用户名: 密码: 验证码:
陆地棉(Gossypium hirsutum L.)离体培养分化性状的遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花(Gossypium spp)是世界上重要的纤维作物和油料作物之一,在我国国民经济发展中起着非常重要的作用。长期以来,传统的常规育种方法使棉花很多农艺性状都有了很大的提高,但是长期的人工选择也造成其遗传基础狭窄,种质资源匮乏等,最终导致棉花育种水平徘徊不前。近年来,随着植物转基因技术的研究和应用迅速发展,棉花也不可避免的成为了基因工程改造的目标。目前,农杆菌介导法是棉花转基因技术中应用最广泛的方法,它依赖于植物组织培养高效再生体系。棉花组织培养再生体系同时也存在很多问题:培养周期长,重复率比较低;畸形胚频率较高;愈伤组织再分化为胚性愈伤组织困难,严重受基因型限制。其中愈伤组织再分化胚性愈伤组织受基因型限制是亟待解决的重要问题之一。本研究通过转录组分析,转录组分子标记的开发及QTL定位的方法对棉花组织培养中的基因型限制进行了一系列的研究,并取得了以下一些研究结果:
     棉花姊妹系体细胞胚胎发生过程的转录组分析:
     1.为了更好的研究棉花体细胞胚胎发生过程的分子机制,本试验利用RNA-Seq的方法初步研究了W10(CCRI24)姊妹系在体细胞胚胎发生过程转录水平的动态变化。通过de novo拼接214977462Illumina reads最终获得了204349个unigenes。选取不同功能不同表达量的33个基因进行qRT-PCR验证,结果显示,除了个别的几个基因外,RNA-Seq结果与qRT-PCR验证结果呈现显著的正相关(相关系数R2=0.841,P≤0.01),数据表明了RNA-Seq结果的可靠性。
     2.在两个姊妹系的两个培养阶段,生长素和细胞分裂素在培养基中的比例不同,这就暗示了生长素和细胞分裂素在体细胞胚胎发生过程中可能起着非常重要的作用。通过全面分析植物激素相关基因,我们鉴定了大量与生长素、细胞分裂素合成和信号通路相关基因,这些基因分别注释到tryptophan metabolism,zeatin biosynthesis,AUX1,TIR1,Aux/IAA,ARF,SAUR,GH3gene family,AHK2_3_4,AHP,ARR-B和ARR-A。进一步分析,发现这些基因在姊妹系及不同阶段具有显著的差异。在以后的研究中,过表达或者基因沉默在不同姊妹系及不同阶段显著上调或者下调的某些基因将具有非常重要的意义。尽管生长素和细胞分裂素在体细胞胚胎发生过程中具有非常重要的作用,但是它们之间的相互作用及与其它影响因子的作用机制目前尚不清楚。
     3.利用本研究转录组数据得到的204349个大小不等的unigenes开发SSR标记,并将设计的引物所在的序列与CMD上已用于SSR开发的序列进行比对去重,共得到1091对新的EST-SSR引物。
     棉花叶柄愈伤组织分化率的遗传分析:通过研究发现,棉花愈伤组织分化率属于数量性状,受多基因控制。利用QTXNetwork软件的全基因组关联分析方法从F2分离世代中检测与棉花愈伤组织分化率有关的QTLs。共检测到7个加性(A)QTLs,10个显性(D)QTLs,5对愈伤组织分化率的AD上位性QTLs,8对愈伤组织分化率的DA上位性QTLs及7对愈伤组织分化率的DD上位性QTLs。这些QTLs分布在LG2,LG4,LG6,LG7,LG9,LG10,LG16,LG17,LG19,LG21,LG22,LG25,LG26,LG33和LG40连锁群上,所对应的染色体分别为Chr5,Chr6,Chr2,Chr14,Chr9,Chr23,Chr3,Chr1,Chr11,Chr2,Chr4,Chr20,Chr12,LG33和Chr11。愈伤组织分化率的DD上位性QTLs中,qRE-9-14与qRE-22-2之间DD上位性QTL效应的遗传力最高,达到了15.09%,qRE-6-2和qRE-33-1显性(D) QTL可解释的表型变异率次之,分别解释10.79%和10.29%的表型变异率。上述所有类型的QTLs的遗传力总和为92.95%。
Cotton (Gossypium spp.) is the preeminent source of natural fiber as well as a significantsource of cooking oil in the world, and it has been playing a very important role in the economicdevelopment of China. Because of significant economic and social values of cotton, major effortsare being to improve the crop. Conventional breeding has made great contributions to improve theagronomic traits. Nevertheless, further improvement is being constrained by the limited geneticdiversity of cotton. In recent years, gene transfer has been used to augment conventional breedingof major economic crops including cotton. Agrobacterium-mediated transformation (via somaticembryogenesis, SE) has been a preferred method for genetic transformation, but it requires areproducible and highly efficient plant regeneration scheme. While many factors, including lowefficiency of tissue culture with excessive time and labor, high frequency of abnormal embryosand the genotype limitation of plant regeneration can affect somatic embryogenesis, and the keyfactor is the genetic background. Global analysis of transcriptome dynamics during cotton SE,primer design based on transcriptome data and QTLs location were performed to studygenotype-dependent response during cotton SE.
     Transcriptome dynamics during SE in different sister lines analysis:
     1. To get a broader view on the molecular mechanisms underlying SE in cotton, globalanalysis of cotton transcriptome dynamics during SE in different sister lines was performed usingRNA-Seq. A total of204349unigenes were detected by de novo assembly of the214977462Illumina reads. Quantitative real-time PCR (qRT-PCR) was applied to33genes with differentexpression levels and functional assignments to confirm the validity of RNA-Seq analysis. TheqRT-PCR measurements were positively correlated with the RNA-Seq results for almost all thetested genes with the exception of2genes (R2=0.841, correlation was significant at the0.01level).
     2. Different phytohormone (auxin and cytokinin) concentration ratios in medium and theendogenous content changes of these two phytohormones at2stages in different sister linessuggested the roles of auxin and cytokinin during cotton SE. On the basis of global generegulation of phytohormone-related genes, numerous genes from all the differentially expressedtranscripts were involved in auxin and cytokinin biosynthesis and signal transduction pathwayswhich belonged to tryptophan metabolism, zeatin biosynthesis, AUX1, TIR1, Aux/IAA, ARF,SAUR, GH3gene family, AHK2_3_4, AHP, ARR-B and ARR-A. Analyses of differentiallyexpressed genes involved in these nodes of pathway revealed the substantial changes in gene typeand abundance between two sister lines. Isolation, cloning and silencing/over-expressing the geneswhich revealed remarkable up-or down-expression during cotton SE n were important. Furthermore, auxin and cytokinin play a primary role in SE, but potential cross-talk with eachother or other factors remains unclear.
     3. All the204349unigenes were used to design SSR primers.We got1091pairs of newEST-SSR primer after blasting CMD.
     Inheritance analysis of SE callus redifferentiation rate in cotton tissue culture:
     After a series of experiments in our study, we deduced that many genes may be involved inSE, not only one gene.37QTLs associated with regeneration frequency of calli were detectedwith software QTXNetwork by Genome-Wide Association Studies (GWAS) method in F2population, including7estimated dominant (D) of QTLs,10estimated additive (A) of QTLs,5estimated epistasis (AD) of QTLs,8estimated epistasis (DD) of QTLs and7estimated epistasis(DD) of QTLs for regeneration frequency of calli. The QTLs were anchored in LG2, LG4, LG6,LG7, LG9, LG10, LG16, LG17, LG19, LG21, LG22, LG25, LG26, LG33and LG40, and theirlocated chromosomes were Chr5,Chr6,Chr2,Chr14,Chr9,Chr23,Chr3,Chr1,Chr11,Chr2,Chr4,Chr20,Chr12,LG33and Chr11. The phenotype variation of estimated epistasis (DD)beteen qRE-9-14with qRE-22-2was the highest among all the detected QTLs, and explained15.09%phenotype variation in F2set. The qRE-6-2explained10.79%phenotype variation andqRE-33-1can explain10.29%phenotype variation. The sum of all the QTLs heritability were92.95%.
引文
1.陈天子,吴慎杰,李飞飞,郭旺珍,张天真.新疆棉花4个主栽品种的体细胞胚胎发生及植株再生[J].作物学报,2008,34(8):1374~1380.
    2.陈志贤,李淑君.棉花细胞悬浮培养胚胎发生和植株再生某些特性的研究[J].中国农业科学,1987,20:6~11.
    3.迟吉娜,李喜焕,王省芬.棉花体细胞胚胎发生和植株再生的影响因素[J].棉花学报,2004,16:55~61.
    4.崔凯荣,邢更生,周攻克.体细胞胚胎发生的生化基础[J].生命科学,2001,12:6~8.
    5.方卫国,张正圣,李先碧,裴炎.棉花铃重AFLP标记的初步研究[J].棉花学报,2000,12(4):176~179.
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,1~9.
    7.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994.
    8.关强,张月学,徐香玲,孙德全,李绥艳,林红,潘丽艳,马延华. DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学,2008,1:102~104.
    9.郭余龙,李明扬,裴炎,蔡应繁.陆地棉体胚发生及再生植株移栽[J].西南农业大学学报,1999,21(2):514~517.
    10.胡学军,邱正名,李金泉. RAPD分子标记技术及其在十字花科蔬菜研究中的应用[J].湖北农业科学,2005,3:107~110.
    11.郏艳红,熊庆娥.植物体细胞胚胎发生的研究进展[J].四川农业大学学报,2003,21:59~63.
    12.焦改丽,李俊峰,李燕娥,赵俊峡,张换样,刘建卫.利用新的外植体建立棉花高效转化系统的研究[J].棉花学报,2002,14(1):22~27.
    13.冷春旭,李付广,陈国跃.陆地棉体细胞胚胎发生过程的cDNA-AFLP分析[J].西北植物学报,2007,27:233~237.
    14.李成奇,郭旺珍,马晓玲,张天真.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位[J].棉花学报,2008,20(3):163~169.
    15.李惠英,张献龙.陆地棉体细胞胚胎发生过程中的mRNA差异显示分析[J].棉花学报,2003,15:264~268.
    16.李仁敬,孟庆玉,魏良民.新疆海岛棉体细胞胚状体的发生和芽的分化[J].新疆农业科学,1993,1:9~11.
    17.李艳杰,龙火生,李影,杨公社.单核苷酸多态性(SNP)的研究进展和应用[J].畜牧兽医杂志,2003,22(4): l6.
    18.刘春明,姚敦义.陆地棉体细胞胚发生及其细胞组织学观察[J].植物学报,1991,33(5):378~848.
    19.刘桂云.棉花胚状体的发生[J].中国棉花,1983,10:24~25.
    20.刘文欣,孔繁玲,郭志丽,张群远,彭蕙茹,付小琼,杨付新.建国以来我国棉花品种遗传基础的分子标记分析[J].遗传学报,2003,30(6):560~570.
    21.罗小敏.棉花组织培养与雪花莲凝集素基因转化[硕士学位论文].河北:河北大学,2004.
    22.马克世,胡炳义.分子标记的发展及应用[J].周口师范学院学报,2006,23(2):81~84.
    23.秦永华,刘进元.棉花组织培养与植株再生[J].分子植物育种,2006,4:583~592.
    24.宋平.棉花不同基因型胚珠离体条件下愈伤组织形成的研究[J].中国棉花,1987,6:15~17.
    25.谭晓连,钱迎倩.不同外植体来源和培养条件对拟似棉植株再生的影响[J].遗传学报,1988,5:81~87.
    26.王林,李荣,牛建新,吕建强,王国安,虎海防.核桃AFLP银染技术体系的建立[J].西北农业学报,2007,16(2):116~119.
    27.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,2002.
    28.王军,谢皓,郭二虎,李爱军,范慧萍. DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76~80.
    29.王庆浩.分子标记的研究进展及其在中药研究中的应用[J].辽宁中医杂志,2009,36(9):1471~1473.
    30.王顺利,王轲,韩晓峰.小麦遗传转化方法研究进展[J].首都师范大学学报,2008,29(6):52~58.
    31.王晓梅,杨秀荣. DNA分子标记研究进展[J].天津农学院学报,2000,7(1):21~24.
    32.吴家和,陈志贤,李淑君.棉花体细胞愈伤组织诱导和增殖期间某些代谢产物的动态变化[J].中国棉花,1999,26:17~18.
    33.吴家和,张献龙,罗晓丽,肖娟丽.两个陆地棉体细胞胚胎发生新品系的选育[J].棉花学报,2003,15(4):254~256.
    34.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443~452.
    35.谢德意,房卫平,唐中杰.棉花遗传转化研究进展及其应用[J].河南农业科学,2007,11:5~12.
    36.易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选[J].作物学报,2001,27(6):781~786.
    37.殷剑美,武耀廷,朱协飞,张天真.陆地棉产量与品质性状的主基因与多基因遗传分析[J].棉花学报,2003,15(2):67~72.
    38.张朝军,李付广,喻树迅,范术丽,王玉芬,武芝侠,李凤莲,刘传亮.棉花叶柄组织培养与高分化率材料选育方法.中国,1864477[P].2006,11~22.
    39.张朝军.棉花叶柄高效再生体系的建立与遗传分析[博士学位论文].北京:中国农业科学院研究生院,2008.
    40.张海,易永华,高晓华,邢宏宜,贾涛.棉花子叶离体培养与植株再生[J].西北农业学报,2002,11(1):84~86.
    41.张军,武耀廷,郭旺真,张天真.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269.
    42.张家明,孙雪飘,郑学勤,张献龙,赵燕,刘金兰,孙济中.陆地棉愈伤诱导及胚胎发生能力的遗传分析[J].中国农业科学,1997,30(3):36~43.
    43.张天真.植物育种学总论[M].北京:中国农业出版社,2003,59-79.
    44.张献龙,孙济中,刘金兰.陆地棉体细胞胚胎发生与植株再生[J].遗传学报,1991,18:461~467.
    45.张献龙.陆地棉体细胞胚胎发生、植株再生及其机制的研究[博士学位论文].武汉:华中农业大学,1990.
    46.张征锋,肖本泽.基于生物信息学与生物技术开发植物分子标记的研究进展[J].分子植物育种,2009,7(1):130~136.
    47.周涛,李庆.单核苷酸多态性遗传标记(SNP)的检测及其应用[J].中国优生与遗传杂志,2010,18(2):3~4.
    48.朱四元,陈金湘,刘海荷,刘爱玉,李瑞莲,周仲华.不同类型抗虫棉品种基于RAPD的遗传多样性分析[J].棉花学报,2007,19(2):83~87.
    49.张寒霜,李俊兰,高鹏,王海波.低酚陆地棉的体细胞胚胎发生和植株再生[J].河北农业大学学报,1999,22(1):9~12.
    50. Dovzhenko A, Dal B C, Meurer J, Koop H. Efficient regeneration from cotyledon protoplastsin Arabidopsis thaliana[J]. Protoplasma,2003,222:107–111.
    51. Altaf M K, Zhang J F, Steward J M, Cantrell R G. Integrated molecular map based on atrispecific F2population of cotton. Beltwide cotton conferences.,1998,491~492.
    52. Ambro V H, Pascal L, Roy P. Three conserved members of the RNase D family have uniqueand overlapping functions in the processing of5S,5.8S, U4, U5, RNase MRP and RNase PRNAs in yeast. The EMBO Journal,2000,19,1357~1365.
    53. An C F, Saha S, Jenkins J N, ScheZer B E, Wilkins T A, Stelly D M. Transcriptome profling,sequence characterization,and SNP-based chromosomal assignment of the EXPANSIN genesin cotton[J]. Mol Genet Genomics,2007,278:539~553.
    54. An C F, Saha S, Jenkins J N, Ma D P, ScheZer B E, Kohel R J, Yu J Z, Stelly D M. Cotton(Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomiccharacterization, chromosome localization, and linkage mapping[J]. Theor Appl Genet,2008,116:1015–1026.
    55. Ashburner M, Ball C A, Blake J A, Botstein D, Butler H. Gene ontology: tool for theunification of biology[J]. Nat Genet,2000,25:25~29.
    56. Bayley C, Trolinder N, Ray C. Engineering2,4-D resistance into cotton[J]. Theor ApplGenet,1992,83:645~649.
    57. Beasley C A. In vitro culture of fertilized cotton ovules[J]. Bioscience,1971,21:906~907.
    58. Bellin D, Ferrarini A, Chimento A, Kaiser O, Levenkova N, Bouffard P, Delledonne M.Combining next~generation pyrosequencing with microarray for large scale expressionanalysis in non~model species[J]. BMC Genomics,2009,10:555.
    59. Bostein D, White R L, Skolnick M. Construction of a genetic linkage map in man usingrestriction fragment length polymorphisms[J]. Am. J. Hum. Genetics,1980,32:314~331.
    60. Boutilier K, Offringa R, Sharma V K. Ectopic expression of BABY BOOM triggers aconversion from vegetative to embryonic growth. Plant Cell,2002,14:1737~1749.
    61. Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M,Lammeren A, Miki B. Ectopic expression of BABY BOOM triggers a conversion fromvegetative to embryonic growth[J]. Plant Cell,2002,14:1737~1749.
    62. Braybrook S, Harada J. LECs go crazy in embryo development[J]. Trends Plant Sci,2008,13:624~630.
    63. Braybrook S A, Stone S L, Park S. Genes directly regulated by LEAFY COTYLEDON2provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc.Natl. Acad. Sci,2006,103:3468~3473.
    64. Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis[J].New Phytol,2007,176:511~536.
    65. Chao I L, Cho C L, Chen L M, Liu Z H. Effect of indole-3-butyric acid on the endogenousindole-3-acetic acid and lignin contents in soybean hypocotyl during adventitious rootformation[J]. J Plant Physiol,2001,158:1257~1262.
    66. Choi Y E, Yang D C, Park J C, Soh W Y, Choi K T. Regenerative ability of somatic singleand multiple embryos from cotyledons of Korean ginseng on hormone free medium[J]. PlantCell Rep,1998,17:544~551.
    67. Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G. AtGA3ox2, a keygene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis byLEC2and FUS3in Arabidopsis[J]. Plant Physiol,2004,136:3660~3669.
    68. He D H, Zhong X L, Zhang X L. Mapping QTL of traits contributing to yield and analysis ofgenetic effects in tetraploid cotton[J]. Euphytica,2005,144:141~149.
    69. Davidonis G H. Plant regeneration from callus tissue of Gossypium hirsutum L.[J]. Plant Sciletter,1983,32:89~93.
    70. Donis K H, Green P, Helms C. A genetic linkagemap of the human genome[J]. Cell,1987,51:319~337.
    71. Feher A, Pasternak T P, Dudits D. Transition of somatic plant cells to an embryogenicstate[J]. Plant Cell Tiss Organ Cult,2003,74:201~228.
    72. Finer J J. Plant regeneration from somatic embryogenic suspension cultures ofcotton(Gossypium hirsutum L.)[J]. Plant Cell Rep,1988,8:586~589.
    73. Gaj M D, Zhang S, Harada J J, Lemaux P G. Leafy cotyledon genes are essential forinduction of somatic embryogenesis of Arabidopsis[J]. Planta,2005,222:977–988.
    74. Gawel NJ, Robackerl C D. Genetic control of somatic embryogenesis in cotton petiole calluscultures[J]. Euphytica,1990,49:249~253.
    75. Gawronska H, Deji A, Sakakibara H, Sugiyama T. Hormone mediated nitrogen signaling inplants: implication of participation of abscisic acid in negative regulation ofcytokinin~inducible expression of maize response regulator[J]. Plant Physiol Biochem,2003,41:605–610.
    76. Guo Y F, McCarty J C, Jenkins J N, Saha S. QTLs for node of first fruiting branch in a crossof an upland cotton, Gossypium hirsutum L.,cultivar with primitive accession Texas701[J].Euphytica,2008,163:113~122.
    77. Harushima Y, Kurata N, Yano M. Detection of segregation distortions in an indica-japonicarice cross using a high-resolution molecular map [J].Theor Appl Genet,1996,92:145-150.
    78. He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping foreconomic traits based on a dense genetic map of cotton with PCR~based markers using theinterspecific cross of Gossypium hirsutum×Gossypium barbadense[J]. Euphytica,2007,153(12):181~197.
    79. Hecht V V, Calzada J P, Hartog M V, Schmidt E, Boutilier K, Grossniklaus U, Devries S C.The Arabidopsis somatic embryogenesis receptor kinase1gene is expressed in developingovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiol,2001,127:803~816.
    80. Hess J R, Carman J G. Embryogenic competence of immature wheat embryos: genotype,donor plant environment and endogenous hormone levels[J]. Crop science,1998,38:249~253.
    81. Huang C X, Jia Y C, Yang S L, Chen B, Sun H W, Shen F, Wang Y Z. Characterization ofZNF23, a KRAB-containing protein that is downregulated in human cancers and inhibits cellcycle progression[J]. Exp Cell Res,2007,313:254~263.
    82. Iqbal M J, Reddy O K, Elzik K M, Pepper A E. A genetic bottleneck in the‘evolution underdomestication of upland cotton Gossypium hirsutum L.examined using DNA fingerprinting[J]. Theoretical and Applied Genetics,2001,103:547~554.
    83. Jenik P D, Gillmor C S, Lukowitz W. Embryonic patterning in Arabidopsis thaliana. AnnuRev Cell Dev Bi,2007,23:207–236.
    84. Jiang C X, Wright R J, Kmelzik P. Polyploid formation created unique convenues forresponse to selection in Gossypium (cotton)[J]. Proc.Natl.Sci.,1998,95:4419~4424.
    85. Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somaticembryogenesis[J]. Plant Growth Regul,2005,47:91–110.
    86. Jiménez V M, Bangerth F. Endogenous hormone concentrations and embryogenic callusdevelopment in wheat[J]. Plant Cell, Tiss Organ Cult,2001,67:37~46.
    87. Kim C K, Chung J D, Jee S O, Oh J Y. Somatic embryogenesis from in vitro grown leafexplants of Rosa hybrida L.[J]. Journal of Plant Biotechnology,2003,5:169~172.
    88. Kohel R J, Yu J, Park Y H. Molecular mapping and characterization of traits controlling fiberquality in cotton[J]. Euphytica,2001,121:163~172.
    89. Kwong R M, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFYCOTYLEDON1-LIKE defines a class of regulators essential for embryo development[J].Plant Cell,2003,15:5~18.
    90. Lacape J M, Nguyen T B, Brigitte C. QTL Analysis of Cotton Quqlity Using MultipleGossypium hirsutum×Gossypium barbadense Backcross Generations[J]. Crop Science,2005,45:123~140.
    91. Lagacé M, Matton D. Characterization of a WRKY transcription factor expressed in latetorpedo-stage embryos of Solanum chacoense[J]. Planta,2004,219:185~189.
    92. Li Z S, Thomas T L. PEI1, an embryo-specific zinc finger protein gene required forheart-stage embryo formation in Arabidopsis[J]. Plant Cell,1998,10:383~398.
    93. Lin Z, He D, Zhang X. Linkage map construction and mapping QTL for cotton fibre qualityusing SRAP, SSR and RAPD[J]. Plant Breeding,2005,124:180~187.
    94. Lu H, Romero S J, Bernardo R. Chromosomal regions associated with segregation distortionin maize[J]. Theor Appl Genet,2002,105:622-628.
    95. McLean, Nowak J. Inheritance of somatic embryogenesis in red clover(TrifoliumpratenseL.)[J]. Theoretical and Applied Genetics,1998,97:557~562.
    96. Mei M, Syed N H, Gao W. Genetic mapping and QTL analysis of fiber-related traits incotton (Gossypium)[J]. Theoretical and Applied Genetics,2004,108:280~291.
    97. Michael J P, Denichiro O, Jose M A, Joseph R E, Gary N D, Steven E C. Class IIIHomeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, andDistinct Roles in Arabidopsis Development. The Plant Cell.2005,17:61~76.
    98. Michalczuk L, Ribnicky D M, Cooke T J, Cohen J D. Regulation of indole-3-acetic acidbiosynthetic pathways in carrot cell cultures[J]. Plant Physiol,1992,100:1346–1353.
    99. Mishra R, Wang H Y. Development of a highly regenerable elite Acala cotton (Gossypiumhirsutum cv. Maxxa)–a step towards genotype-independent regeneration[J]. Plant Cell,Tissue and Organ Culture,2003,73(1):21~35.
    100. Mitter D H. Somatic embryogenesis in Gossypium hirsutum L.[J]. Beltwide Cotton Prod ResConf Proc,1985,57.
    101. Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc B F, Collin M, Verdeil J L, Tregear JW. EgAP2-1, an AINTEGUMENTAlike (AIL) gene expressed inmeristematic andproliferating tissues of embryos in oil palm[J]. Planta,2007,226:1353–1362.
    102. Multani D S, Lyon B R. Genetic fingerpringting of Australian cotton cultivars with RAPDmarkers[J]. Genome,1995,38:1005~1008.
    103. Nole W S, Tranby T L, Krizek B A. AINTEGUMENTA-like(AIL) genes are expressed inyoung tissues and may specify meristematic or division competent states[J]. Plant Mol. Biol.,2005,57:613–628.
    104. Park S, Harada J J. Arabidopsis embryogenesis[J]. Methods in Mol. Biol.,2008,427:3–16.
    105. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant MolecularBiology Reporter,1993,11(3):122~127.
    106. Price J H, Smith R H, Grumbles R M. Callus cultures of six species of cotton (Gossypiumhirsutum L.) on defined media[J]. Plant Sci Lett,1977,10:115~119.
    107. Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based ona four way cross population in Gossypium hirsutum L[J]. Thero Appl Genet,2008,117:883~894.
    108. Radhakrishnan T, Murthy T K, Chandran K, Bandyopadhyay A. Somatic embryogenesis inArachishypogea: revisited[J]. Australian Journal of Botany,2001,49,753~759.
    109. Rana M K, Singh V P, Bhat K V. Assessment of genetic diversity in upland cotton(Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism(AFLP) markers and morphological characteristics[J]. Genetic Resources and Crop Evolution,2005,52:989–997.
    110. Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailedRFLP map of cotton, Gossypium hirsutum×Gossypium barbadense: chromosomeorganization and evolution in a disomic polyploid genome[J]. Genetics,1994,138:829~847.
    111. Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors[J].Biol. Chem,1998,379:633–646.
    112. Sagare A P, Lee Y L, Lin T C, Chen C C, Tsay H S. Cytokinin induced somaticembryogenesis and plant regeneration in Corydalis yanhusuo(Fumariaceae)a medicinalplant[J]. Plant Sci,2002,160:139~147.
    113. Sano Y. The genic nature of gamete eliminator in rice [J]. Genetics,1990,125:183-191
    114. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher E H, Schmid M, Jurgens G,Weijers D. MONOPTEROS controls embryonic root initiation by regulating a mobiletranscription factor[J]. Nature,2010,464:913–916.
    115. Schmidt E, Guzzo F, Toonen M, Vries S C. A leucine-rich repeat containing receptor-likekinase marks somatic plant cells competent to form embryos[J]. Development,1997,124:2049~2062.
    116. Shappley Z W, Jenkins J N, Zhu J, McCarty J C. Quantitative trait loci associated withagronomic and fiber traits of upland cotton[J]. The journal of cotton sciences,1998b,2:153~163.
    117. Shen X L, Guo W Z, Lu Q, Zhu X, Yuan Y, Zhang T. Genetic mapping of quantitative traitloci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007,155:371~380.
    118. Shen X L, Guo W Z, Zhu X F. Molecular mapping of QTLs for fiber qualities in threediverse lines in upland cotton using SSR markers[J]. Molecular breeding,2005,15:169~181.
    119. Shoemaker R C. Characterization of somatic embryogenesis and plant regeneration incotton[J]. Plant Cell Reports,1986,3:178~181.
    120. Brown T A. Gene Cloning and DNA Analysis-An Introduction[M]. Beijing: High EducationPress,2006.
    121. Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potentialfrom the wild [J]. Science,1997,277:1063~1066.
    122. Tatineni V, Cantrell R G, Davis D D. Genetic diversity in elite cotton germplasm determinedby morphological characteristics and RAPDs[J]. Crop Science,1996,36:186~192.
    123. Thakare D, Tang W, Hill K, Perry S E. The MADS-Domain transcriptional regulatorAGAMOUS-LIKE15promotes somatic embryo development[J]. Plant Physiol,2008,146(4):1663-1672.
    124. Thornburg R W, Li X. Wounding Nicotiana tabacum leaves causes a decline in endogenousindole-3-acetic acid[J]. Plant Physiol,1991,96:802–805.
    125. Trolinder N L, Goodin J R. Effects of source of explant and hormone regime[J]. Plant CellTissue and Organ Culture,1988,12:31~42.
    126. TrolinderN L. Genotype specificity of the somatic embryogenesis in cotton[J]. Plant Cell Rep,1989,8:133~136.
    127. Tsukagoshi H, Busch W, Benfey P N. Transcriptional regulation of ROS controls transitionfrom proliferation to differentiation in the root[J]. Cell,2010,143:606–616.
    128. Ulloa M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiberquality traits in an intraspecific population[J]. Journal of Cotton Science,2000,4:161~170.
    129. Wall P K, Leebens M J, Chanderbali A S, Barakat A, Wolcott E, Liang H, Landherr L,Tomsho L P, Hu Y, Carlson J E, Ma H, Schuster S C, Soltis D E, Soltis P S, Altman N,dePamphilis C W. Comparison of next generation sequencing technologies for transcriptomecharacterization[J]. BMC Genomics2009,10:347.
    130. Wan Q, Zhang Z, Hu M, Chen L, Liu D, Chen X, Wang W, Zheng J. T1locus in cotton is thecandidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.)resistance[J]. Euphytica,2007,158:241~247.
    131. Wang X, Ma J, Yang S, Zhang G, Ma Z. Assessment of genetic diversity among Chineseupland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSRmarkers[J]. Frontiers of Agriculture in China,2007,2:129~135.
    132. Wang X C, Niu Q W, Teng C, Li C, Mu J, Chua N H, Zuo J R. Overexpression ofPGA37/MYB118and MYB115promotes vegetative-to-embryonic transition inArabidopsis[J]. Cell Res,2009,19:224~235.
    133. Wang H, Caruso L V, Downie A B, Perry S E. The embryo MADS domain proteinAGAMOUS-Like15directly regulates expression of a gene encoding an enzyme involved ingibberellin metabolism[J]. Plant Cell,2004,16:1206~1219.
    134. Wendle J F, Brubaker C F, Percival A E. Genetic diversity in Gossypium hirsutum and theorigin of upland cotton [J]. America Journal of Botany,1992,79:1291~1310.
    135. Wu J X, Gutierrez O A, Jenkins J N, McCarty J C, Zhu J. Quantitative analysis and QTLmapping for agronomic and fiber traits in an RI population of upland cotton[J]. Euphytica,2009,165:231~245.
    136. Wu M Q, Zhang X L, Nie Y C. Localization of QTLs for Yield and Fiber Quality Traits ofTetraploid Cotton Cultivar[J]. Acta Genetica Sinica,2003,30(5):443~452.
    137. Wu X M, Li F G, Zhang C J, Liu C L, Zhang X Y. Differential gene expression of cottoncultivar CCRI24during somatic embryogenesis[J]. J Plant Physiol,2009,66:1275–1283.
    138. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of ricesubjected to water stress during grain filling[J]. Plant Physiology,2001,127:315~323.
    139. Yang X Y, Zhang X L, Yuan D J, Jin F Y, Zhang Y C, Xu J. Transcript profiling revealscomplex auxin signalling pathway and transcription regulation involved in dedifferentiationand redifferentiation during somatic embryogenesis in cotton[J]. BMC Plant Biology2012,12:110.
    140. Yang X Y, Zhang X L. Regulation of somatic embryogenesis in higher plants[J]. Crit RevPlant Sci,2010,29:36–57.
    141. Yu J, Park Y H, Lazo G H. Molecular cotton genome with molecular markers. BeltwideCotton Conferences.1997:447.
    142. Yu J, Park Y H, Lazo G H. Molecular mapping of the cotton genome: QTL analysis of fiberquality properties. Beltwide Cotton Conferences.1998:485.
    143. Zeng F C, Zhang X L, Jin S X, Cheng L, Liang S G, Hu L S, Guo X P, Nie Y C, Cao J L.Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somaticembryogenesis of cultured cotton cell[J]. Plant Cell Tiss Organ Cul,2007,63~70.
    144. Zeng F C, Zhang X L. Isolation and characterization of genes associated to cotton somaticembryogenesis by suppression subtractive hybridization and macroarray[J]. Plant MolecularBiology,2006,60:167~183.
    145. Zhang C J, Yu S X, Fan S L, Zhang J F, Li F G. Inheritance of somatic embryogenesis usingleaf petioles as explants in upland cotton[J]. Euphytica,2011,181:55~63.
    146. Zhang J F, Wajahatullah M K, Stewart J M. Identification of RAPD markers linked to the D8CMS restorer gene in cotton[J]. Agron Abst,1997:152.
    147. Zhang T Z, Yuan Y L, Yu J. Molecular tagging of a major QTL for fiber strength in Uplandcotton and its marker-assisted selection[J]. Theor. Appl. Genet.,2003,106:262–268.
    148. Zhang Z S, Xiao Y H, Lou M. Construction of a genentic linkage map and QTL analysis offiber-related traits in upland cotton(Gossypium hirsutum L.)[J]. Euphytica,2005,144:91~99.
    149. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Graf G. Two phases of chromatindecondensation during dedifferentiation of plant cells[J]. J Biol Chem,2001,276:22772~22778.
    150. Zheng S Z, Mei C H, Jian Z. Construction of a comprehensive PCR-based marker linkagemap and QTL mapping for fiber quality traits in upland cotton(Gossypium hirsutum L.)[J].Mol Breeding,2009,10:12~16.
    151. Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes
    vegetative-to-embryonic transition in Arabidopsis[J]. Plant J,2002,,30:349~359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700