用户名: 密码: 验证码:
华北土石山区典型人工林优势树种及群落耗水规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究华北土石山区密云水库流域常见树种的耗水规律和典型林分林木耗水机理,揭示不同树种的耗水特征,在此基础上结合林地土壤水分运移规律,建立森林耗水尺度转换模型。
     针对密云水库流域现有的植被分布特点,选择22种乔灌木和2个典型林分(油松林和侧柏栎类混交林)作为研究对象,通过盆栽法和典型林分耗水试验,应用数学统计方法,分析了从苗木—林木—林分的耗水规律,得出如下结论:
     不同树种由于其本身的生物学特性,形成不同的生态适应性。在水分充足条件下,供试22个试验树种苗木蒸腾速率、光合速率与水分利用率日变化曲线呈相似的变化趋势。乔木树种中,阔叶树种的蒸腾速率高于针叶树种,平均水分利用率针叶树种大于阔叶树种。灌木树种中,阳性的蒸腾速率高于阴性树种;平均水分利用率是阴性灌木大于阳性灌木树种。通过蒸腾速率与环境因子的相关性分析,可以得出:太阳辐射和气孔导度是树木蒸腾耗水的重要影响因子。同时,建立了蒸腾速率与环境因子的多元线性回归模型:Y=a+bX1+cX2+dX3+eX4+fX5,相关系数在0.9以上。
     在控水条件下,比较了各树种的光合、蒸腾和气孔导度变化规律,得出,各树种苗木蒸腾速率随控水时间的延长而下降,侧柏、油松、槲树、栓皮栎、鼠李和平榛等几个树种由于其特殊的生物学结构,控水时间较长,是抗旱树种选择的较好材料。
     在水分充足条件下,对各树种整株耗水比较得出:7种乔木树种的平均耗水速率为0.071 g·cm-2·d-1,15种灌木的平均耗水速率为0.100 g·cm-2·d-1。树种耗水综合排序为:溲疏>鼠李>荆条>孩儿拳头>黄栌>大油芒>雀儿舌头>绣线菊>元宝枫>栓皮栎>盐肤木>丁香>蚂蚱腿子>槲树>平榛>胡枝子>火炬>紫穗槐>油松>刺槐>花木蓝>侧柏。总体来看:阔叶树种的耗水量大于针叶树种,灌木树种的耗水比乔木树种的单位耗水量大。
     在微气象条件相对一致条件下,树木的蒸腾作用主要取决于各树种的生物学特性。15个典型林分的试验树种蒸腾速率、光合速率与水分利用率日变化曲线呈相似的变化趋势。针叶乔木树种的最大蒸腾速率油松大于侧柏,阔叶乔木树种的日最大蒸腾速率从大到小的顺序依次:臭椿>麻栎>槲树>刺槐>栓皮栎,灌木树种顺序依次:鼠李>黄栌>酸枣>孩儿拳头>荆条>火炬>花木蓝>雀儿舌头。各树种水分利用效率均表现为下降趋势,乔木树种油松、栓皮栎、麻栎、侧柏水分利用效率最高,针叶树种的水分利用率高于阔叶树种,灌木树种孩儿拳头、花木蓝、黄栌、鼠李等较低。蒸腾速率与环境因子的相关分析表明,树种蒸腾速率与气孔导度和光照强度为显著相关,建立蒸腾速率与环境因子的多元回归模型:Y=a+bX1+cX2+dX3+eX4+fX5,相关系数在0.9以上。
     蒸腾作用体现树木耗水性的构成指标,并不能完全反映树木的耗水量大小。只有在测定叶片蒸腾速率同时得到树木整株树冠的叶面积,才能进一步得到树木的耗水速率或耗水量。从树种间的耗水量比较发现,刺槐的蒸腾耗水量最大,耗水量排序为刺槐>臭椿>麻栎>槲树>油松>栓皮栎>侧柏
     通常条件下,林分耗水受气候条件、树种本身生理生态学特性和土壤供水条件的影响。林分耗水的主要途径包括三个方面:林冠截留蒸发、植物蒸腾耗水和土壤物理蒸发。大气降水通过林冠层是一个降水的再分配过程,根据水量平衡原理,忽略水平方向的水分变化,得到树种总的截留率排序为:黄栌>荆条>麻栎>刺槐>油松>槲树>侧柏>臭椿。油松的枯落物年截留量占总降雨量的10.42%,侧柏栎类混交林的年截留量占总降雨量的9.49%,土壤水分蒸发是土壤水分运动过程中的一种特殊形式。土壤月平均蒸发量一年的变化呈波峰曲线。典型晴天条件下,土壤日蒸发主要发生在0~20cm土层。
     林分耗水量是森林生态系统水量平衡的主要输出项,采用定位通量法和水量平衡法计算了林分总耗水量结果接近,结果为:油松林生长季总耗水为516.52mm,日平均耗水2.74mm,林冠截留占25.63%,土壤蒸发占22.15%,植物耗水占52.22%;侧柏栎类混交林总耗水为527.62mm,日平均耗水2.73mm,林冠截留占23.66%,土壤蒸发占28.38%,植物耗水占47.95%;阴坡裸地的总耗水为499.0mm,日平均耗水2.73mm。
     树木耗水尺度扩展理论与方法的研究是目前树木蒸腾耗水研究领域的热点问题。树木作为一个独立的个体,是林分的基本单位。土壤水是林木耗水的源泉。建立土壤水分运动、根系吸水和林木耗水三者之间的关联,是建模的思路。本研究在石青(2004)林木耗水模型的基础上进行了改进;利用数学方法,在分析土壤水势变化的基础上,将林木根系作为一个圆锥体,然后,将圆锥体从上到下分解为n个圆台体,分别计算,建立了林分无竞争和竞争耗水林木模型。林分耗水模型
     Ri为根系中心到影响范围边缘的距离称为影响半径;B为相邻两株树的距离。
     结合林木或林分的生长模型,可以来模拟从幼龄林开始,不同时段、不同树种、单株或林分的耗水过程,整个生长过程的林分耗水变化,以及林木或林分一生的耗水总量。
This article mainly researches water consumption properties of common tree species and the water consumption mechanism of typical stand and tree in Miyun reservoir watershed in Mountain Area of Northern China .Reveal characteristics and rules of water consumption of different species. On the basic of the analytical results, combine soil-water movement in the woodland; establish the scale-transition model of water consumption of forest
    Contraposing the existing vegetation of Miyun reservoir watershed, choosing 22 kinds of shrubs and two pieces of typical forest stand as research object, obtain following conclusion by pot experiment and experiment of typical forest stand, field and experimental research, applying statistical method to analyze water consumption properties from the seedlings to single plant to forest stand. The main conclusion is as follows:
    Because of biological characteristics of different tree species, form different Ecological Adaptability. At water enough condition, 22 tree species of the young plant used in the experiment whose tendency of transpiration rate, photosynthetic rate and the diurnal changes of water use efficiency are similar. The transpiration rate of arbor trees is higher than Coniferous Trees', but in the average efficiency of using water, Coniferous Trees is greatly higher than arbor trees'. The transpiration rate of positive shrub species is greatly higher than negative shrubs species', but in the average efficiency of using water, negative shrubs species is greatly higher than Coniferous Trees'. According to the correlation analysis of transpiration and environment factor, the result is: solar radiation and stomata
    conductance have a crucial effect to trees transpiration. According to the correlation analysis of transpiration and environment factor, the result is: solar radiation and stomata conductance have a crucial effect to trees transpiration. And meanwhile, Mathematical model of multiple linear regression of transpiration rate and environment factor has been built up: Y=a+bX_1+cX_2+dX_3+eX_4+fX_5.The correlation coefficient greater than 0. 9.
    Under the water control condition, comparion the rule of photosynthesis, the rule of transpiration and the change of stomata conductance of different tree species, conclude that different tree species of the seedlings on photosynthesis and transpiration rate descend with the time of water control extending. Because of the special biological configuration and longer time of water control, several tree species are preferable material in choosing fight a drought tree species, such as Platycladus orientalis, Pinus tabulaeformis, Quercus. Dentate, Q. variabilis, Rhamnua davurica and Corylus heterophylla and so on.
    At water enough condition, in respect of water consumption daily, comparing of Characteristic and law of water consumption day and night, water consumption rate diurnal Course to comparing analysis 22 tree species used in the experiment, conclude that: 7 arbor tree species' rate are 0.71 g/cm~2,15 shrubs species' rate are 1.00g/cm~2. The water consumption of Chinese Pine is higher than Chinese Arborvitae. Among them, The comprehensive sequencing on water consumption of kargeleaf arbor tree is: Acer truncatium >Quercus. variabilis >Rhus chinensis >Quercus. dentata >Robinia pseudoacacia. The comprehensive sequencing on water consumption of bushes is: Deutzia scabra>Rhamnua davurica > Vitex negundo Var.heterophylla >Rungia Chinensis >Cotinus coggygria >Spodiopogon sibiricus> Andrachne chinenSis >Spiraea trichocarpa >Syzygium aromaticum >Myripnois dioica >Corylus heterophylla >Lespedeza bicolor>Rhus typhina>Amorpha fruticosa>Indigofera kirilowii. In general, the amount of water consumption of broad-leafed trees' is bigger than Coniferous Trees' and the amount of water consumption of shrub species is bigger than arbor trees'.
    In the similar microclimate conditions, the biological characteristic of variety kinds of trees is the major factor to influence the transpiration of trees. The transpiration rate, photosynthetic rate and water utilization efficiency of 15 kinds of experiment trees of typical forests have the similar change directions of their daily variation curves. The maximum transpiration rate of Chinese Pine is higher than Chinese Arborvitae. The order of daily maximum transpiration rate of broadleaved arborous tree species
    from high to low is: Ailanthus altissima> Sawtooth oak> Live oak> Robinia pseudoacacia> Quercus variabilis. The same order of shrub species is: Buckthorn> Cotinus coggygria> Sour jujube> Rungia Chinensis > Heterophyllous negundo chastetree>Rhus typhina>Kirilow indigo> Chinese leptopus. All kinds of trees' water utilization efficiency were reducing. Some arborous tree species have the highest water utilization efficiency, such as Chinese Pine, Quercus variabilis, Sawtooth oak and Chinese Arborvitae. The water utilization efficiency of coniferous species is higher than broadleaved species. Some shrub species have low water utilization efficiency such as Rungia Chinensis, Buckthorn, Cotinus coggygria, Kirilow indigo and so on. On the basis of analysis of the transpiration rate and environment factor, we can know that transpiration rate and the stomata conductance and the intensity of illumination are significant correlation. So build the multivariate regression model of the transpiration rate and environment factor: Y=a+bX_1+cX_2+dX_3+eX_4+fX_5, the coemcient of association is higher than 0.9.
    The transpiration rate can express a composing index of water consumption properties of tree species, but cannot completely reflect how large the water consumption properties of tree species are. Only at the same time determining the transpiration rate of leaves and achieving the area of the whole canopy of a tree, can we find the water consumption rate or the water consumption. We can find that from comparing the water consumption among different species, the water consumption of Robinia pseudoacacia is the highest, and the order of the water consumption is: Robinia pseudoacacia > Ailanthus altissima > Quercus acutissima > Q. dentata > Pinus tabulaeformis > Quercus variabilis > Platycladus orientalis.
    The main approach of the water consumption of forest stand contains three factors, such as crown interception evaporation, transpiring water-consumption of plants and soil water physical evaporation. Atmospheric precipitation gets through forest canopy, which is a redistribution process about rainfall. According to water balance principle and ignore water change in horizontal direction, conclude the sequence of the interception rates as follows: Cotinus coggygria>Vitex negundo Var.heterophylla > Quercus acutissima >Robinia pseudoacacia >Pinus tabulaeformis >Quercus. Dentate >Platycladus orientalis > Ailanthus altissima. The litter layer interception of Pinus tabulaeformis is about 10.42% in whole precipitation, and Platycladus orientalis is about 9.49% in whole precipitation. Soil water evaporation is a special form during soil water movement. Average evapotranspiration per month of the
    soil water whose change assume peak curve in the year. Under the typical clear day condition, daily evaporation of soil water mainly happens in horizon of soil from 0 to 20cm.
    Water consumption of forest stand is a main output in water balance of forest ecosystem. According to oriented flux method and water balance method accounts measuring water consumption of forest stand. The conclusions are as follows: total water consumption of the Pinus tabulaeformis is 516.52mm in growing season,and the average daily water consumption is 2.74mm, and crown interception is about 25.63% in whole interception, and soil evaporation is about22.15% in whole evaporation, and water consumption of plants is 52.22%in whole water consumption of plants; total water consumption of the mixed forest of the Arborvitae and oak is 527.26mm, and the average daily water consumption is 2.73mm, and crown interception is about 23.66% in whole interception, and soil evaporation is about28.38% in whole evaporation, and water consumption of plants is 47.95%in whole water consumption of plants; total water consumption of the shady slope is 499.0mm, and the average daily water consumption is 2.73mm.
    The water consumption of forest stand is the chief output item of water - balance of the forest ecosystem. The calculation results is nearly the same though two methods that oriented flux method and water balance method, the result is: the amount water consumption of Chinese pine forests in growing season is 515.3mm, daily average water consumption is 2.74mm, canopy interception account for 25.69%, soil water evaporation account for 22.20%, plants' water consumption account for 52.35%; The amount water consumption of the mixed forest of Chinese arborvitae with oak is 512.8mm, daily average water consumption is 2.73mm, canopy interception account for 24.33%, soil water evaporation account for 29.96%, plants' water consumption account for 49.31%; The amount water consumption of schattenseite bare soil is 499.0mm, daily average water consumption is 2.73mm.
    Build the relationship in forest stand water consumes, soil water and water movement is the line of thought of module construction. This research improve on the forest water consume model from PhD Shi Qing. On basis of analysis the alteration of the soil water potential, use math method, make forest roots system into a circular cone, and then divide this circular cone into n circular truncated cones. Calculate them separately. At last, a forest consume model (including competition model and no competition model) has been built up.
    Forest water consume model:
    
    Ri is the distance from the center of root system to the edge of area of influence, named influenced radius; B is the distance of the neighboring two trees.
    Using it with the growing model of forest or forest stand can simulate single tree or forest stand's process of water consumption in different time slot and different tree species from young growth. It can also simulate the alteration of water consumption of forest stand, and the gross quantity of water consumption of forests or forest stand during their whole life.
引文
1.卜崇峰,刘国彬.黄土丘陵沟壑区狼牙刺的蒸腾作用研究[J].植物研究 2005,25(1):64-68.
    2.蔡树英,张瑜芳.温度影响下土壤水分蒸发的数值分析[J].水利学报,1992(11):1-8
    3.陈崇希,林敏.地下水动力学[M] 中国地质大学出版社 1999
    4.陈建耀,刘昌明,吴凯.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散[J].应用生态学报,1999.10(1):45~48
    5.范高功,侯光才.细土平原区包气带水分运移及与潜水转化关系的研究[J].西北水资源与水工程.2002.13(3):20-22
    6.高岩,刘静,张汝民,郭景霞.应用热脉冲技术对小美旱杨耗水量的研究[J].内蒙古农业大学学报,2001.22(1):44~48.
    7.高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报 2001,15(5):60~65.
    8.龚元石,李子忠,李春友.利用时域反射仪测定的土壤水分估算农田蒸散量[J].应用气象学报,1998.9(1):72~78.
    9.龚元石,陆锦文,Huwe B.华北平原主要农作物灌溉需水量的估算[J].北京农业大学学报,1993.19:82~91.
    10.龚元石.土壤-植物-大气连续体水分传输研究现状与展望.见:张福锁主编.土壤与植物营养研究新动态[M].北京:中国农业大学出版社,1995,1~16.
    11.郭连生,田有亮.应用PV技术对7种针阔叶幼树抗旱性的研究[J].应用生态学报,19991(2):110~114
    12.郭小平.晋西黄土区集雨补灌果园耗水特征及补灌效应研究[D] 北京林业大学博士学位论文 2006
    13.郭占荣,荆恩春,聂振龙等.冻结期和冻融期土壤水分运移特征分析[J].水科学进展.2002.13(3):298-302
    14.何明珠,王辉,陈智平.荒漠植物持水力研究[J]中国沙漠 2006,26(3):403-408.
    15.贺康宁.黄土半干旱区集水造林的水分生产潜力研究[D] 北京林业大学博士学位论文 2000
    16.黄洪峰.土壤·植物·大气相互作用原理及模拟研究[M].北京:气象出版社 1997
    17.黄兴法,李光永,王伟,等.充分微喷灌溉条件下苹果树耗水量的研究[J].中国农业大学学报,2001.6(4):42~46.
    18.贾志清,刘涛,李昌哲等.黄家二岔小流域不同树种蒸腾作用研究[J].水土保持通报,1999,19(5):12-15.
    19.巨关升,刘奉觉,郑世锴,等稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,.2000.13(4):360~365.
    20.巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998.10:12~14.
    21.康博文,侯琳,王得祥,等.几种主要绿化树种苗木耗水特性的研究[J].西北林学院学报2005,20(1):29~33
    22.康绍忠,刘晓明,高新科,等.土壤植物大气连续体水分传输的计算机模拟[J].水利学报,.1992.(3):1~12.
    23.康绍忠,刘晓明,熊运彰.土壤植物大气连续体水分传输理论及其应用[J].水利水电出版社,1994
    24.康绍忠,张建华,梁建生,土壤水分与温度共同作用对植物根系水分传导的效应[J],植物生态学报,1999,23(3):211-219
    25.雷泽湘,林鹏.秋茄蒸腾作用日变化及其与生态因子的相关分析[J].湖北农学院学报 1998,18(3):204-209.
    26.雷志栋,尚松浩,杨诗秀等,土壤冻结过程中潜水蒸发规律的模拟研究[J].水利学报,1999,(6):6-9
    27.雷志栋,尚松浩,杨诗秀等.地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J].冰川冻土.1998.20(1):51-54
    28.雷志栋,杨诗秀,谢森传.土壤水动力学[M].清华大学出版社,1988.
    29.李海涛,陈灵芝.暖温带山地森林生态系统主要树种树干液流量及树冠蒸腾的研究.见:陈灵芝.暖温带森林生态系统结构与功能的研究[C].北京:科学出版社,1997,240~264.
    30.李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J].植物学通报,1997.14(4):24~29.
    31.李红云.石灰岩山区主要灌木树种水土保持功能的研究[D].山东农业大学硕士学位论文 2005
    32.李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报 2001,16(5):398~406.
    33.梁冰,刘晓丽,薛强.非等温入渗条件下土壤中水分运移的解析分析[J].辽宁工程技术大学学报.2002.21(6):741-744
    34.林成来,洪伟,吴承祯等.马尾松人工林生长模型的研究[J].福建林学院学报,2000.20(3):227~230.
    35.刘昌明,土壤-植物-大气连续体系统水分运行的界面过程研究[J].地理学报,1997.52(4):366~373.
    36.刘昌明,焚清晨.土壤-植物-大气连续体模型中的蒸散发计算[J].水科学进展,1992,3(4):255-263
    37.刘昌明.土壤-植物-大气系统水分运行规律的初步研究,见:刘昌明等编,土壤一作物-大气系统水分运移实验研究[M],北京:气象出版社,1997
    38.刘发民,利用校准的热脉冲方法测定松树树干液流[J].甘肃农业大学学报,1996.31(2):167~170.
    39.刘奉觉,Edwards W R N.用热脉冲测定速度记录仪(HPVR)测定树干液流[J].植物生理学通讯,1993.29(2):110~115.
    40.刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997.33(2):117~126.
    41.刘奉觉,郑世锴.杨树水分生理研究[M].北京:北京农业大学出版社,1992.
    42.刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报 1999,14(4):27~30
    43.刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2):118-126.
    44.刘苏峡,莫兴国,李俊等.土壤水分及土壤一大气界面对麦田水热传输的作用[J].地理研究.1999 18(1):24-30
    45.卢桂宾.环境条件对黄土丘陵区旱坡地枣树水分蒸腾的影响[J].东北林业大学学报 2001,29(4):131-133.
    46.吕厚荃,于贵瑞.几种实际蒸散计算方法在土壤水分模拟中的应用[J].资源科学, 2001.23(6):85~90.
    47.罗毅.SPAC系统中的水热CO_2通量与光合作用的综合模型(11)模型验证[J].水利学报,2001,(3):58-63
    48.罗毅.SPAC系统中的水热CO_2通量与光合作用的综合模型(Ⅰ)模型建立[J].水利学报,2001,(2):90-97
    49.罗中岭,热量法茎流测定技术的发展及应用[J].中国农业气象 1997.18(3):52~57.
    50.马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002.23(4):23~37.
    51.马履一.国内外土壤水分研究现状与进展[J].世界林业研究 1997(5):26-32.
    52.毛飞,张光智,徐祥德.参考作物蒸散量的多种计算方法及其结果的比较[J].应用气象学报 2000.11(增):128~136.
    53.毛晓敏.干早区绿洲-土壤-植物-大气系统水热传输模拟研究[D].北京:清华大学博士学位论文,1998
    54.孟凡荣,乔芳,张志强.北京城区3种绿化树种蒸腾耗水性比较[J].福建林学院学报 2005,25(2):17~18
    55.聂立水.油松栓皮栎混交林土壤-植物-大气系统水分特征研究[D].北京林业大学博士论文 2005
    56.秦永胜.北京密云水库集水区水源保护林土壤侵蚀控制机理与模拟研究[D].北京林业大学博士学位论文 2001
    57.沈国舫,王礼先.中国生态环境建设与水资源保护利用[M].北京:中国水利水电出版社,2001.
    58.沈国舫.写在“西部大开发中的生态环境建设问题”笔谈之前[J].林业科学,2000.36(5):3:2~4.
    59.石春林,虞静明,金之庆.饱和土壤冻融过程中水热迁移数值模拟[J].中国农业气象,1998.19(4):21-26
    60.石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报 2001,16(5):481~487.
    61.石青.北京密云水库集水区水源涵养林耗水规律研究[D].北京林业大学博士论文 2004.
    62.苏里坦.绿洲—荒漠交错带水热传输模拟研究[D].河海大学博士论文 2005.
    63.孙鹏森,马履一,王小平,翟明普.油松树干液流的时空变异性研究[J].北京林业大学学报,2000.22(5):1~6.
    64.孙鹏森,马履一,著.水源保护林树种耗水特性研究研究与应用[M].北京:中国环境科学出版社 2002.
    65.孙菽芬,牛国跃,洪钟祥.干早及半干早区土壤水热传输模式研究[J],大气科学,1998.22(1):1-10
    66.孙卫国,申双和.农田蒸散量计算方法的比较研究[J].南京气象学院学报,2000.23(1):101~105.
    67.孙晓梅,李凤日,牛屾,张阳武.长白落叶松人工林生长模型的研究[J].林业科学研究,998.11(3):306~312.
    68.田晶会.黄土半干旱区水土保持林主要树种耗水特性研究[D] 北京林业大学博士学位论文 2004
    69.王安志.森林蒸散模型与模拟研究—以长白山阔叶红松林为例[D].中国科学院研究生院博士学位论文 2003
    70.王兵.绿洲荒漠过渡区水热平衡规律及其耦合模拟研究[D].中国林业科学研究院博士论文 2002.
    71.王得祥,康博文,刘建军,等.主要城市绿化树种苗木耗水特性研究[J].西北林学院学报 2004,19(4);20-23
    72.王海珍,梁宗锁,韩蕊莲,等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报(自然科学版)2005,33(6):57-63.
    73.王华田.北京市水源保护林区主要树种耗水性的研究[D].北京林业大学博士论文 2002
    74.王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D] 北京林业大学博士学位论文 2006
    75.王同科,孙景生.SPAC系统中水热祸合运移方程的有限元迭代算法[J].水利学报,1997,(3):19-28
    76.王小平,甘敬,薛康,等,密云水库水源保护区可持续发展战略研究[M]北京:中国林业出版社,2004
    77.王志明,郭择德,李明香.半干早地区包气带浅部黄土中水分运移特征[J]..干早区研究,2000.17(2):1-7
    78.温季,高军省,郭树龙,郭冬冬.蒸发蒸腾量的随机模拟与预报研究现状和发展趋势[J].西北水资源与水工程,1999.10(2):19~22.
    79.吴从林,黄介生,沈荣开.地膜扭盖条件下SPAC水热传输的多层模式研究[J].水利学报,2001,(11):89-95
    80.吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996(2):1-10
    81.邢述彦,郑秀清,雪层中水热祸合迁移模型的建立[J].太原理工大学学报.2003,34(6):647-650
    82.严昌荣,Downey A,韩兴国,陈灵芝.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999.19(6):793~797.
    83.杨建锋.地下水-土壤水-大气界面水分转化研究综述[J].水科学进展,1999.10(2):183~189.
    84.杨新兵,逯进生,鲁绍伟.陆面水文过程研究[J] 水土保持研究 2007(3).
    85.杨新兵,余新晓,孙庆艳,等.植被对流域水文特征相应研究[J],水土保持学报 2007(3).
    86.姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报,1994(5):3-37.
    87.姚立民,康绍忠,龚道枝.苹果树根系吸水研究方法的讨论[J].水资源与水工程学报 2004,15(1):13-18.
    88.于强,谢贤群,孙菽芬.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报 1999,19(5):744-753.
    89.于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.
    90.余新晓,于志民.水源保护林培育、经营、管理、评价[M].北京:中国林业出版社,2001
    91.余新晓,张志强,陈丽华.森林生态水文学[M] 北京:中国林业出版社,2004
    92.岳春雷,江洪,朱隐湄.短柄五加蒸腾作用及其与生理生态因子相关性的初步研究[J].林业科学 2003,39(2):158-161.
    93.张建国.中国北方主要造林树种耐旱特性及其机理的研究.北京林业大学博士学位论文.1993
    94.张锦春,赵明,张应昌,等.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报 2005,25(1):70-76.
    95.张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究,2001.14(2):23~28.
    96.张力君,彭运翔,王永生.偃麦草属3种植物的持水力和蒸腾速率[J].干旱区资源与环境,2001,15(增刊):68-70.
    97.张力君,王林和,易津.驼绒藜等8种耐寒灌木持水力分析[J].干旱区资源与环境,2003,3:122-127.
    98.张守仁,高荣孚.介绍一种改进的研究气孔运动的方法[J].植物学通报,1999.16(1):89~92.
    99.张蜀秋,娄成后.气孔蒸腾中保卫细胞原生质的调控作用[J].生命科学,2000.12(3):97~99.
    100.张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报 2001,7(4):396-402.
    101.张卫强.黄土半干旱区主要树种光合生理与耗水特性研究[D] 北京林业大学博士学位论文 2006
    102.张秀芳.气孔蒸腾的动力及小孔定律[J].滨州教育学院学报,2000.6(4):74~75.
    103.张展羽,赖明华.非充分灌溉农田土壤水分动态模型[J].灌溉排水学报,2003.22(1):22-25
    104.赵成义.作物根系吸水特性研究进展[J].中国农业气象.2004,25(2):39-42.
    105.赵明,李爱德,王耀琳等.沙生植物的蒸腾耗水与气象因素的关系研究[J].干早区资源与环境.2003,17(6):131-137
    106.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报 2002,24(5/5):50-55.
    107. Buttle J M, Creed I F and Pomeroy J W. Advances in Canadian forest hydrology: 1995~1998[J]. Hydrol Process, 2000, 14(9): 1551~1578.
    108. Brooks, R. H., Coery. A.T., Hydraulic Properties of Porous Media, Hydrology Paper3, Colorado State University, Fort Collins, 1964
    109. Brud, L, A. C., Dantas-Antonino, M.Vauclin, J.L.Thony, I'.Ruelle, A simple soil-plant-atmosphere transfer model (SISPAT) development and field verification, J.Hydol., 1995,166:213-250
    110. Burdine, N. T., Relative permeability from size distribution dat, Trans Am Inst Min Metall Pet Eng, 1953, 198: 71-78
    111. Camillo P. J., Gurney R. J., Schmugge T. J. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies. Water Resour. Res., 1983, 19(2): 371-380
    112. Campbell, G. S., A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 1974, 117(6):311-314
    113. Campbell, G. S., M. D. Campbell, Irrigation scheduling using soil moisture measurements: theory and practice, In Advances in Irrigation, Academic Press, New York, 1982,25-86
    114. Cermak J, Kucera J. Transpriation of mature stand of spruce(Picea abies(L.) Karst.) as estimated by tree-trunk heat balance method.Forest Hydrology and Watershed Mtnagement, 1987,167:311-317
    115. Cowan, I. R, Transport of water in the soil-plant-atmosphere system, J. Appl. Ecol.,1965,2:221-239
    116. Deardoff.J.W., Effcient prediction of ground surface temperature and moisture, with inclusion of a layer vegetation, J. Geophs. Res., 1978, 83: 1889-1903
    117. Dickinson, R. E., Modeling evapotranspiration for three-dimensional global climate models,climate processes and climate sensitivity, Geophysical monograph, 1984, 29(5):58-72
    118. Dragutin, T. Mihailovic., A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models, Journal of applied meteorology, 1993, 32: 1038-1054
    119. Famigliette, J. S., E. F. Wood, Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res., 1994, 30(11):3061-3078
    120. Gardner, W R., Dynamic aspects of water availability to plants, Soil Sci., 1960, 89:63-73
    121. Guerrini, Ivan A., Swartzendruber, D., Three-parameter soil-water transient equations in horizontal water-transport analysis, Soil Science Society of America Journal, 1998,62(5):580-585
    
    122. Hahne, E., Chen, Numerical study of flow and heat transfer characteristics in hot water stores,Solar Energy, 1998,64(9):9-19
    
    123. Hanks, R. J. and Bowers, S. A., Non-steady state moisture, temperature, and soil-air pressure approximation with an electric simulator, Soil Sci. Soc. Am. Proc, 1960,24:247-252
    
    124. Hatton T J,Vertessy R A. Transpiration of plantation Pinvs radiata estimated by the heat pulse method and the Bowen Ratio. Hydrological Processes, 1990,4:289-298.
    
    125. Haydon, S.R., R.G Benyon and R. Lewis.Variation in sapwood area and throughfal! with forest agein mountain ash (Eucalyptus regnans F. Muell.). J. Hydrol. 1996; 187:351-366.
    
    126. Lhomme, J. P and Monteny, B., Theoretical relationship between stomatal resistance and surface temperatures in sparse vegetation, A 幼 cultural and Forest Meteorology, 2000,104:119-131
    
    127. Liu Shuhua, Yue Xu, et. al., Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulated the interaction between land surface processes and atmospheric boundary layer in semi-arid regions, Advances in Atmospheric Sciences, 2004,21:245-259
    128. Levittt J. Response of plants to environmental stress [J]. New York: Academic press, 1972.
    129. Martin J Canny, Transporting water in plants, American Scientist, 1998, 86(3):152-160Ladefoged K. Transpiration of forest trees in closed stand. Physiologic Plantarum, 1963,16:378-414.
    130. Matthew J. Linton, Park S. Nobel, Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents, American Journal of Botany, 1999, 86( 11): 1538-1545
    131. Milly, P C. D., A simulation analysis of Thermal effects on evaporation from soil, Water Resour. Res., 1984,20(8):1087-1098
    132. Monteith J L, 1995. A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment, 18:357-364.
    133. N. Nassar, Robert Norton, Heat and water transfer in compacted and layered soils, Journal ofEnvironmental Quality, 1997, 26(1):81-89
    134. Penman, H. L., Natural evaporation from open water, bare soil, Adv. grass. Proc. Roy. Soc. A., 1948, 193:120-145
    135. Philip, J. R. and D. A. de Vries, Moisture movement in porous materials under temperature gradients, Transactions of American Geophysical Union, 1957,39(2):222-232
    136. Philip, J. R., Plant water relations: some physical aspects, Ann. Rev. Plant Phys., 1966,17:245-268
    137. R. A. Vertessy, T. J. Hatton, P. Reece, S. K. O'sullivan and R. G B enyon Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique, Tree Physiology, 1997,17,747-756.
    138. Rony Avissar, Which type of soil-vegetation-atmosphere transfer scheme is needed for eneral circulation models: a proposal for a higher-order scheme, Journal of Hydrology, 1998, 21(2):136-154
    139. Stand.Wullschleger, F.C.meinzer and R.A.Vertessy.A review of whole-plant water use studies in trees. Tree Physiology 18,499-512.
    140. Taylor, H. M. and B. Klepper, The role of rooting characteristics in the supply of water to plants, Advances in Argonomy, 1978, 30:99-128
    141. Thomas J. Hatton,StepenJ. Moore and Peter H. Reece Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies Tree Physiology 1995,15, 219-227.
    142. Thomas J. Hatton,StepenJ. Moore and Peter H. Reece Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies Tree Physiology, 1995,15,219-227.
    
    143. Van den Honert, T. H, Water transport in plants as catenary process, Discussions of Faraday Society, 1948,3:146-153
    
    144. Van Genuchten M.T. A closed-form equation for predicting hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am.J., 1980:892-898.Choudhury, B. J., Modeling the effects of weather condition and soil water potential on canopy temperature of corn,Agric. Meteoral., 1983, 29:169-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700