺酸钠的二苯基氧杂蒽膦配体、小分子铑络合物与树枝状聚合物经离子交换负载在聚合物上形成树枝状聚合物负载膦铑催化剂。并对二苯基氧杂蒽膦配体键合到聚合物上的条件进行了优化,结果表明,配体与聚合物摩尔数之比为1:2时,配体键合到聚合物上的效果最好。
     将制备的树枝状聚合物负载的膦铑催化剂用于1-己烯的均相催化甲酰化反应,经超滤回收研究该催化剂的回收循环对催化活性及选择性的影响。结果表明,树枝状聚合物负载膦铑催化剂与小分子催化剂对1-己烯的甲酰化反应相比,树枝状负载催化剂的催化活性较高,但选择性较低。树枝状聚合物负载的膦铑催化剂经4次回收循环催化实验,其对1-己烯的催化活性降低很少,但是其催化选择性降低较多。
Although the catalytic activity of homogeneous catalysts is higher, but the catalyst and organic small molecules of reactant and product separation and catalyst recycling recycling is still a major factor restricting the application of homogeneous catalysts. Conventional separation methods such as distillation, extraction can not be applied to some special effects, for example, the product of a higher boiling point, and the deactivation of the catalyst in the extraction process of regeneration. Easier to recycle and reuse of the heterogeneous catalyst, but limited contact by the contact area due to the catalyst and reactants, the catalytic efficiency and catalytic activity is restricted. Based on this, we designed and fabricated to the dendrimer as a carrier, catalyst loading of small molecules to the dendrimers on the formation of homogeneous catalytic system, dendritic supported catalysts by ion exchange. And catalyst for the hydroformylation reaction of olefins. Details are as follows:
     Containing phosphoric acid groups or sulfonic acid groups of the two phenyl xanthene phosphine ligand was prepared from9,9-dimethyl-xanthene, synthesis and structure of the product by NMR and IR characterization results show that, contain phosphate groups, two phenyl xanthene phosphine ligand is more difficult synthesis of diphenyl xanthene phosphine ligands containing sulfonic acid groups were successfully synthesized.
     Dendritic polyglycerol as raw material, one-pot1,2-dimethyl imidazole,6-bromhexine chloride prepared by the reaction end groups containing cationic dendrimers. Synthesis containing sodium diphenyl xanthene phosphine ligands and rhodium complexes with dendrimers of small molecules by ion-exchange load in the formation of the dendrimer polymer load phosphine rhodium catalyst. And diphenyl the xanthene phosphine ligand bonded to the polymer on the conditions were optimized, the results show that the ligand and the number of polymer mole ratio of1:2ligand bonded to the polymer the best results.
     Will prepared dendrimers load the phosphine rhodium catalysts for the reaction of1-hexene homogeneous catalytic hydroformylation, ultrafiltration recovery study of recovery and recycling of the catalyst on the catalytic activity and selectivity. The results showed that the dendrimer load phosphine rhodium catalyst with small molecule catalyst compared to the1-hexene hydroformylation reaction, the catalytic activity of dendritic load high, but low selectivity. Dendritic polymer supported phosphine rhodium catalyst after four times recycling loop catalytic experiments, the lower the catalytic activity of1-hexene little, but its catalytic selectivity greater reductions.
引文
[1]Falbe, J. (Ed), "New Syntheses with Carbon Monoxide." [M]. Springer, Berlin, 1980.p.243-308.
    [2]Cornils B, Herrrmann, W. A., and Rasch, M. Otto Roelen, Pioneer in Industrial Homogeneous Catalysis [J]. Angew. Chem. Int. Ed.,1994,33,2144-2163.
    [3]Botteghi, C., Paganelli, S., Moratti, F. Synthesis of 2-chromanol by hydroformylation of 2-hydroxystyrene derivatives[J]. J. Mol. Catal. A:Chemical. 2003,200,147-156.
    [4]Mukhopadhyay, K.; Sarbar, B. R.;Chaudhari, R. V. Anchored Pd complex in MCM-41 and MCM-48:Novel heterogeneous catalysts for hydrocarboxylation of aryl olefins and alcohols[J]. J. Am. Chem. Soc.2002,124,9692-9693;
    [5]姚亚平.混合丁烯催化齐聚及齐聚产物利用技术开发[J].石油化工动态,2000,8(4),52-55.
    [6]陈贵斌.异丁烯氢甲酰化合成异戊醛用担载型铑膦配合物催化剂研究[D].四川.四川大学,2005.
    [7]Heck, R.F,; Breslow, D.S. There action of cobalthy drotetracarbonyl with olefins. J. Am. Chem. Soc. [J],1961,83:4023-4027.
    [8]Slaugh,L.H.; Mullineaux, R.D. Hydroformylation of olefins[P]. US.3239569. 1966.
    [9]Pruettand, R. L.;Smith, J. A. Alow-pressure system for pro-ducing normal aldehydesby hydroformylation of aole-fim [J]. Journal of Prganic Chemistry,1969, 34(2):327-330.
    [10]Slaugh, L. H.; Mullineaux, R. D. Hydroformylation of olefins [P]. US.3239570. 1966
    [11]Evans, D; Osborn, J.A.; Wilkinson, G. There action of hydrido carbonyl tris(triphenylphosphine)rhodium with carbon monoxide, and of there action products, hydrido carbonyl bis(triphenylphosphine) rhodium and dimeric species, with hydrogen. J. Chem. Soc. (A)[J],1968,3:3133-3142.
    [12]王征,袁刚,周启昭.水溶性铑膦络合催化体系1-己烯氢甲酰化反应的研究[J].石油化工,1987,10;郑晓来,刘晓,金子林,水-有机两相氢甲酰化合成 技术进展,天然气化工,1997,22
    [13]燕远勇,金子林.水溶性过渡金属络合物催化两相氢甲酞化反应新进展[J]煤炭转化,1994,17,1;陈华,黎耀,忠程呼,明杨清,李贤均.水溶性铑膦配合物催化1一十二碳烯常压氢甲酸化反应研究.分子催化,1994,8,5
    [14]陈华,刘海超,黎耀忠,程博明,李贤均.水溶性铑膦配合物催化长链烯烃氢甲酞化反应研究反应条件的影响[J].分子催化,1995,9,2
    [15]Unveren,H.H. Y.; Schomacker, R. Rhodium catalyzed hydroformylation of 1-octene in microemulsion:comparison with various catalytic systems. Catal. Lett. [J],2006,110:195-201.
    [16]Zhang, Z. T.; Han, Y.; Xiao, F. S.; Qiu, S. L.; Zhu, L.,;Wang, R. W.; Yu, Y.;Z hang, Z.; Zou, B. S.; Wang, Y. Q.; Sun, H. P.; Zhao, Y. and Wei, Y. Mesoporous alumino-silicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. J. Am. Chem. Soc. 2001,123,5014-5021.
    [17]Ding, H.; Hanson, B. E.; Glass, T. E. The effect of salt on selectivity in water soluble hydroformylation catalysts[J]. Inorg. Chim. Acta.1995,229,329-333.
    [18]Monflier, E.; Tilloy, S.; Fremy, G.; Castanet, Y.; Mortreux, A. A further breakthrough in biphasic, rhodium catalyzed hydroformylation:the use of per(2,6-di-O-methyl)-cyclodextrin as inverse phase transfer catalyst. Tetrahedron Lett,1995,36:9481; REETZMT. Supramolecular transition metal catalysts in two-phase systems[J]. Catal. Today.1998,42:399-411
    [19]Chaudhari, R. V.; Bhanage, B. M.; Divekar, S. S.; Deshpande, R. M. Process for catalytic hydroformylation of alkenes[P]. US,1998,5498801; VANv YVEF, RENKENA. Hydrofolation in reverse mieellar systems[J]. Catal. Today,1999,48: 237-243.
    [20]Chen, H.; Li, Y. Z.;Chen, J. R.;Cheng, P. M. and Li, X. J. Synergistic effect of TPPTS and TPPDS on the regioselectivity of olefin hydroformylation in two-phase catalytic system[J]. Catal. Today,2002,74,131-135.
    [21]Buhing, A.,; Elgersma, J. W.; Kamer, P. C. J.; Leeuven, W. N. M. and Elgersma, J. P. Rhodium catalysed hydroformylation of higher alkenes using amphiphilic ligands:part2[J]. J. Mol. Catal.1997,116,297-308.
    [22]Peng, Q. R.; Liao, X. L. and Yuan, Y. Z. Micelle effect of disulfonated cetyl diphenylphosphine in biphasic hydroformylation of higher olefins[J]. Catal. Commun.2004,5,447-451.
    [23]Kirschner, D.; Green,T.; Hapiot. F.; Tilloy, S.; Leclercq, L; Bricout, H.; Monflier E. Heptak is(2,3-di-O-methyl-6-O-sulfopropyl)-cyclodextrin:A genuine supramolecular carrier for the Aqueous Organometallic Catalysis.Adv Synth Catal. 2006,348:379-386
    [24]Russell, M. J. H. Water-Soluble Rhodium. Catalysts, Platinum Met Rev.1988, 32:179
    [25]Tic, W.; Miesiac, I.; Schomacker, J. Hydroformylation of Hexene in Microemulsion. J Colloid Interface Sci.2001,244:423-426
    [26]Bahrmann, H.; Cornils, B. Preparation of aldehydes[P]. DE 3,415,968,1985.
    [27]杜守德,邓立生,李贤均.两相催化体系中辛烯的氢甲酰化反应研究[J].化学研究与应用,2001,13(2),149-152.
    [28]Fu,H.Y.; Li, M.; Mao, H.; Lin, Q.; Yuan, M. L.; Li, X. J.; Chen. H. Aqueous biphasic catalytic hydroformylation of higher olefins:Promotion effect of cationic gemini and trimeric surfactants. Catal Commun.2008,9:1539-1544
    [29]孔凡志,田建华,金子林等.液/液两相催化进展[J].石油化工,2002,31(5):387—392.
    [30]Liu, X. Z.; Wang, Y. H.; Kong, F. Z. and Jin, Z. L. Cloud points of water-soluble polyether phosphites and their application in the biphasic hydroformylation of higher olefins [J]. Chin. J. Chem.2003,21,494-499.
    [31]Jin, Z.;Zheng, X. Thermoregulated phase transfer catalysis, In:Cornils, B., Herrmann, W. A., Aqueous Phase Organometallic Catalysis, Weinheim: Wiley-VCH, [M].1998,233-240.
    [32]Horvath, I. T.;Kiss, G.;Cook, R. A. Molecular engineeringin homogeneous catalysis one-phase catalysis coupled with biphase catalyst separation [J]. J. Am. Chem. Soc.1998,120,3133-3143.
    [33]Foster, D. F.; Adams, D. J.; Gudmunsen, D.; Stuart, A. M.; Hope, E. G. and Hamilton, D.J. Hydroformylation in fluorous solvents [J]. Chem. Commun.2002, 722-723; Axel M.Schmidt and Peter Eilbracht. Synthesis of Pharmacologically Relevant Indoleswith Amine Side Chainsvia Tandem Hydroformylation/Fischer Indole. Synthesis.J. Org. Chem.2005,70,5528-5535
    [34]Mathivet, T.; Monflier, E.; Castanet, Y.; Mortreux, A. and Couturier, J. L. Perfluorooctyl substituted triphenylphosphites as ligands for hydroformylation of higher olefins in fluorocarbon/hydrocarbon biphasic medium[J]. Comptes Rendus Chimie.2002,5,417-424.
    [35]Jessop, P. G.; Ikariya, T.; Noyori, R. Homogeneous Catalysis in Supercritical Fluids[J]. Chem. Rev.1999,99,475-49.
    [36]Dathke, J. W.; Klingler, R. J. andKrause, T. R. Propylene hydroformylation insupercritical carbon dioxide [J]. Organometallics.1991,10,1350-1355.
    [37]Bhattacharyya, P.; Gudmunsen, D.; Hope, E. G.; Kemmitt, R. D. W.; Paige, D. R. and Stuart, A. M. "Phosphorous(III)Ligands with Fluorous Ponytails," [J]. J. Chem. Soc. Perkin Trans.1997,3609-3612.
    [38]Kainz, S.; Koch, D.; Baumann, W. Perfluoro-alkyl-substituted Arylphosphanes as Ligands for Homogeneous Catalysis in Supercritical Carbon Dioxide[J]. Angew. Chem. Int. Ed. Engl.1997,36,1628-1630.
    [39]Koch, D.; Leitner, W. Rhodium-catalyzed hydro formylation in supercritical carbon dioxide[J]. J. Am. Chem. Soc.1998,120,13398-13404; Galia,A.; Cipollina, A.; Filardoa, G. et al. Hydroformylation of 1-octene in super critical carbon dioxide: Canalkylation of arylphosphines with tertbutyl groups lead tosoluble and active catalytic systems[J]. J Supercritical Fluid.2008,46:63-70.
    [40]Palo, D. R.; Erkey, C. Homogeneous catalytic hydroformylation of 1-octene in supercritical carbond ioxide using a novel rhodium catalyst with fluorinated arylphosphine ligands[J]. Ind. Eng. Chem. Res.1998,37,4203-4206; Shimoyama, Y.; Sonoda, M.; Miyazaki, K. et al. Measurementof solubilities for rhodium complexes and phosphineligands in supercritical carbon dioxide [J]. J Supercritical Fluid,2008,44:266-272.
    [41]Sellin,M. F. and Cole-Hamilton, D. J. Hydroformylation reactions in supercritical carbon dioxide using insoluble metal complexes[J]. J. Chem. Soc. Dalton Trans.2000,11,1681-1683.
    [42]Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialky limid azolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorg. Chem.1982,21, 1263-1264.
    [43]Dullius, J. E. L.; Suarez. P. A. Z. Selective catalytic hydrodimerization of 1,3 butadiene by palladium compounds dissolved inionic liquids[J].Organometallics, 1998,17(5):815-819.
    [44]DeCastro, C0; Sauvage, E.; Valkenberg, M. H. and Holderich, W. F. Immobilised ionic liquidsas Lewis acidcatalysts for the alkylation of aromatic compounds with dodecene[J]. J. Catal.2000,196,86-94.
    [45]Chauvin, Y.; Mussmann, L.; Olivier. H. Flssige 1,3dialkylim idazolium salzealsl sungs mittel frdie katalyse in zwei phasen systemen:durch rhodiumkomplexe katalysiertehydrierung, isomerisierung und hydroformylierung von alkenen[J] Angew Chem Int Ed Engl.1995,107(23-24):2941-2943; Yadav, J. S.; Reddy, B. V. S.; Basak, A. K. and Narsaiah, A. V. BMI-BF4 and BMI-PF6 ionicliquids as novel and recyclable reaction media for aromatica mination[J]. Tetrahedron Lett. 2003,44,2217-2220.
    [46]Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P. and Teixeira, S. R. Transition-metal nanoparticles in imidazolium ionicliquids:Recycable catalysts for biphasic hydrogenation reactions[J]. J. Am. Chem. Soc.2002,124, 4228-4229.
    [47]Chauvin,Y.; Mussmann, L.; Olivier, H. A novel class of versatile solvents for two phase catalysis:hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3 dialkylimidazolium dalts[J] Angew Chem Int Ed Engl.1996,34(23-24):2698-2700; Li, Z.and Xia, C.G.. Epoxidation of olefins catalyzed by manganese(III)porphyrin in aroom temperature ionic liquid[J]. Tetrahedron Lett.2003,44,2069-2071.
    [48]Dubreuil, F.; Bourahla, K.; Rahmouni, M. et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media [JJ.Catal Commun.2002,3(5):185-190;Yasuhiko,I.; Toshiyuki, N. Non-conventional electrolytes for electro-chemical applications[J]. Electrochimica Acta.2000,45(15-16),2611-26221.
    [49]Erbeldinger, M.; Mesiano, M.; Russell, A. J. Enzymes coated with ionicliquid[J]. Biotechnol. Prog.2000,16,1129-1131.
    [50]Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P. Room temperature ionic liquids as novel media for"clean" liquid-liquid extraction[J]. Chem. Commun.1998, (16), 1765-1766.
    [51]Dai, S.; Ju, Y. H.; Barnes, C. E. Solvent extraction of strontium nitrate by a crown etherusing room-temperature ionic liquids[J]. J. Chem. Soc. Dalton Trans.1999,8, 1201-1202.
    [52]Yasushi, K.; Isamu, K.; Takashi, M. Red oxreaction inl-ethyl-3-methyl imidazolium-iron chlorides molten salt system for battery application[J]. J. Power Sources,2002,109(2),327-3321.
    [53]Brennecke, J. F. and Maginn, E. J. Ionic liquids:Innovative fluids for chemical processing[J]. Aiche Journal.2001,47,384-2389.
    [54]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报,2004,49(6),515-521.
    [55]Parshall, G. W. Catalysis in molten salt media[J]. J. Am. Chem. Soc.1972,94, 8716-8719.
    [56]Wasserscheid, P. and Waffenschmidt, H. Ionicliquids in regioselective platinum-catalysed hydroformylation[J]. J. Mol. Catal. A:Chemical.2000,164, 61-67.
    [57]Knifton, J. F. Syngas reaction Part XI. The Ruthenium'melt'catalyzed oxonation ofinternal olefins[J]. J. Mol. Catal.,1987,43,65-78; Gyorgy, K.; Alajos, G.; Istvan. H.; Irina, L. O. Quaternary phosphoniumsalt and 1,3-dialkylimidazolium hexafluorophosphate ionic liquids as green chemical tools in organic syntheses. Current Organic Chemistry.2011,15(22):3824-3848 [58] Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S. and Dupont, J. The use of new ionic liquidsin two-phase catalytic hydrogenation reaction by rhodium complexes[J]. Polyhedron.1996,15,1217-1219; Horvath, I. T.; Rabai. J. Facile catalyst separation without water:fluorous biphase hydroformylation of olefins [J]. Science.1994,266(5 182):72-75
    [59]Wasserscheid, P.; Waffenschmidt, H.; Machnitzki, P.; Kottsieper, K. W. and Stelzer, O. Cationicphosphine ligands with phenylguanidinium modified xanthene moieties-asuccessful concept for highly regioselective, biphasic hydroformylation of oct-1-ene in hexafluorophosphate ionicliquids[J]. Chem. Commun.2001, 451-452.
    [60]vanLeeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Ligandbite angle effects in metal-catalyzed C-C bond formation[J]. Chem. Rev.2000,100, 2741-2770.
    [61]彭庆蓉,王宇,邓昌晞,汪小强,袁友珠.室温离子液体中水溶性铑膦配合物催化1-己烯氢甲酰化反应的研究.分子催化[J],2004,18(5);乔焜,邓友全.室温离子液体反应介质中叔丁醇氢酯基化反应的研究.化学学报,2002,60(6): 996-1000
    [62]林棋,娄本勇,陈毅挺,蒋维东,陈华,李贤均.离子液体中杂质对1-己烯氢甲酰化反应的影响.石油化工[J].2009,38(1)
    [63]林棋,付海燕,薛芳,袁茂林,陈华,李贤均.新型离子液体介质中长链烯烃氢甲酰化反应.物理化学学报[J].2006,22(4):465-469
    [64]朱丽琴,郭浩然.离子液体在氢甲酰化反应中的应用研究进展[J].2009,5
    [65]Karodia, N.; Gui, S.; New, C. et al. Clean catalysis with ionic solvents phosphoniumtosyates for hydroformylation[J]. Chem Commun.1998, (21):2 341-2342.
    [66]Arhancet, J. P.; Davis, M. E.; Merola, J. S.; Hanson B. E. Hydroformylation by supported aqueous-phase catalysis:a new class of heterogeneous catalysts[J]. Nature.1989,339,454-455.
    [67]Horvath, I. T.; Kiss, G..; Cook, R. A.; Bond, J. E.; Stevens, P. A.; Rabai, J. and Mozeleski, E.J. Molecular engineering in homogeneous catalysis:One-phase catalysis coupled with biphase catalyst separation. The fluorous-soluble HRh(CO)(P[CH2CH2(CF2)5CF3]3)3 hydroformylation system[J]. J. Am. Chem. Soc.1998,120,3133-3143.
    [68]Guo, I.; Hanson, B. E.; Toth, I. And Davis, M. E. Bis[Tris(Meta-(SodiumSulfonato)Phenyl)Phosphine] hexacarbonyl dicobalt, Co2(Co)6(P(meta-C6H4SO3Na)3)2, in a supported aqueous phase for the hydroformylation of 1-Hexene[J]. J. Organomet. Chem.1991,403,221-227.
    [69]Naughton, M. J.; Drago, R. S. Supported homogeneous film catalysts[J]. J. Catal. 1995,155,383-389.
    [70]Kalck, P.; Miquel, L.; Dessoudeix, M. Various approaches to transfers improvement during biphasic catalytic hydroformylation of heavy alkenes[J]. Catal. Today,1998,42,431-440.
    [71]Jauregui-Haza, U. J., Dessoudeix, M., Kalck, P., Wilhelm, A. M., Delmas, H. Multifactorial analysis in the study of hydroformylation of oct-1-ene using supported aqueousphase catalysis[J]. Catal. Today.2001,66,297-302.
    [72]Li, Z. H.; Peng, Q. R. and Yuan, Y. Z. Aqueous phosphine-Rh complexes supported on non-porousfumed-silica nanoparticles for higher olefin hydroformylation[J]. Appl. Catal. A:General,2003,239,79-86.
    [73]vanLeeuwen, P.; Sandee, A. J.; Reek, J. N. H. and Kamer, P. C. J. Xantphos-based, silica-supported, selective, and recyclable hydroformylation catalysts:a review[J]. J. Mol. Catal. A:Chemical.2002,182,107-123.44;Huang, L.; Kawi, S. Effeets of Suppored donor ligands on the activity and Stability of tethered rhodium eomplexe atalysts for hydroformylation[J]. J. Mol. Catal. A:Chem.2004,211(1-2):23-33
    [74]Mehnert, C. P. Supported ionic liquid phases[J]. Chem. A Eur. J.2004,11,50-56.
    [75]Mukhopadhyay, K.; Mandale, A. B.; Chaudhari, R. V. Encapsulated HRh(CO)(PPh3)3 inmicroporous and mesoporous supports:Novel heterogeneous catalysts for hydroformylation[J]. Chemistry of Materials.2003; 15(9):1766-1777
    [76]Peng, Q. R.; Yang, Y.; Yuang, Y. Z. Immobilization of rhodium complexes ligated witht riphenyphosphine analogs on amino functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation[J], Journal of Molecular Catalysis A:Chemical. 2004,219(1):175-181
    [77]Huang, L.; He, Y.; Kawi, S. Catalytic studies of aminated MCM-41 tethered rhodiumcomplexes for 1-hexene hydroformylation[J]. Applied Catalysis A: General.2004,265(2):247-257
    [78]Mukhopadhyay, K.; Chaudhari, R. V. Heterogenized HRh(CO)(PPh3)3 on zeolite Yusing phosphotungsticacidastethering agent:a novel hydroformylation catalyst[J]. Journal of Catalysis.2003,213(1):73-77
    [79]Ali, B. E.; Tijani, J.; Fettouhi, M. Hydroformylation of alkylalkenes catalyzed by rhodium supported on MCM-41:The effect of H3PW12O40 on the catalytic activity andrecycling[J]. Journal of Molecular Catalysis A:Chemical.2006,250(1-2): 153-162
    [80]Huang, L.; Kawi, S. Effects of supported donor ligands on the activity and stability of tethered rhodium complex catalysts for hydroformylation[J]. Journal of Molecular Catalysis A:Chemical.2004,211(1-2):23-33
    [81]Marchetti, M.; Paganelli, S.; Viel, E. Hydroformylation of functionalized olefins catalyzed by SiO2-tethered rhodium complexes[J]. Journal of Molecular Catalysis A:Chemical.2004,222(1-2):143-151
    [82]Zhang, Y.; Nagasaka, K.; Qiu, X. Q., et al. Hydroformylation of 1-hexene for oxygen ate fuels on supported cobalt catalysts[J]. Catalysis Today.2005,104(1): 48-54
    [83]Jauregui,U. J.; Dessoudeix, M.;Kalek, Ph.etal. Catal. TODAY.2001,66,2S; Guidotti, M.; Andreatta, D., et al. Characterization and catalytic performancesof alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation[J]. Journal of Molecular Catalysis A:Chemical,2003,204-205:509-518
    [84]Yamagishi,T.; Furikado, I.; Ito S., etal. Catalytic performance and characterization of RhVO4/SiO2 for hydroformylation and COhydrogenation[J]. Journal of Molecular Catalysis A:Chemical.2006,244(1-2):201-212
    [85]Jhaneet, J. P.; Davis, M. E.; Merola, J. S. etal, J Catal.1990,121,327—339; Gao, H.; Angelici, R. J. Combined homogeneous and heterogeneous catalysts. Rhodium carbonylthiolate complexes tetheredonsilica-supported metalheterogeneous catalysts:olefin hydroformylation and arene hydrogenation[J]. Journal of Molecular Catalysis A:Chemical.1999,145(1-2):83-94
    [86]Zhu, H. J.; Ding, Y. J.; Yan L., etal. The PPh3 ligand modified Rh/SiO2 catalyst for hydroformylation of olefins[J]. Catalysis Today.2004,93-95:389-393
    [87]Han, D. F.; Li, X. H.; Zhang, H. D.,et al. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts[J]. Journal of Catalysis.2006,243(2):318-328
    [88]Zhang, Y.; Shinoda, M.; Shiki, Y, et al. Hydroformylation of 1-hexene for oxygenate fuelsvia promoted cobalt/active carbon catalysts at low-pressure[J]. Fuel.2006,85(9):1194-1200
    [89]Diaz-Auon,J.A.; Roman-Martines,M.C; Salinas-Martines,L-C. [Rh(μ-C1)(COD)]2 supported on activated carbons for the hydroformylation of 1-octene:effects of supportsurface chemistry and solvent[J]. Journal of Molecular Catalysis A: Chemical.2001,170(1-2):81-93
    [90]Roman-Martines, M. C.; Diaz-Auon, J. A.; Salinas-Martines, L. C., et al. Rhodium-diphosphine complex bound to activated carbon:An effective catalyst for the hydroformylation of 1-octene[J]. Journal of Molecular Catalysis A: Chemical.2004,213(2):177-182
    [91]Yoon, T. J.; Kim, J. I.; Lee, J. K. Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters [J]. Inorganica Chimica Acta.2003,345:228-234
    [92]Abu-Reziq, R.; Alper,H.; Wang,D. S., etal. Metal supported on dendronized magnetic nanoparticles:Highly selective hydroformylation catalysts[J]. Journal of the American Chemical Society.2006,128:5279-5282
    [93]Alini, S.; Bottino, A.; Capannelli, G.., et al. Preparation and characterisation of Rh/Al2O3 catalysts and their application in the adiponit rilepartial hydrogenation and styrenehydroformylation[J]. Applied Catalysis A:General.2005,92: 105-112
    [94]Wrzyszcz,J.; Zawadzki,M.; Trzeciak, A. M., etal. Catalytic activity of rhodium complexes supported on Al2O3-ZrO2 inisomerization and hydroformylati on of 1-hexene[J]. Catalysis Letters.2004,93(1-2):85-92
    [95]Bayer, E.; Schurig, V. Soluble metal complexes of polymers for catalysis[J]. Angew. Chem. Int. Ed. Engl.1975,14,493-499.
    [96]Shibahara, F.; Nozaki, K. and Hiyama, T. Asymmetric hydroformylation catalyzed by highly cross-linked polystyrene-supported(R,S)-BINAPHOS-Rh(I) complexes[J]. J. Synthetic Org. Chemistry Japan.2003,61,694-705.
    [97]Lindner, E.; Salesch, T.; Brugger, S.; Hoehn, F.; Wegner, P. and Mayer, H. A. Supported organometallic complexes Part XXX. Hydroformylation of 1-hexene in interphases-theinfluence of different kinds of inorganic-organichybridco-condensation agents on the catalytic activity [J]. J. Organomet. Chem.2002,641,165-172.
    [98]Shibahara, F.; Nozaki, K.; Hiyama, T. J. A symmetric hydroformylation catalyzed by highly cross-linked polystyrene-supported(R,S)-BINAPHOS-Rh(I) complexes[J]. Synthetic Org. Chemistry Japan.2003,61(7),694-705.
    [99]Yoneda, N. and Hosono, Y. Acetic acid process catalyzed by ionically immobilized rhodium complex to solid resin support[J]. J. Chem. Eng. Japan.2004,37, 536-545.
    [100]Gong, A. J.; Fan, Q. H.; Chen, Y. M; Liu, H. W.; Chen, C. F.; Xi, F. Two-phase hydroformylation reaction catalysed by rhodium-complexed water-soluble dendrimers[J]. J. Mol. Catal. A:Chemical.2002,159,225-232.
    [101]vanLeeuwen, P. W. N. M.; Sandee, A. J.; Reek, J. N. H. and Kamer, P. C. J. Xantphos-based, silica-supported, selective, and recyclable hydroformylation catalysts:a review[J]. J. Mol. Catal. A:Chemical.2002,182-183,107-123.
    [102]Reynhardt, J. P. K.; Yang, Y.; Sayari, A. and Alper, H. Polyamidoamine dendrimers prepared inside the channels of pore-expanded periodic mesoporous silica[J]. Adv. Funct. Mater.2005,15,1641-1646.
    [103]Kranenburg, M.; van der Burgt, Y.E. M.;Kamer, Paul.C. J and van Leeuwen, Piet. W. N. M. New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation: Effect of the Bite Angle.Organometallics.1995,14,3081-3089.
    [104]Goedheijt,M.S.; Kamer, Paul C.J.; van Leeuwen.Piet. W. N.M. A water-soluble diphosphine ligand with a large 'natural' bite angle for two-phase hydroformylation of alkenes. Journal of Molecular Catalysis A:Chemical 1998,134,243-249
    [105]Sunder, A.; Hanselmann, R.; Frey, H. and Mullhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules.1999,32,4240-4246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700