用户名: 密码: 验证码:
直接甲醇燃料电池用磺化聚醚醚酮膜材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高磺化度(Ds=1.2)的磺化聚醚醚酮具有溶胀率大、全湿状态下机械性能差和甲醇渗透率高等缺点,无法满足直接甲醇燃料电池的应用要求。由于上述原因,分别采用可交联有机物复合和无机物复合的方法,制备出磺化聚醚醚酮/环氧树脂复合膜材料和磺化聚醚醚酮/无机复合膜材料。采用原位聚合的方法,制备出高阻醇性能的磺化聚醚醚酮/环氧树脂膜材料。为了提高磺化聚醚醚酮/环氧树脂膜材料的质子传导率,以分子设计为基础,将环氧树脂的固化剂——酚醛树脂的部分酚羟基被脂肪族磺酸基团取代,制备出具有优良的力学性能、低溶胀率、高阻醇性能和高的选择透过性的磺化聚醚醚酮/磺化环氧树脂复合膜材料。为了提高磺化聚醚醚酮/无机复合膜材料的质子传导率,分别制备了磺化聚醚醚酮/磺化蒙脱土复合材料和磺化聚醚醚酮/KH550/磷钨酸无机复合材料,获得具有高质子传导率和高选择透过性的复合膜材料。
Fuel cells have emerged as one of the most promising technologies for the power source of the future with the outstanding benefits of no greenhouse gases, no air pollutants, higher energy efficiency, design flexibility and being quieter. Direct methanol fuel cell (DMFC) have attracted considerable attention as an alternative to the present power sources, since they offer numerous benefits, including high efficiency, high power density, low or zero emissions and easy fuel carriage. DMFC are expected to find wide application as a portable or mobile power, exemplified by battery for cellular phones or engine for electric vehicles. Proton exchange membrane (PEM) is a vital part of the DMFC system. In order to qualify for the applications of fuel cell, PEM must combine a number of properties, such as excellent chemical stability especially against attack of oxygen, suitable water uptake and swelling ratio, high proton conductivity and methanol resistance and adequate mechanical properties. PEM traditionally used in DMFC are perfluorosulfonic acid PEMs, such as DuPont’s Nafion?, because of their excellent chemical and mechanical stbilities as well as high proton conductivity. However, they have the disadvantages of high cost, low operation temperature and high fuel permeability which have limited their widely applications. In order to overcome these disdvantages, much amore attention has been paid to search for the alternative materials with high performance, long life and low cost.
     Poly (ether ether ketone)s (PEEKs) are a series of well-known polymers due to their low cost, excellent mechanical and thermal properties, broad chemical resistance and oxidation stability, which make them suitable for the application of aerospace, the medical and electronic industries. Chemical modifications of such type of polymers may lead to further new applications. In order to obtain the sulfonated materials as proton exchange membranes (PEMs) for proton exchange membrane fuel cells (DMFCs), sulfonic acid groups which can conduct proton are introduced into PEEK matrix with covalent bond to form sulfonated PEEKs (SPEEKs). For several decades, SPEEKs had been actively investigated as alternative membranes for commercial PEM materials (such as Nafion?) owing to their good chemical, mechanical properties, thermal stability and low cost. SPEEK membrane with high ion exchange capability (IEC) is necessary to obtain the adequate ability of proton conductivity, however, when the values of IEC into SPEEK matrix increases, the SPEEK polymers become more swollen and lose the mechanical stability and methanol resistance, which hinder it to use as PEMs in DMFCs. There, it is necessary to reform the pure SPEEKs with high Ds in order to improve the performance of proton exchange membranes, in particular, to decrease the water swelling and metanol permeability and to enchance the mechanical perperty.
     Firstly, the SPEEK polymer with high Ds used in this theis were prepared by direct aromatic nucleophilic substitution polymerization from 4, 4'-difluorobenzophenone, sodium 5, 5'-carbonyl- bis(2-fluorobenzene-sulfonate) (obtained fromthe sulfonationof 4, 4'-difluorobenzophenone, purity =99% )and 3, 3', 5, 5'-tetramethyl-4,4'-biphenol .The degree of sulfonation (Ds) of SPEEK used in this study is 1.2 calculated by the 1H-NMR. The polymer membrane has high proton condicitity, however, the low dimensional stability and methanol resistance limited its usage in DMFCs. Therefore, the different series of composite membanes and organic-inorganic composite membranes based on the SPEEK polymer with Ds=1.2 in this thesis.
     In chapter 3, SPEEK/epoxy resin composite membranes composed of SPEEK and a crosslinked epoxy resin based on 4,4’-diglycidyl-(3,3’,5,5’- tetramethylbiphenyl) epoxy resin (TMBP) and curing agents (polyamine(PA) and phenol novolac (PN)] were prepared by in situ polymerization with a casting-solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. The effects of introduction of TMBP content on the properties of the composite membranes were investigated in detail. As expected, the mechanical properties at high relative humidity were drastically improved, and the swelling ratios were sharply reduced. With the incorporation of crosslinked TMBP/curing agent, the water diffusion coefficients of the membranes at significantly decreased. Although the proton conductivities of the composite membranes were lower than that of the pristine SPEEK membrane, the methanol permeability coefficients rapidly decreased. Higher selectivity was obtained in the composite membrane than in the pristine SPEEK membrane. According to the aforementioned results, the SPEEK/TMBP/curing agent composite membranes show good potential for use in DMFCs.
     As showed in the chapter 3, The composite membranes were composed of a proton conducting component (SPEEK) and epoxy resin (TMBP) and curing agent. The mechanical property and methanol resistance of SPEEK were improved with the introduction of cross-linked epoxy resin. However, proton conductivities were decreased, which resulted in the limited usage of the composite membranes for PEMs in DMFCs. Thus, the introduction of sulfonated monomer as a curing agent of epoxy into the SPEEK membrane was one of methods in order to minimize the loss of proton conductivity while reducing the methanol permeability of the pristine SPEEK membrane. In the chapter 4, the sulfonated phenol novolac (PNBS) was synthesized from phenol novolac (PN) and 1, 4–butane sultone and the SPEEK/TMBP/PNBS composite membranes were prepared by solution casting, evaporation and thermal crosslinking method. The cross-linked epoxy resin with sulfonic acid groups was expected to not only provide mechanical and thermal stability to the membranes and improve methanol barrier property but also surpport proton conductivity channels. The sulfonated phenol novolac (PNBS) was successfully synthesized from phenol novolac and 1, 4–butane sultone and then characterized by FTIR and 1H NMR. The SPEEK/TMBP/PNBS composite membranes were prepared using casting solution, evaporation and heating cross-linking method. The Young’s moduli and tensile strengths of the composite membranes were all over twice more than those of the pristine SPEEK membrane. As expected, the swelling ratio were decreased from 17 % to 3.7 % at 25 oC and from 21 % to 7.5 % at 80 oC with the increasing weight content of the cross–linked TMBP/PNBS in the composite membranes. The methanol permeability was improved, and the lowest methanol diffusion coefficient was obtained from SPEEK/TMBP/PNBS-20 membrane. Although proton conductivities of the SPEEK/TMBP/PNBS composite membranes were lower than those of SPEEK membrane, higher selectivity values were found for SPEEK/TMBP/PNBS-14 composite membrane. All results suggested that these composite membranes offered the possibility of good performance in DMFCs.
     For last few years, the organic–inorganic composite PEMs have been prepared by addition of non-conductive ceramic oxide such as silicon oxide, titanium oxide and zirconium oxide, mixed silicon–titanium and silicon–aluminum oxides for improving hydrolysis resistance and reducing methanol crossover of PEMs in DMFCs. Among various inorganic compounds, clay (montmorillonite) with the structures of the repeating triple-layer sheets composed of an edge-shared octahedral sheet of alumina sandwiched between two tetrahedral silica sheets with a thickness of 1 nm and a length of 100 nm shows attractive hydrophilic property and good thermal stability at high temperature . The clay is also a protonic conductor with the ionic conductivity of 1×10?4 Scm?1 at room temperature.In the chaper 5, we used ion exchange method to prepare a new type of clay-SO3H. Clay-SO3H was used for the preparation of SPEEK/clay-SO3H composite membranes in order to minimize the loss of proton conductivity while reducing the methanol permeability of the pristine SPEEK membrane. The SPEEK/clay and SPEEK/clay-SO3H composite membranes with various contents of clay and clay-SO3H were prepared by a solution casting and evaporation method. The performances of the composite membranes such as mechanical and thermal properties, water retention, methanol permeability and proton conductivity were examined and the results were discussed in detail. The water uptakes of the composite membraneswere increased with the increasing content of clay or clay-SO3H. The water retentions at 80 oC and methanol resistances of the composite membranes had been obviously enhanced by adding of clay or clay-SO3H. The proton conductivities of SPEEK/clay-SO3H composite membranes decreased slightly compared with the pristine SPEEK membrane, however, the higher selectivity of SPEEK/clay-SO3H-1 composite membranes was shown. These results indicated that the SPEEK/clay-SO3H composite membrane which possessed good physical and chemical property was promising to be used as PEMs in DMFCs.
     The incorporation of metal oxide particles with no proton conductivity groups into SPEEK membranes will make the loss of proton conductivity of the resulted membranes. The proton conducting particles can improve the proton conductivity of membranes by providing additional proton conductivity pathways. Among them, phosphotungstic acid (PWA), one of the Keggin-type heteropolyacids with high proton conductivity (between 0.02 and 0.1 S cm?1 at 25°C) has been researched and the mechanism of the proton conductivity in PWA has been widely investigated. In this paper, the phosphotungstic acid dispersed into SPEEK in sodium form solution was used as a catalyst for sol–gel process of aminopropyltriethoxysilane to form the crosslinked silica network. The interaction between amine groups in aminopropyltriethoxysilane and sulfonic acid groups in SPEEK would occurred and the crosslinked silica network could not only improve the stability, water retention and mechanical strength of membranes but also immobilize the PWA molecules in the polymer matrix with non-covalent bond. The thermal stabilities of composite membranes were also investigated by thermogravimetric analyses (TGA). When PWA in this paper was introduced into the SPEEK composite membrane, the proton conductivities of the resulted composite membranes were expected to be improved. The mechanism of proton conductivity in these composite membranes was also researched. The chemical structures of SPEEK and their composite membranes were characterized by EDX and FTIR. The cross-sectional and surface morphology were measured by SEM and AFM, respectively. The results showed that the silica oxides and PWA had been homogeneously dispersed into SPEEK matrix. The TGA studies revealed that the thermal stabilities of SPEEK were improved with the incorporation of KH550 and the composite membranes had good thermal stabilities below 200°C. At 25°C, water uptakes increased with the increasing the introduction of KH550 and PWA. At the temperatures between 40 and 80°C, the values showed the different tendency.When the 5 wt.% PWA was added into the composite membranes, the swelling ratio in length of membranes decreased from 17.5% to 15.4% at 25°C and from 20.5% to 18.2% at 80°C compared with the pristine SPEEK membrane. The proton conductivity of the composite membrane with 5 wt.% PWA for SPEEK/KH550-10 reached the maximum of 0.084 S cm?1 at 25°C and 0.16 S cm?1 at 80°C under the 100% relative humidity condition and had best selectivity. Therefore, the composite membrane seems to be a promising candidate for PEMs applications in DMFCs.
引文
[1].朱梅,徐献芝,苏润.燃料电池的研究现状与方向[J].科技进展,2003,26(2):85-87.
    [2].马紫峰,冷拥军,蒋淇忠,等.直接甲醇燃料电池中的甲醇电催化氧化[J].化学通报(网络版). 1999,12: 99-123.
    [3].衣宝廉.燃料电池—高效、环境友好的发电方式[D].北京:化学工业出版社,2000.
    [4].郭志东.清洁能源汽车的开发动向一燃料电池汽车[J].汽车电器,1999, l:4-7.
    [5].张强,许晋源.离子膜燃料电池发电技术[J].汽车技术,1999,1:125-131.
    [6]. APPLEBY A J. From Sir William Grove to today: fuel cells and the future [J]. Power Sources,1990,29: 3-11.
    [7].李磊.直接甲醇燃料电池聚合物电解质的研究[D],天津大学博士学位论文, 2003年5月
    [8]. COSTAMAGNA P, SRINIVASAN S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects[J]. Journal of Power Sources, 2002, 102: 242-252.
    [9]. SURAMPUDI S, NARAYANAN S R, VAMOS E, et al. Advances in direct oxidation methanol fuel cells[J]. Journal of Power Sources, 1994, 47: 377-385.
    [10].蒋淇忠,马紫峰,黄碧纯,等.仪器分析技术在直接甲醇燃料电池研究中的应用[J],光谱实验室,2000,17(2):129-133
    [11].宋文顺.化学电源工艺学[M],北京:中国轻工业出版社,1998.
    [12]. WANG K, GASTEIGER H A, MARKOVIC N M, et al. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt-Ru alloy surfaces[J]. Electrochimica Acta,1996,41: 2587-2593.
    [13]. LEY K L, LIN R, PU C,et.al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys[J]. Journal of the Electrochemical Society, 1997,144: 1543-1548.
    [14]. BEVERS D. Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures[J]. J Hydrogen Energy, 1998, 23: 57-63.
    [15]. HIRANO S, KIM J, SRINIVASAN S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes[J]. Electrochim Acta, 1997, 42: 1587-1593.
    [16].韩飞,刘长鹏,邢巍,等.直接甲醇燃料电池的研究进展[J],应用化学,2004,21(9):865-871
    [17]. KOSKE J A,NARAYANAN S,VAMOS E,et al,A Direct Methanol Oxidation Fuel Cell, 28th IECEC[C]. 1993,1: 1209-1214.
    [18].黄红良,隋静,陈红雨,等.国内外直接甲醇燃料电池研究进展[J].电池工业,2004,9(6):320-324.
    [19].刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术, 2001, 25(5):363-366.
    [20].王凤娥.直接甲醇燃料电池的研究现状及技术进展[J].稀有金属,2002,26(6): 497-501
    [21].徐维正.国外甲醇燃料电池技术开发概况[J].精细与专用化学品, 2006, 14(3/4): 26-29.
    [22]. Handheld devices with integrated MTI Micro fuel cell [N]. Fuel Cells Bulletin, 2004, (7): 1
    [23].蔡年生.质子交换膜在燃料电池中的应用[J].膜科学与技术,1996, 16 (4): 1-6.
    [24]. INZELT G, PINERI M, SCHULTZE J W,et al. Electron and proton conducting polymers: recent developments and prospects [J]. Electrochimica Acta, 2000, 45: 2403-2421.
    [25]. DIYLE M,LEWITTES M E,ROELOFS M G,et al. Ionic conductivity of nonaqueous solvent-swollen ionomer membranes based on fluorosulfonate,fiuoroearboxylate,and sulfonated fixed ion groups[J]. Journal of Physical Chemistry B, 2001, 105: 9387-9394.
    [26]. DU X Z, YU J R,YI B,et al. Performances of proton exchange membrane fuel cells with altemate membranes[J]. Phys. Chem. Chem. Phys.,2001, 3: 3175-3179.
    [27]. YOSHIDA N,ISHISAKI T,WATANABE A,et al. Characterization of Flemion membranes for PEFC[J]. Electrochimica Acta,1998,43: 3749-3754.
    [28]. WAKIZOE M,VELEV O A,SRINIVASAN S. Anaiysis of proton exchange membrane fuel cell performance with alternate membranes[J]. Electrochimica Acta,1995,40: 335-344.
    [29]. YOSHITAKE M,TAMURA M,YOSHIDA N,et al. Stydies of perfluorinated ion exehange membranes for polymer elecrtolyte fuel cells[J]. Denki Kagaku,1996,64: 727-736.
    [30].林维明.燃料电池系统[D].北京:化学工业出版社, 1996
    [31]. KOMOROSKI R A,MAURITZ K A. A sodium_23 nuclear magnetic resonance study of ionic mobility and contaction pairing in a perfluorosulfonate ionomer[J]. Journal of America Chemical Society,1978,100: 7487-7489.
    [32]. HSU W Y,GIRERKE T D. Ion transport and clustering in Nafion perfluorinated membranes [J]. Journal of Membrane Science, 1983, 13: 307-326.
    [33]. LEE P C,MEISEL D. Luminescence quenching in the cluster network of perfluorsulfonate membrane [J]. Journal of America Chemical Society,1980,102: 5477-5481.
    [34]. SUMNER J J,CREAGER S E,MA J J,et al. Proton Conductivity in Nationl17 and in a Novel Bis[(Perfluoroalkyl)sulfonyl]imide Ionomer Membrane [J]. Journal of Electrochemical Society,1998,145: 107-110.
    [35]. SAVADOGO O. Emerging membranes for electrochemical systems(1)Solid polymer electrolyte membranes for fuel cell systems [J]. Journal of New Materials for Electrochemical Systems, 1998, 1: 47-65.
    [36]. RIKUKAWA M , SANUI K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers [J]. Progress in Polymer Science,2000,25: 1463-1502.
    [37]. REN X,WILSON M S, GOTTESFELD S. High Performance direct methanol polymer electrolyte fuel cell [J]. Journal of the Electrochemical Society,1996,143: L12-L15.
    [38]. EDMONDSON C A,STALLWORTH P E,WINTERSGILL M C,et al. Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes[J]. Electrochimica Acta,1998,43: 1295-1299.
    [39]. RUSSELL B, HODGDON J. Polyelectrolytes prepared from perfluoroalkylaryl macromolecules[J]. Journal of Polymer Science, 1968, 6: 171-191.
    [40]. WANG H, CAPUANO G A. Behavior of raipore radiation-grafted polymer membranes in H2/O2 fuel cells[J]. Journal of the.Electrochemical Society, 1998, 145: 780-784.
    [41]. MaTTSSON B, ERICSON H, TORELL L M, et al.. Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy [J]. Electrochimica Acta, 2000, 45: 1405-1408.
    [42]. HüBNER G, RODUNER E. EPR investigation of HO.radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes [J]. Journal of Materials Chemistry,1999, 9: 409-418.
    [43]. SAVADOGO O. Emerging membranes for electrochemical systems(1)Solid polymer electrolyte membranes for fuel cell systems [J]. Journal of New Materials for Electrochemical Systems,1998,1: 47-65.
    [44]. BEATTIE P D, ORFINO F P, BASURA V I, et al. Ionic conductivity of proton exchange membranes[J], Journal of Electroanalytical Chemistry,, 2001, 503: 45-56.
    [45]. BASURA V I, CHUY C, BEATTIE P D, et al.. Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonatedα,α,β, - trifluorostyrene (BAM?) and sulfonated styrene- (ethylene-butylene)- styene triblock(DAIS-analytical)copolymers[J]. Journal of Electroanalytical Chemistry, 2001, 501: 77-88.
    [46].王亚琴,张宏伟.燃料电池用非氟质子交换膜研究现状[J],安徽建筑工业学院学报,2006,14(3):81-87.
    [47]. KIM J,KIM B,JUNG B. Proton Conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-poly-styrene copolymers [J]. Journal of Membrane Science, 2002, 207: 129-137.
    [48]. WON J,CHOI S W,KANG Y S,et al.Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes[J]. Journal of Membrane Science,2003,214: 245-257.
    [49]. ELABD Y A , WALKER C W, BEYER F L. Triblock copolymer ionomer membranes: Part11.Structure Characterization and its effects on transport properties and direct methanol fuel cell performance[J]. Journal of Membrane Science, 2004, 231: 181-188.
    [50]. KERRES J A. Development of ionomer membranes for fuel cells[J]. Journal of Membrane Science, 2001, 185: 3-27.
    [51]. FAURE S, MERCIER R, ALDEBERT P, et al. Sulphonated polyimides, membranes and fuel cell.,French Patent.9605707[P], 1996.
    [52]. FANG J H, GUO X X; HARADA S, et al. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4‘-Diaminodiphenyl Ether-2,2‘-disulfonic Acid [J]. Macromolecules, 2002, 35: 9022-9028.
    [53]. CORNET N, BEAUDOING G, GEBEL G. Influence of the structure of sulfonated polyimide membranes on transport properties [J]. Separation and Purification Technology, 2001, 22-23: 681-687.
    [54]. WOO Y, OH S Y, KANG Y S, et al. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell [J].Journal of Membrane Science, 2003, 220: 31-45.·
    [55]. ASANO N,MIYATAKE K,WATANABE M. Sulfonated block polyimide copolymers as a proton-conductive membrane[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44: 2744-2748.
    [56]. SONG J M, MIYATAKE K, UCHIDA H, et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane [J]. Electrochimica Acta, 2006, 51: 4497-4504.
    [57]. KIM Y S, WANG F, HICKNER M, et al. Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100°C [J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41: 2816-2828.
    [58]. POPPE D, FREY H, KREUER K D, et al. Carboxylated and Sulfonated Poly(arylene-co-arylene sulfone)s: Thermostable Polyelectrolytes for Fuel Cell Applications[J]. Macromolecules, 2002, 35: 7936-7941.
    [59]. GENOVA-DIMITROVA P, BARADIE B, FOSCALLO D, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. Journal of Membrane Science , 2001, 185: 59-71.
    [60]. LAFITTE B, KARLSSON L E, JANNASCH P. Sulfophenylation of polysulfones for proton-conducting fuel cell membranes [J]. Macromolecular Rapid Communications , 2002, 23: 896-900.
    [61]. DAOUST D, DEVAUX J, GODARD P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature. Part 1. Qualitative comparison between polymer and monomer model compound sulfonation [J]. Polymer International, 2001, 50: 917-924.
    [62]. XING P X, ROBERTSON G P, GUIVER M D, et al. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes [J]. Journal of Membrane Science, 2004, 229: 95-106.
    [63]. BAUER B, JONES D J,ROZIERE J, et al. Hybrid organic-inorganic membranes for a mediumtemperature fuel cell[J]. Journal of New Materials for Electrochemical Systems, 2000, 3: 87-92.
    [64]. KREUER K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. Journal of Membrane Science, 2001, 185: 29-39.
    [65]. RIKUKAWA M, SANUI K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J].Progress in Polymer Science, 2000, 25: 1463-1502..
    [66]. BAE J M, HONMA I, MURATA M, et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J]. Solid State Ionics, 2002, 147: 189-194.
    [67]. TSURUHARA K, HARA K, KAWAHARA M, et al. Ion conductivity of poly(ethylene oxide)/ligand complexes with the hydrogen-bond interaction [J]. Electrochimica Acta, 2000, 45: 1223-1226.
    [68].刘朋军,张连华.聚膦腈功能材料研究进展[J].化学研究与应用,2001, 13(1): 33-38.
    [69]. WYCISK R, PINTAURO P N. Sulfonated polyphosphazene ion-exchangemembranes [J]. Journal of Membrane Sciences, 1996, 119: 155-160.
    [70]. GUO Q, PINTAURO P N,TANG H,et al, Sulfonated and cross-linked polyphosphazene-based proton-exchange membranes [J].Journal of Membrane Science, 1999, 154: 175-181.
    [71]. TANG H, PINTAURO P N, GUO Q, et al. Polyphosphazene membranes:ⅢSolid-state characterization and properties of sulfonated poly[bis(3-methylphenoxy)phosphazene] [J]. Journal of Applied Polymer Science, 1999, 71: 387-399.
    [72]. ALLCOCK H R, HOFMANN M A, AMBLER C M, et al. Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes)as proton-conducting membranes for direct methanol fuel cells[J]. Journal of Membrane Science, 2002, 201: 47-54.
    [73]. FEDKIN M V, ZHOU X Y, HOFMANN M A, et al. Evaluation of methanol crossover in proton-conducting polyphosphazene membranes[J]. Materials Letters, 2002, 52: 192 -196.
    [74]. XU X, CABASSO I. Preliminary study of phosphonate ion exchange membranes for PEM fuel cells[J]. Proceedings of the American Chemical Society, Division of Polymeric Materials: Science and Engineering,1993,68: 120-121.
    [75]. POTJE-KAMLOTH K, JOSOWICZ M. Electrochemical preparation of semipermeable polymer membranes on carbon fiber microelectrodes for selective amperometric detection of cations[J]. International Journal of Physical Chemistry, 1992, 96: 1004-1017.
    [76]. KüVER A, POTJE-KAMLOTH K. Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell[J]. Electrochimica Acta, 1998, 43: 2527-2535.
    [77]. VISHNUPRIYA B, RAMYA K, DHATHATHREYAN K S. Synthesis and characterization of sulfonated poly(phenylene oxides)as membranes for polymer electrolyte membrane fuel cells[J]. Journal of Applied Polymer Science, 2002, 83: 1792-1798.
    [78].张颖,尹玉姬,姚康德.直接甲醇燃料电池用阻醇质子交换膜研究进展[J].化工进展,2007,26(4):501-506.
    [79]. SMITHA B,SRIDHAR S,KHAN A A. Synthesis and characterization of poly(vinyl alcohol)–based membranes for direct methanol fuel cell[J]. Journal of Applied Polymer Science, 2005, 95: 1154-1163.
    [80]. SMITHA B,SRIDHAR S,KHAN A A. Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) as Proton Exchange Membranes for Fuel Cells[J].Macromolecules,2004,37: 2233–2239.
    [81]. SMITHA B,SRIDHAR S,KHAN A A.Chitosan–sodium Alginate Polyion Complexes as Fuel Cell Membranes[J]. European Polymer Journal,2005,41: 1859–1866.
    [82]. ZHANG X,BENAVENTE J,GARCIA V R. Lignin–based Membranes for Electrolyte Transference [J]. Journal of Power Sources,2005,145: 292–297.
    [83]. SAMMS S R, WASMUS S, SAVINELL R F.Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environment [J].Journal of the Electrochemical Society, 1996, 143: 1225-1232.
    [84]. WANG J T, WASMUS S, S AVINELL R F. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell [J]. Journal of the Electrochemical Society, 1996, 143: 1233-1239.
    [85]. WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles: a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142: L121-L123.
    [86]. YEO S C, EISENBERG A. Physical properties and supermolecular structure of perfluorinated ion-containing(Nafion)polymers[J]. Journal of Applied Polymer Science, 1977, 21(4): 875-898.
    [87]. PETTY-WEEKS S, UPANCIC J J, SWEDO J R. Proton conducting interpenetrating polymer networks [J]. Solid State Ionics, 1988, 31: 117-125..
    [88]. PRZYLUSKI J, WIECZOREK W, GLOWINKOWSKI S. Novel proton polymer ionic conductors [J]. Electrochimica Acta, 1992, 37(9): 1733-1725.
    [89]. WIECZOREK W, SUCH K, FLORJANCZYK Z, et al. Polyether, polyacrylamide/LiClO4 composite electrolytes with enhanced conductivity[J]. Journal of Physics and Chemistry, 1994, 98: 6840-6850.
    [90]. FU Y Z, LI W, MANTHIRAM A. Sulfonated polysulfone with 1, 3-1H-dibenzimidazole -benzene additive as a membrane for direct methanol fuel cells [J]. Journal of Membrane Science, 2008, 310: 262-267.
    [91]. FU Y Z, MANTHIRAM A. Nafion-imidazole-H3PO4 composite membranes for proton exchange membrane fuel cells [J]. Journal of the Electrochemical Society 2007, 154: B8-B12
    [92]. KERRES J A., ULLRICH A., MEIER F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells [J]. Solid State Ionics, 1999, 125: 243-249.
    [93]. J?RISSEN L, GOGEL V, KERRES J, et al. New membranes for direct methanol fuel cells [J]. Journal of Power Sources, 2002, 105: 267-273.
    [94]. KERRES J, ULLRICH A. Synthesis of novel engineering polymers containing basic side groups and their application in acid–base polymer polymer membranes [J]. Separation and Purification Technology, 2001, 22-23: 1-15.
    [95]. WALKER M, BAUMGARTNER K M, KAISER M, et al. Proton-conducting polymers with reduced methanol permeation[J]. Journal of Application Polymer Science,1999,74: 67-73.
    [96]. GROT W G. Fuel Cell Membranes, US. 6733914[P], 2004.
    [97]. CHOI Y J, KANG M S, MOON S H. A new preparation method for cation-exchange membrane using monomer sorption into reinforcing materials[J]. Desalination, 2002, 146: 287-291.
    [98]. WYCISK R, PINTAURO P N. Sulfonated polyphosphazene ion-exchange membranes [J]. Journal of Membrane Science, 1996, 119: 155-160.
    [99]. GUO Q, PINTAURO P N, TANG H ,et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J]. Journal of Membrane Science, 1999, 154: 175-181.
    [100]. PRZYLUSKI J, POLTARZEWSKI Z, LECZOREK W. Proton-conducting hydrogel membranes [J]. Polymer, 1997, 39: 4343-4347.
    [101].方军.聚丙烯酸/聚砜交联复合膜的反渗透分离性能的研究[J].高分子材料科学与工程,2001, 17(5): 149-151.
    [102]. RHIM J, PARK H B, LEE C S, et al. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes [J]. Journal of Membrane Science, 2004, 238: 143-151.
    [103]. NOLTE R, LEDJEFF K, BAUER M, et al. Partially sulfonated poly(arylene ether sulfone) - A versatile proton conducting membrane material for modern energy conversion technologies [J]. Journal of Membrane Science, 1993, 83: 211-220.
    [104].沈春辉,杨新胜,潘牧,等.燃料电池用全氟磺酸型复合质子交换膜的研究[J].化工新型材料, 2002, 30(3): 10-12.
    [105]. BAE B,CHUN B H,HA H Y, et al. Preparation and characterization of plasma treated PP composite electrolyte membranes [J]. Journal of Membrane Science,2002, 202: 245-252.
    [106]. YANG B , MANTHIRAM A . Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells [J]. Electrochemistry Communications, 2004, 6: 231-236.
    [107]. HOBSON L J, NAKANO Y, OZU H, et al. Targeting improved DMFC performance [J]. Journal of Power Sources, 2002, 104: 79-84..
    [108]. JIANG S P, LIU Z C, TIAN Z Q. Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells[J]. Advanced Materials, 2006, 18: 1068-1072.
    [109]. LI Q, HE R, JENSEN J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃[J]. Chemistry of Materials, 2003, 15: 4896-4915.
    [110]. LI L,WANG Y X. A hybrid membrane of poly(vinyl alcohol) and phosphotungstic acid for fuel cell [J]. Chinese Chemistry Engine,2002, 10: 614-617.
    [111].李磊,许莉,王宇新.磷钨酸/磺化聚醚醚酮质子导电复合膜[J].高等学校化学学报,2004,25(2):388-390.
    [112]. ARICO A S, BAGLIO V, BLASI A D, et al. Influence of the acid- base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cell [J]. Solid State Ionics, 2003, 161: 251-265.
    [113]. RUFFMANN B, SILVA H, SCHULTE B, et al. Organic/inorganic composite membranes for application in DMFC[J]. Solid State Ionics,2003, 162-163: 269-275.
    [114]. NUNES S P, RUFFMANN B, RIKOWSKI E, et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells[J]. Journal of Membrane Science, 2002, 203: 215-225.
    [115]. ZAIDIS M J, MIKHAILENKO S D, ROBERTSON G P, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. Journal of Membrane Science, 2000, 173: 17-34.
    [116]. BOZKUT A, ISE M, KREUER K D, et al. Proton-conducting polymer electrolytes based on phosphoric acid[J]. Solid State Ionics, 1999, 125: 225-233.
    [117].李传峰,邵怀启,钟顺和,有机无机复合膜材料的制备技术[J].化学进展,2004,16(1): 83-89.
    [118]. STANGAR U L, GROSELJ N, OREL B, et al. Structure of and interactions between P/SiWA Keggin nanocrystals dispersed in an organically modified electrolyte membrane [J]. Chemistry of Materials, 2000, 12: 3745-3753.
    [119]. HONMA I, HIRAKAWA S, YAMADA K, et al .Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes[J]. Solid State Ionics, 1999, 118: 29-36.
    [120]. HONMA I, NAKAJIMA H, NOMURA S. High temperature proton conducting hybrid polymer electrolyte membranes[J]. Solid State Ionics, 2002, 154-155: 707-712.
    [121]. KIM J D, HONMA I. Proton conducting polydimethylsiloxane/zirconium oxide hybrid membranes added with phosphotungstic acid[J]. Electrochimica Acta, 2003, 48: 3633-3638.
    [122]. NAKAJIMA H, HONMA I. Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cell [J]. Solid State Ionics, 2002, 148: 607-610.
    [123]. KIM D S, PARK H B, RHIM J W, et al. Preparation and characterization of crossliked PVA/SiO2 composite membranes containing sulfonic acid groups for direct methanol fuel cell applications [J]. Journal of Membrane Science, 2004, 240: 37-48.
    [124]. CHOI Y S, KIM T K, KIM E A, et al. Exfoliated Sulfonated Poly(arylene ether sulfone)–ClayNanocomposites [J]. Advanced Materials, 2008, 20 : 2341-2344.
    [125]. PU C,HUANG W H,KEWIN L L. A Methanol Impermeable Proton Conducting Composite Electrolyte System [J]. Journal of Electrochemical Society, 1995, 142: 119-120.
    [126]. YOON S R, HWANG G H, CHO W I, et al. Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering [J]. Journal of Power Sources, 2002, 106: 215-223.
    [127]. CHOI W C, KIM J D, WOO S I. Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell[J].Journal of Power Sources, 2001, 96: 411-414..
    [128].杜荣兵,徐维林,邢巍,等.低甲醇透过直接甲醇燃料电池[J].应用化学,2003, 20(8): 791-793.
    [129]. ZHANG G W,ZHOU Z T. Organic/inorganic composite membranes for application in DMFC [J].Journal of Membrane Science,2005,261: 107–113.
    [130]. SINHA R S,OKAMOTO K,Okamoto M.Structure–property relationship in biodegradable poly(butylenes succinate)/ layered silicate nanocomposites [J]. Macromolecules ,2003 , 36: 2355–2367.
    [131]. JUNG D H , CHO S Y , PECK D H , et al. Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell[J]. Journal of Power Sources,2003,118: 205–211.
    [132]. RHEE C H,KIM H K,CHANG H,et al. Nafion/sulfonated montmorillonite composite:a new concept electrolyte membrane for direct methanol fuel Cells [J]. Chemistry of Materials,2005,17: 1691–1697.
    [133]. BONNER W H. Aromatic Polyketones and Preparation Thereof, US. 3065205 [P] 1962-11-20.
    [134].马德柱,何平笙.高聚物的结构与性能[D].北京科学出版社, 1995, 448.
    [135].孙永周.开展我国聚醚酮酮研究的建议[J].塑料工业, 1990,2:25-27.
    [136]. JIN X, BISHOP M T, ELLIS T S, et al. A sulphonated poly(aryl ether ketone) [J]. British Polymer Journal, 1985, 17, 4-10.
    [137]. LEE J, MARVEL C S. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1984, 22: 295-301.
    [138]. GENOVA-DIMITROVA P, BARADIE B, FOSCALLO D, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. Journal of Membrane Science,2001, 185: 59-71
    [139]. JOHNSON B C, YLGOR I, TRAN C, et al. Synthesis and characterization of sulfonated poly(acrylene ether sulfones)[J] Journal of Polymer Science, Part A :Polymer Chemistry , 1984,22: 721-737.
    [140]. LITTER M I, MARVEL C S. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4 -dichloroformyldiphenyl ether[J]. Journal of Polymer Science, Part A: Polymer Chemistry , 1985, 23: 2205-2223..
    [141]. NOSHAY A, ROBESON L M. Sulfonated polysulfone [J]. Journal of Applied Polymer Science, 1976, 20: 1885-1903.
    [142]. TURBAK A F. The sulfur trioxide-phosphate system [J]. Industrial and Engineering Chemistry Product Research and Development, 1962, 1: 275-278.
    [143]. NOSHAY A, ROBESON L M. Sulfonated polysulfone [J].Journal of Applied Polymer Science, 1976, 20: 1885-1903.
    [144]. JOHNSON B C, YILGOR I, TRAN C, et al. Synthesis and characterization of sulfoanted poly(arylene ether sulfone)s [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1984, 22: 721-737.
    [145]. KIM I C, CHOL J G, TAK T M. Sulfoanted polyethersulfone by heterogeneous method and its membrane performances [J]. Journal of Applied Polymer Science, 1999, 74: 2046-2055.
    [146]. FRANCESCO T, ENRICO D, MORAGLIO G, et al. Sulfonation of polyetheretherketone by chlorosulfuric acid [J]. Journal of Applied Polymer Science, 1998, 70: 477-482.
    [147]. GAO Y, ROBERTSON G P, GUIVER M D, et al. Synthesis and characterization of sulfonated poly(phthalazinone ether ketone )for proton exchange membrane materials [J]. Journal of Polymer Science Part A : Polymer Chemistry, 2003, 41: 497-507.
    [148]. DAI Y, JIAN X G, ZHANG S H, et al. Thermostable ultrafiltration and nanofiltration membranes from sulfoanted poly(phthalazinone ether sulfone ketone) [J]. Journal of Membrane Science, 2001, 188: 195-203.
    [149]. ZHANG S H, JIAN X G, DAI Y. Preparation of sulfanated poly(phthalazinone ether sulfone ketone composite nanfiltration membrane[J]. Journal of Membrane Science, 2005, 246 (2): 121-126.
    [150]. WANG F,CHEN T L,XU J P. Synthesis of poly(ether ether ketone) containing sodium sulfonate groups as gas dehumidification membrane material [J]. Macromoleeular Rapid Communications,1998,19: 135-137..
    [151]. WANG F,CHEN T L,XU J P. Sodium sulfonate functionalized poly(ether ether ketone) [J] . Macromolecular Chemistry and Physics,1998,199: 1421-1426.
    [152]. LIU S Z,WANG F,CHEN T L. Synthesis of Poly(ether ether ketone)s with high content of sodium sulfonate groups as gas dehumidification membrane materials[J]. Macromolecular Rapid Communications, 2001,22: 579-582.
    [153]. WANG F,LI J K,CHEN T L ,et al. Synthesis of Poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics [J]. Polymer, 1999, 40: 795-799.
    [154].王国庆,朱秀玲,张守海,等.一种杂环磺化聚芳醚睛酮质子交换膜材料的合成及结构研究[J].高分子学报,2006,2:209-212.
    [155]. DAI Y, JIAN X G, GUIVER M D, et al. Thin film composite (TEC) membranes with improvedthermal stability from sulfonated poly(phthalazinone ether sulfone ketone ) (SPPESK)[J]. Journal of Membrane Science, 2002, 207: 189-197.
    [156]. GAO Y, GUIVER M D, JIAN X G, et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials[J]. Journal of Membrane Science, 2003, 227: 39-50.
    [157]. SUN Y M, GUIVER M D, GAO Y, et al. Sulfonationg poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells[J]. Journal of Membrane Science, 2005, 365: 108-114.
    [158]. GAO Y, ROBERTSON G P, GUIVE M D, et al. Sulfoanted copoly(phthanlazinone ether ketone nitrile)s as proton exchange membrane materials[J]. Journal of Membrane Science, 2006, 278: 26-34.
    [159]. MANEA, C, MULDER, M. Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications [J]. Journal of Membrane Science, 2002, 2006: 443-453.
    [160]. KIEHYUN N,HELEN X,SHUGUANG C,et al., Acid-base Proton Conducting Polymer Blend Membrane, US. 20030219640[P], 2003.
    [161]. DIVONA, M L, D'EPIFANIO A, MARANI, D, et al. SPEEK/PPSU-based organic-inorganic membranes: proton conducting electrolytes in anhydrous and wet environments [J]. Journal of Membrane Science , 2006, 279: 186-191.
    [162]. LI L, XU L, WANG Y X. Proton conducting composite membranes from sulfonated polyether ether ketone and phosphotungstic acid [J]. Chemical Journal of Chinese Universities-Chinese , 2004, 25: 388-390.
    [163]. ZHANG, Y, ZHANG, H M, ZHU, X B, et al. Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(ether ether ketone) [J]. Journal of Physical Chemistry B, 2007, 111: 6391-6399.
    [164]. NUNES S P, RUFFMANN B, RIKOWSKI E, et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells [J]. Journal of Membrane Science, 2002, 203: 215-225.
    [165]. MIKHAILENKO S D, WANG K, KALIAGUINE S, et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)[J]. Journal of Membrane Science, 2004, 233: 93-99.
    [166]. CHENG J H, PARK J H, PARK G C, et al. Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials[J].Journal of Power Sources, 2003, 124: 18-25.
    [167]. YANG B, MANTHIRAM A. Multilayered membranes with suppressed fuel crossover for directmethanol fuel cells, Electrochemistry Communication,2004, 6: 231-236.
    [168]. WATARI T, WANG H Y, KUWAHARA K, et al. Water vapor sorption and diffusion properties of sulfonated polyimide membranes [J]. Journal of Membrane Science, 2003, 219: 137-147
    [169].宋文生.直接甲醇燃料电池用电解质膜的研究[D].天津:天津大学化工学院, 2003年12月,29
    [170]. LEE M H, KIM H J, KIM E ,et al. Effect of phase separation on ionic conductivity of poly(methyl methacrylate)-based solid polymer electrolyte [J]. Solid State Ionics, 1996, 85: 91-98.
    [171]. ZAWODZINSKI T A, NEEMAN J M, SILLERUD L O,et al,Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes,Journal of Physics and Chemistry, 1991, 95: 6040-6044.
    [172]. SUMNER J J, CREAGER S E, MA J J ,et al. Proton conductivity in Nafion 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane [J] .Journal of the Electrochemical Society, 1998, 145: 107-110
    [173]. YOSHITSUGU S, PER E, DANIEL S. Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method, [J] Journal of the Electrochemical Society, 1996, 143(4): 1254-1259.
    [174]. JUNG B, KIM B, YANG J M Et al . Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell [J]. Journal of Membrane Science, 2004, 245: 61-69.
    [175].张春玲.含联苯结构高性能环氧树脂的合成与性能研究[D],吉林大学博士论文,2004年
    [176]. LIU S, WANG F, CHEN T. Synthesis of Poly(ether ether ketone)s with High Content of Sodium Sulfonate Groups as Gas Dehumidification Membrane Materials , Macromolecular Rapid Communications, 2001, 22: 579-582.
    [177].黄化民.有机化学[M].长春:吉林大学出版社,1992.
    [178]. WANG F, CHEN T L, XU J P, et al. Sodium sulfonate-functionalized poly (ether ether ketone)s [J]. Macromolecular Chemistry and Physics, 1998, 199: 1421– 1426.
    [179].常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001:140-143.
    [180].李先锋.磺化聚芳醚酮类质子交换膜材料的结构与性能研究[D].长春:吉林大学博士论文,2006.
    [181].赵成吉.嵌段型磺化聚芳醚类质子交换膜材料的结构与性能研究[D].长春:吉林大学博士论文,2008
    [182]. ZAIDI S M J, MIKHAILENKO S D, ROBERTSON G P, et al .Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications [J]. Journal of Membrane Science, 2000, 173: 17-34.
    [183]. XING P X, ROBERTSON G P, GUIVER M D, et al Synthesis and characterization of sulfonatedpoly(ether ether ketone) for proton exchange membranes [J]. Journal of Membrane Science ,2004, 229: 95-106.
    [184].贺曼罗.环氧树脂胶粘剂,北京:中国石化出版社,2004年5月
    [185].张春玲,那辉,刘晨光,等.含有联苯结构二缩水甘油醚型环氧树脂的合成与结构研究[J].热固性树脂,2002, 17(1):1-3.
    [186].王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2004年4月
    [187]. CUI W, KERRES J, EIGENBERGER G. Development and characterization of ion-exchange polymer blend membranes,Separation and Purification Technology, 1998, 14: 145-154.
    [188].金塞高,罗远芳,霍瑞贞.磺化聚芳醚醚酮的热分解[J].中国科学(B辑), 1990 (5):460-470.
    [189].何曼君,张红东,陈维孝,等.高分子物理(第三版)[M].上海:复旦大学出版社, 2007年3月
    [190].刘凤歧.高分子物理(第二版)[M].北京:高等教育出版社, 2004年12月
    [191]. EISENBERG A. Clustering of Ions in Organic Polymers. A Theoretical Approach [J] .Macromolecules, 1970, 3: 147-154.
    [192]. THOMAS A, ZAWODZINSKI, DAVEY J, et al. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes [J] . Electrochimica Acta, 1995, 40: 297-302.
    [193]. THOMAS A, ZAWODZINSKI, DAVEY J, et al. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes [J] . Electrochimica Acta, 1995, 40: 297-302.
    [194]. KIM D S, LIU B J, GUIVER M D, et al. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application [J]. Polymer, 2006, 47: 7871-7880.
    [195]. Haile S M. Fuel cell materials and components [J]. Acta Materialia, 2003, 51: 5981-6000.
    [196]. KOPITZKE R W, LINKOUS C A, ANDERSON H R, et al. Conductivity and Water Uptake of Aromatic-Based Proton Exchange Membrane Electrolytes [J]. Journal of The Electrochemical Society. 2000, 147: 1677-1681.
    [197]. WILHELM R, DOTSEVI Y S. Synthesis of soluble high molecular weight poly(aryl ether ketones) containing bulky substituents [J]. Macromolecules, 1990, 23: 4029-4033.
    [198].任素珍.直接甲醇燃料电池用新型质子交换膜的研究[D].大连:大连理工大学博士学位论文,2005年8月
    [199]. PIVOVAR B S, WANG Y X, CUSSLER E L ,et al .Pervaporation membranes in direct methanol fuel cells [J]. Journal of Membrane Science, 1999, 154: 155-162.
    [200].刑其毅,徐瑞秋,周政,等.基础有机化学(第二版)[M].北京:高等教育出版社,1993.
    [201].陈平.环氧树脂[M].北京:化学工业出版社,2002年3月
    [202]. JAGADEESH K S, RAO J G , SHASHIKIRAN K, et al. Cure kinetics of multifunctional epoxies with 2,2 -dichloro-4,4 -diaminodiphenylmethane as hardener [J] .Journal of Applied Polymer Science, 2000, 77: 2097-2013.
    [203]. LIAW D J, SHEN W C. Curing of acrylated epoxy resin based on bisphenol-S [J]. Polymer Engineering Science ,1994, 34: 1297-1303.
    [204]. CASCAVAL C N, ROSU D, STOLERIU A, et al. Curing of some epoxy-acrylate glycidyl ethers based on para-alkyl substituted phenols Stoleiu A [J]. Polymer Degradation Stability, 1997, 55: 281-285.
    [205]. ROSU D, MUSTATA F, CASCAVAL C N ,et al. Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry [J].Termochimica Acta, 2001, 370: 105-110.
    [206]. GAO J G, LI D L ,SHEN S G,. et al. Curing kinetics and thermal property characterization of a bisphenol-F epoxy resin and DDO system [J]. Journal of Applied Polymer Science, 2002, 83: 1586-1595.
    [207]. PARVEEN K, AGGARWAL S, NARULA A K, et al. .Studies on the curing and thermal behaviour of DGEBA in the presence of bis(4-carboxyphenyl) dimethyl silane [J] .Polymer International, 2003, 52: 908-917.
    [208]. FRANCIS B, POEL G V, POSADA F, et al. Cure kinetics and morphology of blends of epoxy resin with poly (ether ether ketone) containing pendant tertiary butyl groups [J].Polymer, 2003, 44: 3687-3699.
    [209]. COATS A W, REDFERN J P ,et al.. Series approximations to the equation of thermogravimetric data [J]. Nature, 1964, 207: 290-291.
    [210]. CAI H L, SHAO K, ZHONG S L, et al. Properties of composite membranes based on sulfonated poly(ether ether ketone)s (SPEEK)/phenoxy resin (PHR) for direct methanol fuel cells usages [J] .Joumal of Membrane Science, 2007, 297: 162-173.
    [211]. LEHMANI A, DURAND-VIDAL S,TURQ P ,et al. Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope [J] .Journal of Applied Polym Science,1998, 68: 503-508.
    [212]. LIN C W,.FAN K C , THANGAMUTHU R, et al. Preparation and characterization of high selectivity organic–inorganic hybrid-laminated Nafion 115 membranes for DMFC [J] .Joumal of Membrane Science.,2006, 278: 437-446.
    [213]. KIM Y S, EINSLA B, SANKIR M, et al. Structure–property–performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications [J]. Polymer 2006, 47: 4026-4035.
    [214]. CARLA, H W. Recent advances in perfluorinated ionomer membranes: structure, properties and applications[J]. Journal of Membrane Science, 1996 ,120: 1-33.
    [215]. RIKUKAWA M., SANUI, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J]. Progress in Polymer Science, 2000, 25:1463-1502.
    [216]. ADAMCZYK M,CHEN Y Y,MATTINGLY P G.ω-Aminooxyalkanesulfonic acids. Novel nucleophilic sulfoalkylation reagents [J].Tetrahedron Letters,2001,42: 4285-4287
    [217]. GIESELMAN M B, REYNOLDS J R. Poly [ (p-phenyleneterephthalamido) propanesulfonate]: a new polyelectrolyte for application to conducting molecular composites [J]. Macromolecules ,1990, 23: 3118-3124.
    [218]. GIESELMAN M B, REYNOLDS J R. Water-soluble polybenzimidazole-based polyelectrolytes [J]. Macromolecules, 1992, 25: 4832-4834.
    [219]. GIESELMAN M B, REYNOLDS J R. Aramid and imidazole based polyelectrolytes: physical properties and ternary phase behavior with poly(benzobisthiazole) in methanesulfonic acid[J]. Macromolecules, 1993, 26: 5633-5642.
    [220]. GLIPA X, HADDAD M E, JONES D J, et al. Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer[J]. Solid State Ionics, 1997, 97:323-331.
    [221]. KAWAHARA M, RIKUKAWA M, SANUI K, et al. Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films[J]. Solid State Ionics, 2000, 136:1193-1196.
    [222]. KAWAHARA M, RIKUKAWA M, SANUI K. Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole) [J]. Polymer For Advanced Technologies, 2000, 11: 544-547.
    [223]. TSURUHARA K, HARA K, KAWAHARA M, et al. Ion conductivity of poly(ethylene oxide)/ligand complexes with the hydrogen-bond interaction [J]. Electrochimica Acta, 2000, 45: 1223-1226.
    [224]. YOSHIDA H, HATAKEYAMA T, HATAKEYAMA H. Phase transitions of the water-xanthan system[J]. Polymer, 1990, 31:693-698
    [225]. YIN Y, FANG J, KITA H, et al. Novel Sulfoalkoxylated polyimide membrane for polymer electrolyte fuel cells [J]. Chemistry Letters, 2003, 32: 328-329.
    [226]. MIYATAKE K, ZHOU H, UCHIDA H, et al. Highly proton conductive polyimide electrolytes containing fluorenyl groups [J]. Chemical Communications., 2003,3: 368–369.
    [227]. SONG J M, ASANO N, MIYATAKE K, et al. Application of sulfonated polyimide membranes to direct methanol fuel cells [J]. Chemistry Letters, 2005, 34: 996-997.
    [228]. ASANO N, MIYATAKE K, WATANABE M. Hydrolytically stable polyimide ionomer for fuel cell applications [J]. Chemistry of Materials., 2004, 16: 2841-2843.
    [229]. LAFITTE B, KARLSSON L E, JANNASCH P. Sulfophenylation of polysulfones for proton-conducting fuel cell membranes [J]. Macromolecular Rapid Communications,2002, 23:896-900.
    [230]. KARLSSON L, LAFITT B, JANNASCH P (2003) In: Proceedings Conf Advances in Materials for Proton Exchange Membrane Fuel Cell Systems, Asilomar, CA, USA, 23–26, February 2003, Poster Abstr 14
    [231]. Tan C Y, Pinto M R, Schanze K S. Photophysics, aggregation and amplified quenching of a water-soluble poly( phenylene ethynylene)[J]. Chemical Communications,2003,5: 446-447.
    [232]. KIM I C, CHOI J G, TAK T M. Sulfonated polyethersulfone by heterogeneous method and its membrane performances [J].Journal of Applied Polymer Science ,1999, 74: 2046-2055.
    [233].莫志深,张宏放.晶态聚合物结构和X射线衍射[M].北京:科学出版社, 2003.
    [234]. GEBEL G, LAMBARD J. Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes[J].Macromolecules,1997,30:7914-7920.
    [235]. MO ZS, ZHANG HF. Structure of Crystalline Polymers by X-ray Diffraction, Science Publishing Company in China,(October) 2003, pp.307–311.
    [236]. FUJIMURA M , HASHIMOTO T, KAWAI H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima [J].Macromolecules, 1981,14: 1309-1315.
    [237]. FUJIMURA M, HASHIMOTO T, KAWAI H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum[J]. Macromolecules, 1982,15:136-144.
    [238]. GIL M, JI X L, LI X F, et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications[J]. Journal of Membrane Science,2004, 234: 75-81.
    [239]. KIM Y S, DONG L, HICKNER M A, et al. State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties[J]. Macromolecules, 2003,36:6281-6285.
    [240]. ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science,1991,62:165–185.
    [241]. JUNG D H , CHO S Y , PECK D H , et al. Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell [J]. Journal of Power Sources,2003,118: 205–211.
    [242]. THOMASSIN J M, PAGNOULLE C, CALDARELLA G, et al. Impact of acid containing montmorillonite on the properties of Nafion? membranes [J] Polymer ,2005, 46: 11389-11395.
    [243]. SILVA R F, PASSERINI S, POZIO A. Solution-cast Nafion?/montmorillonite compositemembrane with low methanol permeability[J]. Electrochimica Acta, 2005, 50: 2639-3645.
    [244]. SONG M K, KIM Y M, KIM Y T, et al. Ultrathin reinforced nanocomposite membranes for direct methanol fuel cells.[J]. Journal of the Electrochimical Society, 2006, 153: A2239-2244.
    [245]. KIM Y, LEE J S, RHEE C H, et al. Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes [J]. Journal of Power Sources, 2006, 162: 180-185.
    [246]. BEBIN P, CARAVANIER M, GALIANO H. Nafion?/clay-SO3H membrane for proton exchange membrane fuel cell application[J]. Journal of Membrane Science, 2006, 278: 35-42
    [247]. THOMASSIN J M, PAGNOULLE C, BIZZARI D, et al. Improvement of the barrier properties of Nafion? by fluoro-modified montmorillonite[J]. Solid State Ionics, 2006, 177: 1137-1144..
    [248]. RHEE C H, KIM H K, CHANG H, et al. Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells[J]. Chemisry of Materials, 2005, 17:1691-1697.
    [249]. .张立德.解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005.
    [250].刘盘阁,官同华,王月欣,等.蒙脱土结构特性及在聚合物基纳米复合材料中的应用[J].塑料科技,2004,161(13):40-45.
    [251]. MINISINI B, TSOBNANG F. Molecular mechanics studies of specific interactions in organomodified clay nanocomposite [J].Composites Part A- Applied Science and Science and manufacturing, 2005, 36 (4): 531-534.
    [252]. YANO K, USUKI A, OKADA A, et al; Synthesis and properties of polyimide-clay hybid [M].Journal of Polymer Science: part A, 1993, 31: 2493-2498.
    [253]. LAN T, KAVJIRATNA P D, PINNAVAIA T J. Epoxy self-polymerization in smectite clays [M].Journal of Physics and Chemistry of Solids, 1996, 57(6-8): 1005-1010.
    [254]. LIU W, NI Y, XIAO H. Cationic montmorillonite: Preparation and synergy with anionic polymer in filler flocculation[J]. Journal of Pulp and Paper Science, 2003,29(5):145-149.
    [255]. LIANG Z M, YIN H, XU H H. Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers[J].Polymer 2003,44(5):1391-1399.
    [256]. WANG K, WANG L, WU J S, et al. Preparation of highly exfoliated epoxy/clay nanocomposites by "slurry compounding": Process and mechanisms[J]. Langmuir, 2005,21(8): 3613-3618.
    [257]. LEBARON P C, WANG Z, PINNAVAIA T J. Polymer-layered silicate nanocomposites: an overview[J]. Applied Clay Science, 1999, 15(1-2), 11-29.
    [258]. KORNYSHEV A A, KUZNETSOV A M, SPOHR E, et al. Kinetics of Proton Transport in Water[J]. Journal of Phyical Chemistry B, 2003, 107 (15): 3351–3366.
    [259]. SILVA V S, RUFFMANN B, SILVA H, et al. Proton electrolyte membrane properties and direct methanol fuel cell performance I. Characterization of hybrid sulfonated poly(ether etherketone)/zirconium oxide membranes[J]. Journal of Power Sources 2005,140(1): 34-40.
    [260]. KARTHIKEYAN C S, NUNE, S P, SCHULTE K. Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials[J]. Macromolecular Chemistry and Physics, 2006,207(3): 336-341.
    [261]. DI VONA M L, AHMED Z, BELLITTO S, et al. SPEEK-TiO2 nanocomposite composite proton conductive membranes via in situ mixed sol-gel process[J]. Journal of Menbrance Science, 2007, 296(1-2): 156-161.
    [262]. RAMANI V, KUNZ H R, FENTON J M. Investigation of Nafion?/HPA composite membranes for high temperature/low relative humidity PEMFC operation[J]. Journal of menbrance science 2004,232(1-2): 31-44.
    [263]. ZAIDI S M J MIKHAILENKO S D, ROBERTSON G P, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. Journal of Menbrance Science, 2000, 173(1): 17-34.
    [264]. GENOVA-DIMITROVA P, BARADIE B, FOSCALLO D, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid[J]. Journal of Menbrance Science, 2001, 1851: 59-71.
    [265]. MALHOTRA S, DATTA R. Membrane-Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton-Exchange Membrane Fuel Cells[J]. Journal of the Electrochemical. Society, 1997, 144: L23-L26.
    [266]. RAMANI V, KUNZ H R, FENTON J M. Metal dioxide supported heteropolyacid/Nafion (R) composite membranes for elevated temperature/low relative humidity PEFC operation[J]. Journal of Membrance Science, 2006, 279(1-2): 506-512.
    [267]. HONMA I, NAKAJIMA H, NISHIKAWA O, et al. Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes[J]. Solid State Ionics, 2003,162: 237-254.
    [268]. HONMA I, NOMURA S, NAKAJIMA H. Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane[J]. Journal of Membrance Science, 2001, 1: 83-94.
    [269]. KHITERER M, LOY D A, CORNELIUS C J, et al. Hybrid polyelectrolyte materials for fuel cell applications: Design, synthesis, and evaluation of proton-conducting bridged polysilsesquioxanes[J]. Chemistry of Materials, 2006, 18(16):3665-3673.
    [270]. CUI X J, ZHONG S L, WANG H Y. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid [J]. Journal of Power Sources 2007, 173: 28-35.
    [271]. SHAHI V K. Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells[J]. Solid State Ionics, 2007,177(39-40): 3395-3404.
    [272]. TSINGDINOS G A. Heteropoly Compounds of Molybdenumand Tungsten[M]. New York: Sping-Verley,1977,(5):41-45.
    [273]. MAESTRE J M, LOPEZ X, BO C,et al. Electronic and Magnetic Properties of R-Keggin Anions: A DFT Study of [XM12O40]n-, (M=W,Mo;X=AlIII,SiIV,PV,FeIII,CoII,CoIII) and [SiM11VO40]m-(M=Mo and W)[J]. Journal of American Chemistry Society, 2001, 123: 3749-3758.
    [274]. KREUER K D,Proton conductivity: materials and applications[J].Chemistry of Materials,1996,8: 610-631.
    [275].王常珍.固体电解质和化学传感器[M].北京:冶金工业出版社,2000.
    [276]. ALBERTI G, CASCIOLA M. Solid state Protonic conductors,present main applications and future prospeets [J].Solid State Ionics,2001,145: 3-16.
    [277].吴越,叶兴凯,杨向光,等.杂多酸的固载化——关于制备负载型酸催化剂的一般原理[J].分子催化,1996,10(4): 299-313.
    [278]. PAZE C, BORDIGA S, ZECCHINA A. H2O interaction with solid H3PW12O40: An IR study[J]. Journal of Chemical Physics, 2000,112(8): 3859-3867 .
    [279]. BROWN G M, NOE-SPIRLET M R, BUSING W R, etal. Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403-). The true structure of Keggin's `pentahydrate' from single-crystal X-ray and neutron diffraction data[J]. Acta Crystallographica Section B, 1977, 33:1038-1046.
    [280]. KIM Y S, WANG F, HICKNER M, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications[J].Journal of Membrance Science, 2003, 212(1-2): 263-282.
    [281]. STAITI P, ARICO A S, BAGLIO V, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells[J] Solid State Ionics, 2001, 145(1-4): 101-107.
    [282]. SHAHI V K. Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells[J]. Solid State Ionics, 2007, 177(39-40); 3395-3404.
    [283]. HONMA I, NAKAJIMA H, NISHIKAWA O, et al. Proton conducting electrolyte membranes synthesized through amphiphilic organic/inorganic hybrid macromolecules[J]. Electrochemistry, 2002, 70(12): 920-923.
    [284]. HONMA I, NAKAJIMA H, NISHIKAWA O, et al. Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes[J]. Solid State Ionics 2003,162:237-245.
    [285]. FU R Q, WOO J J, SEO S J, et al. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations[J]. Journal of Power Sources, 2008, 179: 458-466.
    [286]. CHANDRA S, TOLPADI SK, HASHMI S A. Transient ionic current measurement of ionic mobilities in a few proton conductors[J]. Solid State Ionics, 1988, 28-30: 651-655.
    [287]. SHAO Z G, JOGHEE P, HSING I M. Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells [J]. Journal of Membrane Science, 2004, 229: 43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700