用户名: 密码: 验证码:
低品位镍红土矿湿法冶金提取基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍是一种重要的有色金属,广泛应用于不锈钢、高温合金、电池材料以及各种化工产品中。近年来,在全球镍消费持续下跌的情况下,我国镍消费仍以每年25%左右的速度增长,已成为全球最大的镍消费国。世界陆地镍资源中有72%储存在镍红土矿中,但其镍产量仅占全球镍产量的42%。随着镍硫化矿的逐渐枯竭,镍红土矿已经成为全球镍资源开发的重点。湿法冶金处理镍红土矿工艺具有有价金属回收率高、选择性好、能耗低、目标金属产品类型多等优点,已成为低品位镍红土矿处理的主要工艺流程。本论文针对国内外三个不同矿区低品位褐铁矿型镍红土矿的性质和特点,开展镍红土矿湿法冶金处理基础理论和工艺研究,为低品位镍红土矿的工业技术开发提供理论和技术依据。
     通过对国内外不同地区的低品位褐铁矿型镍红土矿化学成分、物相结构和元素赋存状态的分析,确定了适合的湿法处理工艺。青海元石山地区低品位镍红土矿中主要物相为针铁矿,镍和钻主要以晶格取代的形式存在于针铁矿中,且钴含量极低,选择采用还原焙烧-氨浸工艺处理;菲律宾Tubay地区低品位镍红土矿中主要物相为针铁矿,钴含量相对较高,具有回收价值,且主要以物理吸附的形式存在于氧化锰颗粒中,选择硫酸熟化焙烧-浸出工艺处理;菲律宾Mati地区低品位镍红土矿中的物相包括针铁矿、磁铁矿、蛇纹石和滑石,镁含量相对较高,镍主要以晶格取代的形式存在于针铁矿中,钴主要以吸附形式存在于氧化锰颗粒中,镁主要以非晶形和弱晶型镁矿物存在,选择常压盐酸浸出工艺处理。
     系统研究了镍红土矿还原焙烧-氨浸过程基础理论及工艺过程。热力学分析表明,还原焙烧过程可以将镍红土矿中绝大部分镍、钴氧化物被还原为金属态,同时使大部分的铁转化为Fe3O4;控制一定的氨浸条件,Ni、Co能以稳定氨配合物的形式溶出,Fe以Fe(OH)3沉淀形式进入渣中。确定了还原焙烧-氨浸过程的适宜工艺条件:原料粒度<20目,还原剂用量20wt.%,焙烧温度850℃,焙烧时间30min,氨浸温度40℃,氨浸时间10min,NH3/CO2=133:88,矿浆浓度70g/L通氧速率为0.1L/(min-g)。在此条件下,Ni、Co、Fe浸出率分别为83.1%、45.1%和0.12%,浸出液中Ni/Fe达到45.9,实现了Ni的选择性浸出。对还原焙烧过程进行了优化实验设计,结果表明:响应曲面设计有效地模拟了Co的浸出行为,确定了优化条件为还原剂用量20wt.%、焙烧温度930℃和焙烧时间30mmin,但在模拟Ni的浸出行为过程中出现了数据失真。研究了氨浸过程中Ni、Co的浸出动力学,结果表明:Ni、Co的浸出行为符合多相液固区域反应动力学模型,Ni、Co浸出反应表观活化能分别为18.07kJ/mol和8.99kJ/mol,均为固膜扩散控制过程。
     系统研究了镍红土矿硫酸熟化焙烧-浸出过程基础理论及工艺过程,分别采用了硫酸熟化焙烧-水浸和硫酸熟化焙烧-氨浸两种方法处理镍红土矿。热力学分析表明,镍红土矿中所有形式的金属氧化物都可以和浓硫酸反应,生成的硫酸熟化产物经特定温度的焙烧处理,可以将Fe等杂质的硫酸盐分解成相应的氧化物,而Ni、Co等有价金属仍以硫酸盐形式存在,并通过浸出过程实现Ni、Co与Fe等杂质的初步分离;在氨浸过程中,提高总氨浓度有利于提高溶液中镍和钴的离子浓度,C032-的存在对镍离子浓度影响不大,但会较大程度地降低溶液中的钴和锰的离子浓度。确定了硫酸熟化焙烧-水浸的适宜工艺条件:水加入量20wt.%,硫酸加入量40wt.%,焙烧温度700℃,焙烧时间120mmin,原料粒度<80目,硫酸钠加入量4wt.%,矿浆浓度1kg/L。在此条件下,Ni、Co、Fe和Mn浸出率分别为83.3%、92.8%、0.8%和94.3%,工艺实现了Ni、Co对Fe的选择性浸出。浸出渣主要成分为Fe203,达到H62级赤铁精矿的品位和化学成分要求。确定了硫酸熟化焙烧-氨浸的适宜工艺条件:水加入量20wt.%,硫酸加入量40wt.%,焙烧温度700℃,焙烧时间30min,原料粒度<80目,硫酸钠加入量4wt.%,氨浓度为5mol/L,碳酸铵浓度1mol/L,矿浆浓度300g/L,氨浸温度25℃,氨浸时间为10min。在此条件下,Ni、Co、Fe、Mn浸出率分别为82.5%、61.0%、0.007%和22.1%。对硫酸熟化焙烧过程进行了优化实验设计,绘制了Ni、Fe浸出率等值线叠加图,确定了Ni%≥80%&Fe%≤5%的目标优化区域,对区域内条件点的验证实验表明实验数据与理论预测值非常吻合,说明采用响应曲面设计模拟硫酸熟化焙烧过程是非常成功的。研究了硫酸熟化焙烧过程中Ni、Co的硫酸化动力学,结果表明:Ni、Co的硫酸化反应的表观活化能分别为21.45kJ/mol和34.81kJ/mol,反应速率常数分别为1.05和1.09,均为固膜扩散控制过程。
     系统研究了镍红土矿常压盐酸浸出过程基础理论及工艺过程。热力学分析表明,升高温度不利于各物相与盐酸反应的进行,且常压下FeOOH和Fe203不能溶解于盐酸。确定了常压盐酸浸出的适宜工艺条件:酸料比3:1,浸出温度80℃,浸出时间1h,矿浆浓度400g/L,原料粒度<80目,不添加氯化盐。在此条件下,获得Ni、Co、Mg、Fe、Mn浸出率分别为82.5%、70.3%、63.8%、63.7%和80.0%。浸出渣中仍存在针铁矿、磁铁矿、蛇纹石和滑石成分,但渣中蛇纹石和滑石含量相对原矿降低。研究了常压盐酸浸出过程中Ni、Co、Fe的浸出动力学。实验结果表明:Ni、Co、Fe浸出反应的表观活化能分别为71.64kJ/mol、68.73kJ/mol和98.52kJ/mol,均为表面化学反应控制过程。Ⅲ
Nickel, one kind of important nonferrous metal, is widely used in the fields of stainless steel, heat-resistant alloys, batteries and various chemical products. In recent years, with the continuous decrease of nickel consumption in the world, the nickel consumption in China increased by25%average every year, which makes China's nickel consumption rank first in the world.72%of nickel land-based resources in the world are reserved in nickel laterite, which only produce42%of nickel total output. As the depletion of nickel sulfide, nickel laterite is becoming the significant nickel resource in the world. Hydrometallurgical processes have many advantages including high recovery of valuable metals, excellent selectivity, low energy consumption, variety of products and so on, which are the main treatments for nickel laterite. In the paper, based on the analysis of mineral properties and characteristics, fundamental and technological study on treatment of low-grade limonitic nickel laterite from three different mine areas at home and abroad by hydrometallurgical processes were studied, which provide the theoretical and technological basis for the industrial processing of nickel laterite.
     Hydrometallurgical processes were distributed to nickel laterite from three different mine areas at home and abroad, based on the analysis of chemical composition, phase and mode of occurrence of element. For the limonitic nickel laterite from Qinghai Yuanshi Moutain area in China, the main phase is goethite, and cobalt content is extremely low. Nickel and cobalt exist in goethite in the form of lattice replacement. This ore was treated by reduction roasting-ammoniacal leaching process. For the limonitic nickel laterite from Tubay area in Philippines, the main phase is goethite, and cobalt content is comparatively high. Cobalt exists in manganese oxide particles in the form of physical adsorption. This ore was treated by sulfation roasting-leaching process. For the limonitic nickel laterite from Mati area in Philippines, the phases are goethite, magnetite, lizardite and talc, and magnesium content is comparatively high. Nickel mainly exists in goethite in the form of lattice replacement, and cobalt mainly exists in manganese oxide particles in adsorption form, and magnesium mainly exists as noncrystallne and weak-crystalline. This ore was treated by atmosphere hydrochloric acid leaching process.
     The fundamental and technology on treatment of nickel laterite by reduction roasting-leaching processes were studied. The thermodynamics show that nickel and cobalt oxides in laterite can be reduced to metal forms, and iron oxide can be mostly reduced to Fe3O4. Under certain ammoniacal leaching conditions, nickel and cobalt exist as stable ammonia complex in leaching solution, and Fe enters into residue as Fe(OH)3form. The suitable conditions of reduction roasting-leaching process were determined as follows:less than20mesh of mineral particle size,20wt.%of reductant addition,850℃of roasting temperature,30min of roasting time,40℃of leaching temperature,10min leaching time,133:88of NH3/CO2,70g/L of pulp density and0.1L/(min·g) of oxygen flow rate. Under these conditions, the leaching efficiencies of nickel, cobalt and iron are83.1%,45.1%and0.12%, respectively, and the ratio of nickel to iron is45.9in leaching solution, which shows a selective leaching of nickel over iron. The experimental design for optimization of reduction roasting process was done, and the results show that the leaching behavior of cobalt was effectively simulated by Response Surface Methodology (RSM), and the optimum conditions were dertemined as20wt.%of reductant addition,930℃of roasting temperature and30min of roasting time. However, the data distortion phenomenon appeared in the simulation of nickel in leaching process. The kinetics of leaching of nickel and cobalt were investigated, and the results show that the leaching behavior of nickel and cobalt fit well with the kinetic models of multiphase liquid/solid regional reactions. The apparent activation energies for nickel and cobalt extraction are18.07kJ/mol and8.99kJ/mol, respectively, which indicates that the leaching rate of nickel and cobalt were controlled by solid film diffusion.
     The fundamental and technology on treatment of nickel laterite by sulfation roasting-leaching process were studied, in which sulfation roasting-water leaching and sulfation roasting-ammoniacal leaching were used to treat nickel laterite. The thermodynamics indicate that all metal oxides in nickel laterite can react with concentrated sulfuric acid. After roasting process in determined temperature, some sulfates like iron sulfate were transformed to corresponding oxides, but nickel, cobalt and other metals remained as sulfates, which achieved the primary separation of nickel and cobalt from iron and other impurities. In ammoniacal leaching process, the increase of total ammonia concentration is beneficial to the increase of nickel and cobalt concentration, and the existence of CO32-has little effect on nickel ion concentration, but effectively decreases the concentration of cobalt and manganese ions. The suitable conditions of reduction roasting-water leaching process were determined as follows:20wt.%of water addition,40wt.%of sulfuric acid addition,700℃of roasting temperature,120min of roasting time, less than80mesh of mineral particle size,4wt.%of sodium sulfate addition and1kg/L of pulp density. Under these conditions, the leaching efficiencies of nickel, cobalt, iron and manganese are83.3%,92.8%,0.8%and94.3%, respectively, which show selective separation of nickel and cobalt over iron. The leaching residue, whose main phase is Fe2O3, meets the requirement of grade and chemical composition of level H62hematite concentrate. The suitable conditions of reduction roasting-ammoniacal leaching process were determined as follows:20wt.%of water addition,40wt.%of sulfuric acid addition,700℃of roasting temperature,30min of roasting time, less than80mesh of mineral particle size,4wt.%of sodium sulfate addition,5mol/L of ammonia concentration, lmol/L of ammonia carbonate,300g/L of pulp density,25℃of leaching temperature,10min of leaching time. Under these conditions, the leaching efficiencies of nickel, cobalt, iron and manganese are82.5%,61.0%,0.007%and22.1%, respectively. The experimental design for optimization of sulfation roasting process was done, and the overlaid of contour plots of nickel and iron extraction was displayed. The optimum area of Ni%≥80%&Fe%≤5%was determined, and in this area the experimental results show excellent agreement with the predicted ones, which indicates that it is quite successful to simulate the sulfation roasting process by RSM. The kinetics of sulfation of nickel and cobalt were investigated, and the results show that the apparent activation energies for nickel and cobalt sulfation are21.45kJ/mol and34.81kJ/mol, and the reaction rate constants for nickel and cobalt sulfation are1.05and1.09, respectively, which indicates that the sulfation rate of nickel and cobalt were controlled by solid film diffusion.
     The fundamental and technology on treatment of nickel laterite by hydrochloric acid leaching process at room temperature were studied. The thermodynamics show that the increase of temperature is beneficial to the reactions in hydrochloric acid leaching, and FeOOH and Fe2O3are stable in hydrochloric acid at atmosphere. The suitable conditions of hydrochloric acid leaching process were determined as follows:3:1of acid to ore ratio,80℃of leaching temperature,1h of leaching time,400g/L of pulp density, less than80mesh of mineral particle size, no addition of chloride. Under these conditions, the leaching efficiencies of nickel, cobalt, magnesium, iron and manganese are82.5%,70.3%,63.8%,63.7%and80.0%, respectively. The leaching residue mainly consists of goethite, magnetite, lizardite and talc, but with lower content of lizardite and talc compared to laterite ore. The kinetics of hydrochloric acid leaching of nickel, cobalt and iron were investigated, and the results show that the apparent activation energies for nickel, cobalt and iron extraction are71.64kJ/mol,68.73kJ/mol and98.52kJ/mol, respectively, which indicates that the leaching rate of nickel, cobalt and iron were controlled by surface chemical reactions.
引文
[1]任鸿九,王立川.有色金属提取冶金手册.北京:冶金工业出版社,2000.499-508.
    [2]B.й.别列果夫斯基,H.B.古吉玛(著),李潜(译).镍冶金学.北京:中国工业出版社,1962.11-15.
    [3]彭容秋,任鸿九,张训鹏,等.镍冶金.长沙:中南大学出版社,2005.1-5.
    [4]博里谢维奇(著),王祖荫(译).镍.北京:地质出版社,1955.5-6.
    [5]邱竹贤.有色金属冶金学.北京:冶金工业出版社,1988.153-160.
    [6]陈浩琉,吴水波,傅德彬,等.镍矿床.北京:地质出版社,1993.1-11.
    [7]李金辉.氯盐体系提取红土矿中镍钴的工艺及基础研究.中南大学博士论文,2010.
    [8]罗永吉.墨江硅酸镍矿湿法工艺试验研究.昆明理工大学硕士论文,2008.
    [9]张友平,周渝生,李肇毅.红土矿资源特点和火法冶金工艺分析.铁合金,2007,(6):18-21.
    [10]刘岩,翟玉春,王虹.镍生产工艺研究进展.材料导报,2006,20(3):79-81.
    [11]戴卫·杰克森.镍在不锈钢中的有效应用.不锈钢:市场与信息,2005,(20):12-18.
    [12]石文堂.低品位镍红土矿硫酸浸出及浸出渣综合利用的理论及工艺研究.中南大学博士论文,2010.
    [13]中国有色金属工业协会.中国有色金属工业年鉴.北京:中国印刷总公司.2000/2003/2006/2009.
    [14]http://www.chinamining.com.cn/news/listnews.asp?siteid=284414&ClassId=154
    [15]李成.中国成为世界上最大的镍消费国.国际镍协会Defense & Promotion会议.伦敦,2010年3月.
    [16]Minerals and Metals Sector.2009 Canadian minerals yearbook (CMY). Ottawa: Natural Resources Canada,2010.
    [17]陈甲斌.镍资源供需态势与应对措施.国土资源,2006,(36):52-53.
    [18]徐爱东,范润泽.2008年镍市场回顾及2009年展望.不锈:市场与信息,2009,(5):20-23.
    [19]周京英,孙延绵,付水兴.中国主要有色金属矿产的供需形势.地质通报,2009,28(2-3):171-176.
    [20]那丹妮,王高尚.我国未来镍需求趋势预测及供应构想.中国国土资源经济,2010,(6):17-19.
    [21]徐爱东,范润泽.2009年镍市场回顾及2010年展望.不锈:市场与信息,2010,(6):16-19.
    [22]陈浩琉,吴水波,傅德彬,等.镍矿床.北京:地质出版社,1993.1-11.
    [23]《国外有色冶金工厂》编写组.国外有色冶金工厂.北京:冶金工业出版社,1977.
    [24]黄雅斌.世界镍矿产概况.国外地质技术经济,1990,6(1):35-43.
    [25]肖军辉.某硅酸镍矿离析工艺试验研究.昆明理工大学硕士论文,2007,(10):1-3.
    [26]肖安雄.美国金属杂志对世界有色金属冶炼厂的调查(第四部硫化镍).中国有色冶金,2008,12(6):1-19.
    [27]何焕华,蔡乔方.中国镍钴冶金.北京:冶金工业出版社,2000.
    [28]陈浩琉,吴水波,傅德彬,等.镍矿床.北京:地质出版社,1993.
    [29]S.A. Gleeson, C.R. Butt, M.Elias. Nickel laterites:a review. SEG News letter, 2003, (54):9-16.
    [30]Y.V. Swamy, B.B. Kar, J.K. Mohanty. Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites. Hydrometallurgy, 2003,69(1-3):89-98.
    [31]矿产资源综合利用手册编委会.矿产资源综合利用手册.北京:科学技术出版社,1999.
    [32]U.S. Department of the Interior, U.S. Geological Survey. Mineral commodity summaries. Washington:United States Government Printing Office, 2008/2009/2010.
    [33]王瑞江,聂凤军.红土镍矿床找矿勘查及开发利用新进展.地质论坛,2008,54(2):215-224.
    [34]江源,侯梦溪.全球镍资源供需研究.有色矿冶,2008,24(2):55-57.
    [35]朱景和.世界镍红土矿资源开发与利用技术分析.世界有色金属,2007,(10):7-9.
    [36]李志茂,朱彤,吴家正.镍资源的利用及镍铁产业的发展.中国有色冶金,2009,(1):29-32.
    [37]A.D. Dalvi, W.G. Bacon, R.C. Osborne. The past and the future of nickel laterites. PDAC 2004 International Convention, Trade Show& Investors Exchange.2004, March 7-10.
    [38]R.A. Bergman. Nichel production from low iron laterite ores:process descriptions. CIM Bulletin,2003, (1072):127-138.
    [39]A.E. Warner, C.M. Diaz, A.D. Dalvi, et al. JOM World Nonferrous Smelter Survey-Part Ⅲ:Nicke1:Laterite. JOM,2006, (4):11-20.
    [40]何焕华.氧化镍矿处理工艺述评.中国有色冶金,2004,(6):12-15.
    [41]肖振民.世界红土型镍矿开发和高压酸浸技术应用.中国矿业,2002,11(1):56-59.
    [42]刘同有.中国镍钴铂族金属资源和开发战略(上).国土资源科技管理,2003,(1):21-25.
    [43]刘同有.中国镍钻铂族金属资源和开发战略(下).国土资源科技管理,2003,(2):21-28.
    [44]翟秀静,符岩,衣淑立.镍红土矿的开发与研究进展.世界有色金属,2008,(8):36-38.
    [45]冶金工业部赴菲斑岩铜矿地质考察组.菲律宾红土镍矿的生成及找矿勘探.地质与勘探,1980,(1):26-29.
    [46]刘成忠,尹维青,涂春根.菲律宾吕宋岛红土型镍矿地质特征及勘查开发进展.江西有色金属,2009,23(2):3-6.
    [47]黄易勤.广西某氧化镍矿的工艺矿物学特征.矿产保护与利用,2007,(3):34-37.
    [48]何灿,肖述刚,谭木昌.印度尼西亚红土型镍矿.云南地质,2008,27(1):20-26.
    [49]G.M. Mudd. Global trends and environmental issues in nickel mining-Sulfides versus laterites. Ore Geology Reviews,2010,38:9-26.
    [50]李志茂,朱彤,吴家正.镍资源的利用及镍铁产业的发展.中国有色金属,2009,(1):29-32.
    [51]范润泽.2009年我国共进口镍矿1642万吨.中国金属通报,2010,(5):8-9.
    [52]曹异生.国内外镍工业现状及前景展望.世界有色金属,2005,(10):67-71.
    [53]周晓文,张建春,罗仙平.从红土镍矿中提取镍的技术研究现状及展望.四川有色冶金,2008,(1):18-22.
    [54]刘大星.从镍红土矿中回收镍、钴技术的进展.有色金属(冶炼部分),2002,(3): 6-10.
    [55]兰兴华.从镍红土矿中回收镍的技术进度.世界有色金属,2007,(4):27-30.
    [56]王成彦,尹飞,陈永强.国内外红土镍矿处理技术及进展.中国有色金属学报,2008,18(s 1):1-8.
    [57]李建华,程威,肖志海.红土镍矿处理工艺综述.湿法冶金,2004,23(4):190-194.
    [58]朱景和.世界镍红土矿开发与利用的技术分析.中国金属通报,2007,(35):22-25.
    [59]徐敏,许茜,刘日强.红土镍矿资源开发及工艺进展.矿产综合利用,2009,(3):28-30.
    [60]刘庆成,李洪元.红土型镍矿项目的经济性探讨.世界有色金属,2006,(6):68-69.
    [61]张守卫,谢曙斌,徐爱东.镍的资源、生产及消费状况.世界有色金属,2003,(11):9-15.
    [62]罗光臣.镍红土矿湿法冶金技术进展.中国有色金属学术铜镍湿法冶金技术交流及应用推广会,2001年.
    [63]聂树人.平安县元石山低品位红土型铁镍(钴)矿的预处理磁选富集.青海地质,2001,(1):45-50.
    [64]王来存.镍的资源、工业发展现状和未来发展趋势.金川科技,2009,(4):56-58.
    [65]兰兴华.世界红土镍矿冶炼厂调查.世界有色金属,2006,(11):65-71.
    [66]张莓.我国火法冶炼红土镍矿进展.国土资源情报,2008,(2):29-32.
    [67]程明明.中国镍铁的发展现状、市场分析与展望.矿业快报,2008,(8):1-3.
    [68]陈景友,谭巨明.采用红土镍矿及电炉生产镍铁技术探讨.铁合金,2008,(3):13-15.
    [69]刘志宏,杨慧兰,李启厚.红土镍矿电炉熔炼提取镍铁合金的研究.有色金属(冶炼部分),2010,(2):2-5.
    [70]唐琳,刘仕良,杨波.电弧炉生产镍铬铁的生产实践.铁合金,2007,(5):1-6.
    [71]邱国兴,石清侠.红土矿含碳球团还原富集镍铁的工艺研究.矿冶工程,2009,29(6):75-77.
    [72]周若愚,李仲恺,寄海明.红土矿还原生产镍铁熔炼条件的研究.四川冶金,2009,31(6):55-58.
    [73]安月明,金永新,郝建军.红土矿火法冶炼镍铁的试验.中国有色冶金,2010,(3):15-17.
    [74]石清侠,邱国兴,王秀美.红土镍矿直接还原富集镍工艺研究.黄金,2009, 30(10):46-49.
    [75]陈庆根.氧化镍矿资源开发与利用现状.湿法冶金,2008,27(1):7-9.
    [76]T. Watanabe, S. Ono, H. Arai, et al. Direct reduction of garnierite ore for production of ferro-nickel with a rotary kiln at Nippon Yakin Kogyo Co. Ltd. oheyama works. International Journal of Mineral Proeessing,1987,19(1-4): 173-187.
    [77]K. Ishii. Development of ferro-nickel smelting from laterite in Japan. International Journal of Mineral Processing,1987,19(1-4):15-24.
    [78]刘晓明,史嵩寿,鹿宁.开发利用红土镍矿资源满足中国日益增长的镍需求.不锈通览,2007,(2):2-7.
    [79]R.G. McDonald, B.I.Whittington. Atmospheric acid leaching of nickel laterites review Part Ⅰ. Sulfuric acid technologies. Hydrometallurgy,2008,91(1-4):35-55.
    [80]R.G. McDonald, B.I.Whittington. Atmospheric acid leaching of nickel laterites review Part Ⅱ. Chloride and bio-technologies. Hydrometallurgy,2008,91(1-4): 56-69.
    [81]周全雄.氧化镍矿开发工艺技术现状及发展方向.云南冶金,2004,34(6):33-36.
    [82]M. Zuniga, F.L. Parada, E. Asselin. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy,2010,104(2): 260-267.
    [83]C.L. Fan, X.J. Zhai, Y. Fu, et al. Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination-water leaching process. Hydrometallurgy,2010,105(1-2):191-194.
    [84]M. Baghalha, V.G.Papangelakis. Pressure acid leaching of laterites at 250℃:A solution chemical model and its applications. Metallurgival and materials transactions B,1998,29:945-952.
    [85]M.H. Caron. Fundamental and practical factors in ammonia leaching of nickel and cobalt ores. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1950,188:67-90.
    [86]J.H. Centerford. The treatment of nickeliferous laterites. Minerals Science and Engineering,1975,7:3-17.
    [87]L.F. Power, G.H. Geiger. The application of the reduction roast-ammoniacal ammonium carbonate leach to nickel laterites. Minerals Science and Engneering, 1977,9:32-51.
    [88]J.E. De Graaf. The treament of lateritic nickel ores-a further study of the Caron process and other possible improvements, I:effect of reduction conditions. Hydrometallurgy,1979,5:47-65.
    [89]S.C. Panda, L.B. Sukla, P.K. Jena. Extraction of nickel through reduction roasting and ammoniacal leaching of lateritic nickel ores. Transactions Indian Institute of Metals,1980,33:161-165.
    [90]S. Chander, V.N. Sharma. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,1981,7(4):315-327.
    [91]M. Valix, W.H. Cheung. Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. Minerals Engineering,2002,15(7):523-530.
    [92]陆述贤,尹才桥,甘照平.从阿尔巴尼亚红土矿中综合回收镍钴铁.有色金属,1981,33(1):73-81.
    [93]尹飞,阮书锋,江培海.低品位红土镍矿还原焙砂氨浸试验研究.矿冶,2007,16(3):29-32.
    [94]阮书锋,江培海,王成彦.低品位红土镍矿选择性还原焙烧试验研究.矿冶,2007,16(2):30-34.
    [95]B.R.Reddy, B.V.R.Murthy, Y.V.Swamy, et al. Correlation of nickel extraction with iron reduction in oxidic nickel ore by a thermogravimetric method. Themochimica Acta,1995,264(15):185-192.
    [96]T. Utigard, R.A. Bergman. Gaseous reduction of laterite ores. Metallurgical Transaction B,1992,23:271-275.
    [97]M. Valix, W.H. Cheung. Study of phase transformation of laterite ores at high temperature. Minerals Engineering,2002,15(8):607-612.
    [98]陈家铺,杨守志,柯家骏.湿法冶金的研究与发展.北京:冶金工业出版社,1998.18-34.
    [99]L. Matthew, J.G. Robert. Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian laterite Ni ore. Applied Clay Science,2007,35: 162-172.
    [100]J.H. Canterford. The extractive metallurgy of nickel. Reviews of Pure and Applied Chemistry,1972,22:13-46.
    [101]J.H. Canterford. Mineralogical aspects of the extractive metallurgy of nickeliferous laterites. Proceedings of the Australasian Institute of Mining and Metallurgy Conference. Australasian Institute of Mining and Metallurgy, Melbourne,1978:361-370.
    [102]J.H. Canterford. The sulphation of oxidized nickel ores. In:Evans, D.J.I., Shoemaker, R.S., Veltman, H. (Eds.), International Laterite Symposium, Society of Mining Engineers. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc. (SME-AIME), New York,1979:636-677.
    [103]B.B. Kar, Y.V. Swamy. Extraction of nickel from Indian lateritic ores by gas-phase sulphation with SO2-air mixtures. Transactions of the Institute of Mining and Metallurgy,2001,110:C73-C78.
    [104]B.J. Hansen, J.C. Stensrud, A.R. Zanbrano. Nickel and manganesia recovery from lateites by low temperature self-sulfation. US Patent,4125588, November 14,1978.
    [105]M.G. White, J.H. White. Treatment of lateritic ores. US Patent 3093559, June 11, 1963.
    [106]B.B. Kar, Y.V. Swamy. Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting. Minerals Engineering,2000,13(14-15): 1635-1640.
    [107]B.ф.包尔巴特,N.ю.列什(著),东北工学院有色重金属冶炼教研室(译)镍钴冶金新方法.北京:冶金工业出版社,1981.161-165.
    [108]G.P. Tindall, D.M. Muir. Effect of Eh on the rate and mechanism of the transformation of goethite into hematite in a high temperature acid leach process. Hydrometallurgy,1998,47 (2-3):377-381.
    [109]柯家骏.湿法冶金中加压浸出过程的进展.湿法冶金,1996,(2):1-6.
    [110]兰兴华.镍的高压湿法冶金.世界有色金属,2002,(1):25-26.
    [111]伍博克,刘葵,陈启元,等.云南元江镍红土矿加压酸浸动力学.云南冶金,2010,39(4):29-32.
    [112]汪海洲,蒋永胜,包四根.澳大利亚镍工业的特点.世界有色金属,2001,(6):9-13.
    [113].徐爱东,青峰.澳大利亚三个采用PAL新工艺的红土矿开发项目进展状况.世界有色金属,2001,(4):62-64.
    [114]苏平(译).西澳大利亚三个镍红土矿项目的工程化比较.中国有色冶金,2010,(2):1-7.
    [115]D.Georgiou, V.GPapangelakis. Sulfuric acid pressure leaching of a limonitic laterite:chemistry and kinetics. Hydrometallurgy,1998,49(1-2):23-46.
    [116]D.H. Rubisov, V.G. Papangelakis. Sulfuric acid pressure leaching of laterites-a comprehensive model of a continuous autoclave. Hydrometallurgy,2001,58(2): 89-101.
    [117]J.A. Johnson, R.G. McDonald, D.M. Muir, et al. Pressure acid leaching of arid-region nickel laterite ore. Part Ⅳ:Effect of acid loading and additives with nontronite ores. Hydrometallurgy,2005,78(3-4):264-270.
    [118]D.S. Seneviratne, V.G. Papangelakis, X.Y. Zhou. Potentiometric pH measurements in acidic sulfate solutions at 250℃ relevant to pressure leaching. Hydrometallurgy,2003,68(1-3):131-139. [1
    [119]B.K. Loveday. The use of oxygen in high pressure acid leaching of nickel laterites. Minerals Engineering,2008,21(7):533-538.
    [120]D. Georgiou, V.G. Papangelakis. Sulphuric acid pressure leaching of a limonitic laterite:chemistry and kinetics. Hydrometallurgy,1998,49(1-2):23-46.
    [121]B.I. Whittington, R.G. McDonald, J.A. Johnson, et al. Pressure acid leaching of arid-region nickel laterite ore. Part Ⅰ:effect of water quality. Hydrometallurgy, 2003,70(1-3):31-46.
    [122]B.I. Whittington, J.A. Johnson, L.P. Quan, et al. Pressure acid leaching of arid-region nickel laterite ore. Part Ⅱ:Effect of ore type. Hydrometallurgy, 2003,70(1-3):47-62.
    [123]B.I. Whittington, J.A. Johnson. Pressure acid leaching of arid-region nickel laterite ore. Part Ⅲ:Effect of process water on nickel losses in the residue. Hydrometallurgy,2005,78(3-4):256-263.
    [124]J.A. Johnson, R.G. McDonald, D.M. Muir, et al. Pressure acid leaching of arid-region nickel laterite ore. Part IV. Effect of acid loading and additives with nontronite ores. Hydrometallurgy,2005,78(3-4):264-270.
    [125]D.H. Rubisov, J.M. Krowinkel, V.G. Papangelakis. Sulphuric acid pressure leaching of laterites—universal kinetics of nickel dissolution for limonites and limonitic-saprolitic blends. Hydrometallurgy,2000,58(1):1-11.
    [126]D.H. Rubisov, V.G. Papangelakis. Sulphuric acid pressure leaching of laterites speciation and prediction of metal solubilities "at temperature". Hydrometallurgy,2000,58(1):13-26.
    [127]D.H. Rubisov, V.G. Papangelakis. Sulphuric acid pressure leaching of laterites -a comprehensive model of a continuous autoclave. Hydro-metallurgy,2000, 58(2):89-101.
    [128]翟秀静,符岩,畅永锋,等.表面活性剂在红土镍矿高压酸浸中的抑垢作用.化工学报,2008,59(10):2573-2576.
    [129]M.T. Anthony, D.S. Flett. Nickel processing technology:a review. Minerals Industry international,1997, (1):26-42.
    [130]P. Oustadakis, S. Agatzini-Leonardou, P. E. Tsakiridis. Nickel and cobalt precipitation from sulphate leach liquor using MgO pulp as neutralizing agent. Minerals Engineering,2006,19(11):1204-1211.
    [131]G. Senanayake, G.K. Das. A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy,2004,72(1-2):59-72.
    [132]H.Y. Lee, S.G. Kim, J. K. Oh. Electrochemical leaching of nickel from low-grade laterites. Hydrometallurgy,2005,77(3-4):263-268.
    [133]Y.B. Xu, Y.T. Xie, L. Yan, et al. A new method for recovering valuable metals from low-grade nickeliferous oxide ores. Hydrometallurgy,2005,80(4): 280-285.
    [134]W. Luo, Q.M. Feng, L.M. Ou, et al. Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy,2009 96(1-2):171-175.
    [135]J.C. Arroyo, D.A. Distin. Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores. US Patent 6261527, July 17,2001.
    [136]J.C. Arroyo, J.D. Gillaspie, D.A. Neudorf, et al. Method for leaching nickeliferous laterite ores. US Patent 6379636, April 30,2002.
    [137]J.C. Arroyo, D.A.Neudorf. Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores. US Patent 6680035, January 20, 2004.
    [138]E. Buyukakinci, Y.A. Topkaya. Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy,2009,97(1-2): 33-38.
    [139]刘瑶,丛自范,王德全.对低品位镍红土矿常压浸出的初步探讨.有色矿冶,2007,23(5):28-30.
    [140]刘瑶,丛自范.腐植土层镍红土矿常压硫酸浸出.有色矿冶,2008,24(2): 34-36.
    [141]罗永吉,张宗华,陈晓鸣,等.云南某含镍蛇纹石矿硫酸搅拌浸出的研究.矿业快报,2008,(1):24-26.
    [142]姜荣,郭效东.从红土镍矿酸浸渣中回收铁矿物的试验研究.甘肃冶金,2008,30(4):15-18.
    [143]罗仙平,龚恩民.酸浸法从含镍蛇纹石中提取镍的研究.有色金属(冶炼部分),2006,(4):28-30.
    [144]李建华.低品位氧化镍矿的酸法制粒堆浸工艺研究.矿业快报,2006,(444):373-375.
    [145]E. Stamboliadis, G Alevizos, J. Zafiratos. Leaching residue of nickeliferous laterites as a source of iron concentrate. Minerals Engineering,2004,17(2): 245-252.
    [146]S. Agatzini-Leonardou, D. Dimaki. Heap leaching of poor nickel laterites by sulphuric acid at ambient temperatures. International Symposium "Hydrometallurgy 94", Cambridge, England, July 11-15,1994:193-208.
    [147]石磊.切斯巴尔资源公司处理镍红土矿工艺流程选择.世界有色金属,2003,(12):53-55.
    [148]符芳铭,胡启阳,李新海,等.稀盐酸溶液还原浸出红土镍矿的研究.矿冶工程,2009,29(4):74-76.
    [149]符芳铭,胡启阳,李金辉.低品位红土镍矿盐酸浸出实验研究.湖南有色冶金,2008,24(6):9-11.
    [150]N. Retsu, H. Kazuo, H. Morihiro, et al. Method for treating nickel magnesium silicate ore. CA Patent 2050945, September 12,1990.
    [151]J.M. Lalancette. Method for recovering nickel and cobalt from laterite ores. WO Patent 02008477, January 31,2002.
    [152]A. Antti, K. Kauko, M. Rolf. Method for recovering nickel and eventally cobalt by extraction from nickel containing laterite ore. WO Patent 03004709, January 16,2003.
    [153]J.M. Lalancette. Process for recovering value metal species from laterite-type feedstock. WO Patent 07106969, March 17,2006.
    [154]W.F.Drinkard. Nickel-laterite process. CA Patent 2685371, November 13, 2008.
    [155]P.A.Treasure, A. Gillies. Vat leaching of nickel laterite ores. AU Patent 2008207581, March 19,2009.
    [156]R.M. Garingarao, M.A. Palad. Cyclic acid leaching of nickel bearing oxide and silicate ores with subsequent iron removal from leach liquor. US Patent, 3880981, April 29,1975.
    [157]W.P. Zundel, J.W. Lane, M.W.Taylor. Ore conditioning process for the efficient recovery of nickel from relatively high magnesium containing oxidic nickel ores. US Patent,3804613, April 16,1974.
    [158]E.C.J. Chou, C.B. Barlow, D.K. Huggins. Roast-neutralization-leach technique for the treatment of laterite ore. US Patent,4097575, June 27,1978.
    [159]S. Koike, K. Murai, H. Yakushizi, et al. Process for recovering metal from oxide ores. EU Patent,0547744A1, June 23,1993.
    [160]K. Murai, H. Yakushiji, S. Ito, et al. Process for recovering valuable metals from oxide ore. AU Patent,725800, October 19,2000.
    [161]J.C. Arroyo, D.A. Neudorf. Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores. US Patent 6261527B1, July 17,2001.
    [162]J.C. Arroyo, D.A. Neudorf. Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores. US Patent 20020041840A1, April 11,2002.
    [163]J.C. Arroyo, D.A. Neudorf. Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores. US Patent,6680035B2, January 20,2004.
    [164]J.C. Arroyo, J.D. Gillaspie, D.A. Neudorf Arroyo. Method for leaching nickeliferous laterite ores. US Patent,6379636B2, April 30,2002
    [165]L.B. Sukla, V. V. Panchanadikar. Bioleaching of lateritic nickel ore using a heterotrophic microorganism. Hydrometallurgy,1993,32(3):373-379.
    [166]L.B. Sukla, V.V. Panchanadikar, R.N. Kar. Microbial leaching of lateritic nickel ore. World Journal of Microbiology and Biotechnology,1993,9:255-257.
    [167]K.M. Swamy, L.B. Sukla, K.L. Narayana, et al. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics Sonochemistry,1995,2(1):5-9.
    [168]L.B. Sukla, K.M. Swamy, K.L. Narayana, et al. Bioleaching of Sukinda laterite using ultrasonics. Hydrometallurgy,1995,37(3):387-391.
    [169]G.S. Situate, S. Ndlovu. Bacterial Leaching of Nickel Laterites Using Chemolithotrophic Microorganisms:Identifying Influential Factors Using Statistical Design of Experiments. International Journal of Mineral Processing, 2008,88(1):31-36.
    [170]G.S. Simate, S. Ndlovu, M. Gericke. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms:Process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy, 2009,98(3-4)241-246.
    [171]K.M. Swamy, L.B.Sukla, K.L. Narayana, et al. Application of ultrasonics in improvement of fungal strain, Acoustics Letters,1993,17:45-49.
    [172]M. Valix, F. Usai, R. Malik. Fungal bio-leaching of low grade laterite ores. Minerals Engineering,2001,14(2):197-203.
    [173]P.G. Tzeferis. Fungal leaching of nickeliferous laterites. Folia Microbiology, 1994,39(2):137-140.
    [174]刘学,温建康,阮仁满.真菌衍生有机酸浸出低品位氧化镍矿.稀有金属,2006,30(4):490-493.
    [175]V. Thangavelu, J. Tang, D. Ryan, et al. Effect of saline stress on fungi metabolism and biological leaching of weathered saprolite ores. Minerals Engineering,2006,19 (12):1266-1273.
    [176]王成彦.元江贫氧化镍矿的氯化离析.矿冶,1997,6(3):55-59.
    [177]张文朴.微波加热技术在冶金工业中的应用研发进展.中国钼业,2007,31(6):20-23.
    [178]蔡卫权,李会泉,张懿.微波技术在冶金中的应用.过程工程学报,2005,5(2):228-232.
    [179]翟秀静,符岩,李斌川.红土矿的微波浸出研究.有色矿冶,2008,24(5):21-24.
    [180]X.J. Zhai, Q. Wu, Y. Fu. Leaching of nickel laterite ore assisted by microwave technique. Transactions of Nonferrous Metals Society of China,2010,20(s1): s77-s81.
    [181]畅永锋,翟秀静,符岩.稀酸浸出还原焙烧红土矿时铁还原度对浸出的影响.东北大学学报(自然科学版),2008,29(8):1738-1741.
    [182]Y.F. Chang, X.J. Zhai, Y. Fu. Phase transformation in reductive roasting of laterite ore with microwave heating. Transactions of Nonferrous Metals Society of China,2008,18(4):969-973.
    [183]X.K. Che, X.Z. Su, R.A. Chi, et al. Microwave assisted atmospheric acid leaching of nickel from laterite ore. Rare metals,2010,29(3):327-332.
    [184]华一新,谭春娥,谢爱军,等.微波加热低品位氧化镍矿石的FeCl3氯化.有色金属,2000,52(1):59-61.
    [185]C.A. Pickles. Microwave heating behaviour of nickeliferous limonitic laterite ores. Mineral Engineering,2004,17(6):775-784.
    [186]唐明林,曾英,廖华菁.青海元石山铁镍矿综合利用途径研究.矿产综合利用,1997,(2):21-24.
    [187]刘福祥,于家明,赵坤.青海省元石山铁镍矿床铁镍元素的赋存状态及变化规律.吉林地质,2007,26(2):27-31.
    [188]Y.V. Swamy, B.B. Kar, J.K. Mohanty. Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites. Hydrometallurgy,2003,69(1-3):89-98.
    [189]北京矿冶研究总院测试研究所编.有色冶金分析手册.北京:冶金工业出版社,2008.
    [190]李洪桂.湿法冶金.长沙:中南大学出版社.1998:21-25.
    [191]J.A. Dean(主编),魏俊发等(译).兰式化学手册.北京:科学出版社,2003.
    [192]叶大伦,胡建华.实用无机物热力学数据手册(第2版).北京:冶金工业出版社,2002.
    [193]林传仙.矿物及有关化合物热力学数据手册.北京:科学出版社,1985.
    [194]K. Osseo-Asare, J.W. Lee, H.S. Kim, et al. Cobalt extraction in ammoniacal solution electrochemical effect of metallic iron. Metallurgical Transactions B, 1983,14:571-576.
    [195]E. Asselin. Thermochemical aspects of the Fe, Ni&Co-NH3-H2O systems relevant to the Caron process. Hydrometallurgy 2008:Proceedings of the Sixth International Symposium, Phoenix, Arizona, August 17-21,2008.
    [196]吴展.红土镍矿硫酸化-焙烧-水浸浸出液中回收镍钴等有价金属的研究.中南大学硕士论文,2010.
    [197]D.C. Montagomery. Design and analysis of experiments (6th Edition). John Wiley & Sons, Inc., New York,2007.405-463.
    [198]S. Mohapatra, N. Pradhan, S. Mohanty, et al. Recovery of nickel from lateritic nickel ore using apergillus niger and optimization of parameters. Minerals Engineering,2009,22(3):311-313.
    [199]X.Y. Guo, W.T. Shi, D. Li, et al. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching. Transactions of Nonferrous Metals Society of China,2011,21(1):191-195.
    [200]X.Y. Guo, D. Li, K.H. Park, et al. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process. Hydrometallurgy, 2009,99(3-4):144-150.
    [201]D. Li, K.H. Park, Z. Wu, et al. Response surface design for nickel recovery from laterite by sulfation-roasting-leaching process. Transactions of Nonferrous Metals Society of China,2010,20(s1), s92-s96.
    [202]R.M. Smith, A.E. Matell. Critical stability constants inorganic complexes. New York:Plenum Press,1976.1132-1145.
    [203]D.W. Donald, H.E. Willian, B.P. Vivian. NBS化学热力学性质表.北京:中国标准出版社,1998.798-809.
    [204]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985.855-868.
    [205]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986.393-398.
    [206]I.D. Isaev, S.V. Tverdokhlebov, L.K. Novikov, et al. Iron(Ⅱ) ammines in aquous solution. Russian Journal of Inorganic Chemistry,1990,35(8):1162-1168.
    [207]G. Nazari, E. Asselin. Estimation of thermodynamic properties of aqueous iron and cobalt ammines at elevated temperatures. Metallurgical and Materials Transactions B,2010,41(3):520-526.
    [208]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度和形貌控制研究.中南大学博士论文,2003.
    [209]田庆华.无氨草酸沉淀-热分解制备钴氧化物及其母液循环利用研究.中南大学博士论文,2009.
    [210]奚梅成.数值分析方法.合肥:中国科学技术大学出版社,1996.214-240.
    [211]R.V. Siriwardane, J.A. Poston, E.P. Fisher, et al. Decomposition of the sulfates of copper, iron (Ⅱ), iron (Ⅲ), nickel, and zinc:XPS, SEM, DRIFTS, XRD, and TGA study. Applied Surface Science,1999,152 (3-4):219-236.
    [212]傅崇说.有色冶金原理.北京:冶金工业出版社,1993.104-105.
    [213]J.A. Johnson, B.C. Cashmore, R.J. Hockridge. Optimisation of nickel extraction from laterite ores by high pressure acid leaching with addition of sodium sulphate. Minerals Engineering,2005,18(13-14):1297-1303.
    [214]何显达,郭学益,李平,等.从人造金刚石触媒酸洗废液中回收镍、钴和锰.湿法冶金,2005,24(3):150-154.
    [215]E. Jackson. Hydrometallurgical extraction and reclamation. New York:John Willey & Sons,1986.148-155.
    [216]申勇峰,曾德文,刘海霞,等.高锰钴土矿的还原浸出及萃取工艺研究.矿产保护与利用,1998,(1):29-32.
    [217]周国英,刘采英.镍锰合金的分离与回收.武汉化工学院学报,1980,(2):5-10.
    [218]韩其勇.冶金过程动力学.北京:冶金工业出版社,1983:49-54.
    [219]涂敏瑞,周进.硫磷混酸分解磷矿动力学研究.化学工程,1995,23(1):62-67.
    [220]杨永强,王成彦,汤集刚,等.云南元江高镁红土矿矿物组成及浸出热力学分析.有色金属,2008,60(3):84-87.
    [221]刘桂华,李小斌,李永芳,等.复杂无机化合物组成与热力学数据间的线性关系及其初步应用.科学通报,2000,45(13):1386-1391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700