用户名: 密码: 验证码:
长白落叶松人工林树冠结构及生长模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工林是实现森林可持续经营的重要途径,如何提高人工林产量和木材品质是国内外森林经营面临的难点之一。树冠是树木进行光合作用的主要场所,其结构决定了树木生产力及生态效益的发挥。本研究以黑龙江省东折棱河林场的长白落叶松(Larix olgensis Henry)人工林为研究对象,基于样地调查、树冠枝条解析因子调查、生物量和叶面积测定、树干解析及年轮测定数据的基础上,运用森林经理学、统计学及数学模型的方法对树冠结构及生长进行定量分析与模拟。从枝条、冠层及整体树冠3个层次研究了树冠枝条冠层结构、树冠轮廓大小、生物量和叶面积及生长模型,尝试研究了树冠与树木生长之间的关联,以期为经营、培育有利于光能利用的树冠结构,提高木材产量和木材品质奠定基础。主要研究结论归纳如下:
     (1)不同年龄阶段长白落叶松枝条解析因子(枝条数量、直径、长度和角度)的冠层结构及其定量模型研究表明:枝条密度与冠层深度(DINC)、高径比(H/D)变量有显著相关;平均枝条直径随冠层深度的增加而增加,最大枝条直径随冠层深度的增加呈单峰型,在相对冠层深度65-75%出现峰值;枝条长度的垂直结构呈抛物线型,在相对冠层深度60~95%出现最大值;不同年龄间着枝角无显著差异,着枝角随着冠层深度的增加呈增加趋势;建立的最优定量模型能较好估测枝条解析因子
     (2)应用主轴切割法和构筑型法相结合求算树冠半径、体积和表面积。通过筛选变量,构建的异速生长模型能较好地模拟树冠轮廓形状、树冠体积、和表面积,最大冠幅冠层高度与冠幅、胸径均有显著相关,最大冠幅上部的树冠轮廓模型以幂函数方程最佳;最佳树冠体积和树冠表面积估测模型均以胸径、冠幅和冠长变量组合为最佳,R2达0.98以上。
     (3)自变量个数及变量组合均会影响长白落叶松树冠率、活枝高和冠幅模型拟合精度;林木竞争因子(BA、CCF)和林木大小(DBH、HT)是影响树冠率和活枝高的主要因子,大于对象木的树冠竞争因子(CCFL)是估测冠幅模型的最佳变量;树冠率以Exponential模型为最优,估测树冠生长动态时活枝高模型优于树冠率模型。
     (4)不同年龄枝条干重与鲜重存在显著线性关系,枝条生物量异速生长模型以枝条直径变量为最佳,枝生物量的异速生长指数b值接近理论参数值(8/3);冠层枝和叶生物量在树冠中上层0-5m均随着冠层深度增加而增加,枝、叶生物量累积分布模型以修正Weibull模型为最优,枝和叶生物量累积分布模型分别为:F(BW)=1.305×(1-exp(2.742×RDINC2.544)) F(LW)=1.030×(1-exp(3.337×RDINC2.424));胸径是树冠生物量模型的最佳预测变量,增加年龄或活枝高能一定程度上提高模型精度。
     (5)年龄、冠层是影响长白落叶松比叶面积(SLA)变化的重要因素,SLA随着冠层深度的增加而增加,树冠上层、中层和下层的SLA分别为101.08、117.37和129.91cm2/g,幼龄、中龄、近熟和成熟林的比叶面积分别为145.34、111.55、92.60和128.03cm2/g,平均值为116.39cm2/g;枝条叶面积估测模型以枝径为最佳变量,其次是冠层深度,分段枝条叶面积异速生长模型拟合效果最佳;单变量树冠叶面积估测模型是胸径为异速生长模型的最佳,并在幂指数中引入高径比能提高拟合精度:LA=0.3024×DBH1.944-0.1965×HD;长白落叶松人工叶面积指数在中龄林时增加缓慢、近熟林时保持相对稳定、成熟林时期呈减少趋势。
     (6)长白落叶松年轮宽度径向生长过程呈先增后减,达到一定年龄后保持基本稳定,年轮宽度在第3-6年间出现最大值,年轮宽度的变化主要受到早材宽度的影响;幼龄冠是指林木幼、中龄林时期树冠上层短期内(第1~5年)形成的自由冠,幼龄冠对年轮宽度及年轮面积生长保持稳定值;中龄林和近熟林活冠以下短期内的年轮宽度及面积生长保持稳定值,但成熟林时期树干年轮面积在基部有明显增加,其年轮面积随着树干高度的增加而减少;不同年龄阶段年轮宽度及面积生长在树冠内无显著差异,但年轮面积生长在株内间有显著差异。长白落叶松心材形成的初始年龄为5年,30年以下和30年以上的平均心材形成率分别为0.65ring/年和0.96ring/年;心材年龄估测模型以二次曲线方程最优,心材和边材生长模型是以胸径和树高为变量的异速生长方程最优HWV=4.0*10-6DBH2.149250HT1.296038,R2=0.989SWV=1.02*10-4DBH0.750383HT1.673065,R2=0.943树皮厚度随着相对树干高度的增加呈先快速减少后保持缓慢递减趋势,树皮因子随着树干高度的变化呈先增后减的趋势;该地区的长白松树高、去皮胸径和材积生长过程模型以理查德(Richards)模型最佳。
Forest plantation is an important approach for forest sustainable management, how to improve the forest yield and timber quality is one of major tasks in the current forest management. Tree crown is an essential place for the photosynthesis, its structure determines the production and ecological benefit. Knowing the crown structure and development would help to evaluate and forecast the stem growth, wood quality attributes. The thesis based on the data of field inventory, branches attributes, biomass, leaf area, stem rings analysis for the Larix olgensis plantation from different stand ages at Dongzhelenghe forest farm in Heilingjiang province. The methods of forest management, quantitative analysis, mathematical models were used in analyzing and simulating the crown structure and stem development. The canopy structure and quantitative model were analysed and developed for the branches attributes, crown shape and sizes, biomass and leaf area from branches, canopy layer and overall crown in this paper. We tried to discuss the relationship between the crown structure and tree growth, providing the basement for nurturing the crown structure which is benefit for using solar energy to improve timber production and wood quality. The main conclusions are summarized as follows:
     (1)The analysis of the canopy structure for branches attributes (branches number, diameter, length and angle) from different growth stages show that branches density significantly related to the distance into canopy (DINC), the ratio of tree height to diameter at breast height (H/D). The average branches diameter increased with DINC from tree top to down, while the maximum branches diameter per canopy increased with the DINC like a single peak shape, showing the largest diameter at the65to75%of relative distance into canopy layer to crown length (RDINC). The vertical structure of branches length showed parabolic shape with a maximum value in the60to95%of RDINC. The branches angle showed no statistically significant differences between different ages, increasing with canopy depth. The developed quantitative models of branches number, diameter, length and angle with a high coefficient of determination.
     (2) Based on the main-axis cutting method and crown architecture method calculated the crown radius, volume and surface area. The allometric equation was good for modeling crown shape, crown volume and crown surface area. The height of the largest crown width (HLCR) was significantly related to DBH and crown width. The power equation was optimal for modeling the profile of crown radius increased with DINC above the HLCR, with a94.1%of forecast accuracy. The allometric equation with the combination variables of DBH,crown width and crown length was the optimum equation for estimating crown volume and crown surface area.
     (3) The precision of fitting model was affected by the selected variables and its combination for tree crown ratio, height of crown base (HCB) and crown width models. Stand basal area (BA).crown competition factor index (CCF) and tree size (DBH, HT) were significantly related the crown ratio and HCB. The Exponential equation was better than Logistic model for the optimal crown ratio model, the HCB model fitting better than the crown ratio model, with a0.725of determination coefficient. The crown competition factor larger than objective tree (CCFL) was the best predictive variable for crown width model, with an explaining56.6%of variation.
     (4) The dry weight of branches linearly correlated with fresh weight, and the branches level-biomass fitted well with allometric relationship from different ages. The exponent value (b) of branches wood biomass allometric equation was close to the theoretical values (8/3). The canopy biomass of foliage and branches increased with the top5m regardless of stand ages. The best fitting models for the vertical cumulative distribution of branches biomass (BW) and leaves biomass (LW) with were the modified weibull model F{BW)=1.305x(1-exp(2.742×RDINC2.544)) and F{LW)=1.030×(1-exp(3.337x RDINC2.424)). DBH is the best predictor for estimating crown biomass, adding the stand age or HCB to some extent improving the fitting accuracy of crown biomass model.
     (5) The specific leaf area (SLA) was significantly affected by stand age and crown layer, respectively. SLA increasing from the top canopy layer to the bottom, the SLA of upper, middle and lower crown was101.08,117.37and129.91cm2/g separately. The SLA of young, middle-aged, sub-mature and mature Larix olgensis plantation was145.34,111.55,92.60and128.03cm2/g separately. with an average value116.39cm2/g of different stand ages. Branches-level leaf area model fitting well with allometric equation using branches diameter as prediction variable, a segmented branches leaf area allometric model was developed in order to improve the model precision. The crown leaf area fitted well with a modified power function using DBH and H/D as independent variables:LA=0.3024×DBH1.944-0.1965×HD.The dynamic of the leaf area index of larch plantation with aging show that increasesd in middle-aged forest, maintained stability in sub-mature forest and tended to decrease in mature forest.
     (6) The radial growth process of annual ring width shows that increased in the earliest age, attaining a maximum ring width from the third to the sixth year, decreased to about20years, and then remained a relative steady value after20years. The young crown is freedom crown in the first five years, affecting stem ring growth with the same pattern. The average annual ring width and area were not significant difference in the first three and five years. The average annual width and area of the last three or five years were not significant difference under crown base from middle age and sub-mature stands, but there are significant differences in ring area increment during the three or five years under crown base in mature forest, decreasing along stem height from the tree base to top. The annual ring growth within crown showed the same pattern. The initial heartwood formation of Larix olgensis estimate at the fifth years, the average heartwood formation rates were0.65ring/year and0.96ring/year under30years and older than30years, respectively. The best fitting heartwood ring number with cambial age was quadratic curve equation. The heartwood and sapwood volume allometric equations as a function of DBH and HT were fitted well (HWV=4.0*10-6DBH2.149250HT1.296038,R2=0.989, and SWV=1.02*10-4DBH0.750383HT673065, R2=0.943). The bark thickness as a function of relative stem height was fitted well with the logarithmic equation. The trend of bark factor along the stem height turned increase and then decrease to tree top. The optimal model of the diameter inside-bark at breast height, tree height and volume without bark was Richard model for Larix olgensis plantation.
引文
[1]曹永慧,陈存及,李生.间伐对杉莲混交林中乳源木莲树冠结构的影响[J].林业科学研究,2004,17(5):646-653.
    [2]常建国,李新平,刘世荣,等.油松心边材量及年轮数的变异特征[J].林业科学,2009,(11):76-82.
    [3]陈新美,张会儒.柞树林树高结构的研究[J].西北林学院学报,2010,25(4):130-134.
    [4]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志,2008,(06):1051-1058.
    [5]董利虎,李凤日,贾炜玮.黑龙江省红松人工林立木生物量估算模型的研建[J].北京林业大学学报.2012,34(6):16-22
    [6]杜纪山.用二类调查样地建立落叶松单木直径生长模型[J].林业科学研究,1999,12(2):53-57.
    [7]杜娟,范志霞,叶顶英,等.楠木人工林树冠体积与叶面积指数预估模型的研究[J].浙江林业科技,2010,30(4):37-41.
    [8]段劫.基于FVS-BGC的森林生长收获模拟系统应用研究[D].北京林业大学,2010.
    [9]高露双.长白山典型树种径向生长与气候因子的关系研究[D].北京林业大学,2011.
    [10]郭孝玉,孙玉军,刘凤娇.不同估算树冠生物量方法的比较——以长白落叶松林为例[J].林业资源管理,2010,(5):41-47.
    [11]郭孝玉,孙玉军,马炜,等.适于FVS的长白落叶松树皮因子[J].东北林业大学学报,2011,39(10):28-31.
    [12]郭孝玉,刘燕,孙玉军,等.使用万深LA-S年轮分析仪测定年轮宽度[J].江西农业大学学报,2011.33(S1):68-72.
    [13]郭孝玉,孙玉军.生物量碳计量参数的研究进展//2010森林可持续经营研究[M].中国林业出版社,2011.
    [14]郭孝玉,孙玉军,王轶夫,等.基于改进人工神经网络的植物叶面积测定[J].农业机械学报,2013,44(2):200-204.
    [15]国红,雷相东,刁军.林木结构—功能模型研究综述[J].世界林业研究,2010,23(2):55-60..
    [16]郝佳,熊伟,王彦辉,等.华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态校正[J].林业科学研究,2012,25(2):231-235.
    [17]贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨:东北林业大学,2006.
    [18]姜立春,张锐,李凤日.基于线性混合模型的落叶松枝条长度和角度模型[J].林业科学,2012,48(5):53-60.
    [19]姜生伟,贾炜玮.黑龙江东部地区落叶松人工林削度方程研究[J].辽宁林业科技,2009,(1):8-13.
    [20]姜志林,叶镜中.杉木树冠形态结构的初步研究[J].南京林业大学学报(自然科学版),1980,(4):46-52.
    [2门蒋有绪,臧润国.海南岛尖峰岭树木园热带树木基本构筑型的初步分析[J].资源科学,1999,21(4):80-84.
    [22]金哲根,宋德年,张彦相.浅析树冠结构模型[J].林业勘查设计,1996,(1):46-47.
    [23]雷相东,常敏,陆元昌,等.虚拟树木生长建模及可视化研究综述[J].林业科学,2006,42(11): 123-131
    [24]雷相东,张则路,陈晓光.长白落叶松等几个树种冠幅预测模型的研究[J].北京林业大学学报,2006,28(6):75-79.
    [25]李德志,臧润国.森林冠层结构与功能及其时空变化研究进展[J].世界林业研究,2004,17(3):12-16.
    [26]李凤日.长白落叶松人工林树冠形状的模拟(英文)[J].林业科学,2004,40(5):16-24.
    [27]李轩然,刘琪璟,陈水瑞,等.千烟洲人工林主要树种地上生物量的估算[J].应用生态学报,2006,17(8):1382-1388.
    [28]李轩然,刘琪璟,蔡哲,等.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31(1):93-101.
    [29]廖彩霞.李凤日.樟子松人上林树冠表面积及体积预估模型的研究[J].植物研究,2007,27(4):478-483.
    [30]刘宁,张芸香,郭晋平等.华北落叶松-白杆混交林下更新幼苗幼树的功能特性[J].林业科学,2010,46(007):22-29.
    [31]刘琪璟.嵌套式回归建立树木生物量模型[J].植物生态学报,2009,32(2):331-337.
    [32]刘青华,张蕊,金国庆,等.马尾松年轮宽度和木材基本密度的种源变异及早期选择[J].林业科学.2010,46(5):49-54.
    [33]刘微.落叶松人工林单木生长模型的研究[D]:东北林业大学,2010.
    [34]刘兆刚,郭承亮,袁志强,等.落叶松人工林树冠形状的预估[J].东北林业大学学报,1996,24(6):14-20.
    [35]刘兆刚,李凤日,于金成.落叶松人上林单木模型的研究[J].植物研究,2003,23(2):237-244.
    [36]刘兆刚,刘继明,李凤日,等.樟子松人上林树冠结构的分形分析[J].植物研究,2005,25(4):465-470.
    [37]刘兆刚.樟子松人工林树冠动态三维图形模拟技术的研究[D]:东北林业大学,2007.
    [38]刘兆刚,舒扬,李风日樟子松人工林级枝条基径和枝长模型的研究[J].植物研究,2008,28(3):244-248.
    [39]吕勇.林木树高曲线模型研究[J].中南林学院学报,1997,4:86-89.
    [40]卢昌泰,李吉跃,康强,等.马尾松胸径与根径和冠径的关系研究[J].北京林业大学学报,2008,30(1):58-63.
    [41]卢军.帽儿山天然次生林树冠结构和空间优化经营[D]:东北林业大学,2008.
    [42]卢军,李凤日.张会儒,等.帽儿山天然次生林主要树种冠长率模型[J].林业科学,2011,47(6):70-76.
    [43]卢康宁.基于生理生态模型的杉木形态结构变化可视化模拟研究[D]:中国林业科学研究院,2012.
    [44]罗云建,王效科,张小全,等.华北落叶松人工林的生物量估算参数[J].林业科学.2010,46(2):6-11.
    [45]骆秀琴,管宁,文小明.等.木材材性株内径向变异模式初探(?)个杉木种源木材密度径向变异模式的研究[J].林业科学.1999,35(6):.86-92
    [46]马丰丰.基于 FVS 的北京地区侧柏人工林单木模型优化及应用[D].北京:北京林业大学,2008.
    [47]马钦彦,刘忠刚,潘向丽,等.华北落叶松人工林生长季内的林冠结构和光分布[J].北京林 业大学学报,2000,22(4):18-21.
    [48]马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667.
    [49]马炜,孙玉军.长白落叶松人工林密度表的编制及应用[J].南京林业大学学报(自然科学版),2012,36(6):69-75.
    [50]马炜.长白落叶松人工林生态系统碳密度测定与预估[D].北京林业大学,2013.
    [51马彦平,白由路,高祥照,等.基于数字图像的玉米叶面积测量方法研究[J].中国农学通报,2009,25(22):329-334.
    [52]马泽清,刘琪璟,曾慧卿,等.南方人工林叶面积指数的摄影测量[J].生态学报,2008,.28(5):1971-1980.
    [53]孟宪宇.测树学[M].北京:中国林业出版社,2006.
    [54]聂鹏程,杨燕,刘飞,等.植物叶面积无损测量方法及仪器开发[J].农业工程学报,2010,26(9):198-202.
    [55]聂瑞丽,罗海汀,赵承义,等.北京市大气污染动态变化的树木年轮分析[J].中国环境监测.2001,17(4):20-24.
    [56]潘彪,徐朝阳,王章荣.杂交鹅掌楸木材解剖性质及其径向变异规律[J].南京林业大学学报:自然科学版,2005,29(1):79-82.
    [57]裴保华,蒋湘宁,郑均宝,等.林分密度对Ⅰ-69杨树冠结构和光能分布的影响[J].林业科学研究,1990,3(3):201-206.
    [58]钱能志.杉木枝,叶生物量估测方法研究[J].林业实用技术,1991,3(5):12-15.
    [59]宋林,孙志虎.长白落叶松人工林叶面积指数测定[J].东北林业大学学报,2012,40(9):6-9.
    [60]苏宏新,白帆,李广起.3类典型温带山地森林的叶面积指数的季节动态:多种检测方法比较[J].植物生态学报,2012,36(3):231-242.
    [61苏乙奇.人上落叶松枝下高动态研究[J].林业调查规划,2008,(1):21-24.
    [62]孙书存,陈灵芝.不同生境中辽东栎的构型差异[J].生态学报,1999,19(3):359-364.
    [63]孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2007,27(5):1756-1762.
    [64]唐守正,李勇.生物数学模型的统计学基础[M].科学出版社,2002.
    [65]涂洁,刘琪璟,简敏菲.千烟洲湿地松中幼林树冠生物量及生长量分析[J].浙江林学院学报,2008,25(2):206-210.
    [66]汪金松,张春雨,范秀华,等.臭冷杉牛物量分配格局及异速生长模型[J].生态学报,2011,31(14):3918-3927.
    [67]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [68]王小青,刘杏娥,任海青.树冠特征对小黑杨木材性质和生长量的影响研究[J].林业科学研究,2007,20(6):801-806..
    [69]王兴昌,王传宽,张全智,等.东北主要树种心材与边材的生长特征[J].林业科学2008,44(5):102-108.
    [70]王秀云.小同年龄长落叶松人工林碳储量分布特征[D]:北京林业大学,2011.
    [71吴春胤,张文昭,欧阳庆,等.基于BP审计网络模型的荔枝树叶面积测定方法[J].农业工程学报,2007,23(7):166-169.
    [72]吴淑杰,戴芳天,李晓杰.落叶松生i态场冠影响函数与林冠结构的关系[J].东北林业大学学报,2003.31(2):39-40.
    [73]吴祥定.树木年轮分析在环境变化研究中的应用[J].第四纪研究,1990,(2):188-196.
    [74]吴见,彭道黎.基于面向对象的QuickBird影像退耕地树冠信息提取[J].光谱学与光谱分析,2010,30(9):2533-2536.
    [75]向洪波,郭志华,赵占轻,等.不同空间尺度森林叶面积指数的估算方法[J].林业科学,2009,45(6):139-144.
    [76]肖强,叶文景,朱珠.等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714.
    [77]谢昆青,李志尧.树木年轮研究的扫描图像分析方法及其在环境演变中的应用[J].第四纪研究,2000,20(3):259-269.
    [78]许俊利.东折棱河长白落叶松生物量模型研究及生物量估算[D].北京:北京林业大学,2009.
    [79]于大炮,周莉,代力民,等.树木年轮分析在权球变化研究中的应用[J].生态学杂志,2003,22(6):91-96.
    [80]闫明准,刘兆刚.樟子松人工林单木叶量垂直分布规律[J].东北林业大学学报,2009,37(7):16-19.
    [81]余雪标,徐大平,龙腾,等.连栽桉树人工林生长特性和树冠结构特征[J].林业科学,2000,(S1):137-142.
    [82]玉宝,乌吉斯古楞,王百山,等.兴安落叶松天然林树冠生长特性分析[J].林业科学,2010,46(5):41-48.
    [83]袁玉江,邵雪梅,李江风,等.夏十萨特树轮年表中降水信息的探讨与326年降水重建[J].生态学报,2002,22(12):2048-2053.
    [84]宰松梅,温季,郭冬冬,等.基于支持向量机模型和图像处理技术的甜椒叶面积测定[J].农业工程学报,2011,27(3):237-241.
    [85]曾翀,雷相东,刘宪钊,等.落叶松云冷杉林单木树高曲线的研究[J].林业科学研究.2009,22(2):182-189.
    [86]曾伟生,骆期邦.海南省主要树种相对树高曲线模型应用研究[J].中南林业调查规划,1999,18(2):1-7.
    [87]郑小贤,刘东兰.基于柱体届曲理论的树高曲线式和材积式[J].北京林业大学学报,1997,19(1):89-92.
    [88]张丹.李传荣,许景伟,等.沙质海岸黑松分枝格局特征及其抗风折能力分析[J].植物生态学报,2011.35(9):926-936.
    [89]张红梅,王新杰,门金华.等.北京市栎类植物空间分布及生长过程分析[J].北京林业大学学报,2010,(S1):71-79.
    [90]张林.罗天祥,邓坤枚,等.云南松比叶面积和叶于物质含量随冠层高度的垂直变化规律[J].北京林业大学学报,2008,30(1):40-44.
    [91张思玉,胥辉.树冠中的黄金分割初步探析[J].西南林学院学报.2001,21(1):14-19.
    [92]张小全,赵茂盛,徐德应.杉木中龄林树冠叶面积密度空间分布及季节变化[J].林业科学研究,1999,12(6):612-619.
    [93]张智昌.落叶松人工林枝条生长与节子大小预测模型的研究[D]:东北林业大学,2010.
    [94]赵东,杨喜田,樊巍,等.杨树农田防护林带单木叶面积的变化[J].林业科学,2011,47(4): 107-113.
    [95]赵东.不同宽度杨树农山防护林带树冠结构特征[D]:河南农业大学,2011.
    [96]赵俊卉,亢新刚,刘燕.长白山主要针叶树种最优树高曲线研究[J].北京林业大学学报,2009,31(4):13-18.
    [97]赵俊卉.长白山云冷杉混交林生长模型的研究[D]:北京林业大学,2010.
    [98]郑治刚,李怀玉,廖雅萍.树冠空间体积的计算方法[J].林业资源管理,1986,(1):35-40
    [99]周国模,金爱武.雷竹林冠层特性与叶片的空间分布[J].林业科学,1999,35(5):17-21.
    [100]周永斌,姜萍,王庆礼.长白山不同针叶树耐阴性的形态适应及内源激素调控[J].应用生态学报,1999,10(5):525-528.
    [101]朱春权,雷静品,刘晓东,等.集约与粗放经营杨树人工林树冠结构的研究[J].林业科学,2000,36(2):60-68.
    [102]Achim A, Gardiner B, Leban J, et al. Predicting the branching properties of Sitka spruce grown in Great Britain[J]. New Zealand Journal of Forestry Science,2006,36(2-3):246-264.
    [103]Alcorn P J, Pyttel P, Bauhus J, et al. Effects of initial planting density on branch development in 4-yearold plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees[J]. Forest ecology and management,2007,252(1-3):41-51.
    [104]Arias D, Calvo-Alvarado J, Dohrenbusch A. Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica[J]. Forest ecology and management,2007,247(1):185-193.
    [105]Arney J D. A modeling strategy for the growth projection of managed stands[J]. Canadian Journal of Forest Research,1985,15(3):511-518.
    [106]Bartelink H H. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L)[C]//Annales des sciences forestieres.1997,54(1):39-50.
    [107]Bartelink H H. Allometric relationships on biomass and needle area of Douglas-fir[J]. Forest Ecology and Management,1996,86(1):193-203.
    [108]Battaglia M, Sands P, White D, et al. CABALA:a linked carbon, water and nitrogen model of forest growth for silvicultural decision support[J]. Forest Ecology and Management,2004,193(1): 251-282.
    [109]Beaulieu E, Schneider R, Berninger F, et al. Modeling jack pine branch characteristics in Eastern Canada[J]. Forest ecology and management,2011,262(9):1748-1757.
    [110]Berthier S, Kokutse A D, Stokes A, et al. Irregular heartwood formation in maritime pine (Pimis pinaster Ait):consequences for biomechanical and hydraulic tree functioning[J]. Annals of Botany, 2001,87(1):19-25.
    [111]Bechtold W A. Largest-crown-width prediction models for 53 species in the western United States[J]. Western Journal of Applied Forestry,2004,19(4):245-251.
    [112]Biging G S, Wensel L C. Estimation of crown form for six conifer species of northern Caiifornia[J]. Canadian Journal of Forest Research,1990,20(8):1137-1142.
    [113]Biging G S. Gill S J. Stochastic models for conifer tree crown profiles[J]. Forest science,1997, 43(1):25-34.
    [114]Bjorklund L. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data[J]. Silva Fenn,1999,33 (2):119-129.
    [115]Bond-Lamberty B. Wang C, Gower S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research,2002,32(8):1441-1450.
    [116]Bragg D C. A local basal area adjustment for crown width prediction[J]. Northern Journal of Applied Forestry,2001,18(1):22-28.
    [117]Brewer M B, Kramer R M. Choice behavior in social dilemmas:Effects of social identity, group size, and decision framing[J]. Journal of personality and social psychology,1986.50(3):543.
    [118]Brix H. Effects of thinning and nitrogen fertilization on branch and foliage production in Douglas-fir[J]. Canadian Journal of Forest Research,1981.11(3):502-511.
    [119]Brown P L, Doley D, Keenan R J. Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana R Muell.[J]. Forest ecology and management,2004,196(2-3):379-392.
    [120]Cao Q V, Pepper W D. Predicting inside bark diameter for shortleaf, loblolly, and longleaf pines[J]. Southern Journal of Applied Forestry,1986,10(4):220-224.
    [121]Cho Y Y, Oh S, Oh M M, et al. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value[J]. Scientia horticulturae,2007,111 (4):330-334.
    [122]Chiba Y. Plant form based on the pipe model theory Ⅱ. Quantitative analysis of ramification in morphology[J]. Ecological research,1991,6(1):21-28.
    [123]Climent J, Chambel M R, Perez E, et al. Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis[J]. Canadian Journal of Forest Research,2002, 32(1):103-111.
    [124]Climent J, Chambel M R, Gil L, et al. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm[J]. Forest Ecology and Management,2003,174(1): 203-211.
    [125]Cluzeau C, Goff N L, Ottorini J M. Development of primary branches and crown profile of Fraxinus excelsior[J]. Canadian journal of forest research,1994,24(12):2315-2323.
    [126]Coie T G, Ewel J J. Allometric equations for four valuable tropical tree species[J]. Forest Ecology and Management,2006,229(1):351-360.
    [127]Colin F, Houllier F. Branchiness of Norway spruce in north-eastern France:modelling vertical trends in maximum nodal branch size[C]//Annales des sciences forestieres.1991,48(6):679-693.
    [128]Courbet F. A three-segmented model for the vertical distribution of annual ring area:Application to Cedrus atlantica Manetti[J]. Forest ecology and management,1999,119(1):177-194.
    [129]Courbet F, Houllier F. Modelling the profile and internal structure of tree stem. Application to Cedrus atlantica (Manetti)[J]. Annals of forest science,2002,59(1):63-80.
    [130]Crecente-Campo F, Marshall P, LeMay V, et al. A crown profile model for Pinus rudiata D. Don in northwestern Spain[J]. Forest Ecology and Management,2009,257(12):2370-2379.
    [131]Cutini A, Matteucci G, Mugnozza G S. Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests[J]. Forest Ecology and Management,1998,105(1):55-65.
    [132]Day M E, Greenwood M S, White A S. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age[J]. Tree Physiology,2001,21(16):1195-1204.
    [133]DeBell J D, Lachenbruch B. Heartwood/sapwood variation of western redcedar as influenced by cultural treatments and position in tree[J]. Forest Ecology and Management,2009,258(9): 2026-2032.
    [134]Deleuze C. Herve J C. Colin F, et al. Modelling crown shape of Picea abies:spacing effects[J]. Canadian Journal of Forest Research,1996,26(11):1957-1966.
    [135]Dixon G. Essential FVS:A user's guide to the forest vegetation simulator[R]. Colorado:USDA Forest Service:Forest Management Service Center,2003.
    [136]Dolph K L. Height-diameter equations for young-growth red fir in California and southern Oregon[M]. US Dept. of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station,1989.
    [137]Doruska P F, Patterson D, Hartley J, et al. Newer Technologies and Bioenergy Bring Focus Back to Bark Factor Equations[J]. Journal of Forestry,2009,107(1):38-43.
    [138]Dykstra, Dennis P.; Monserud, Robert A., tech. eds. Forest Growth and Timber Quality:Crown Models and Simulation Methods for Sustainable Forest Management:Proceedings of an International Conference[M]. DIANE Publishing,2010.
    [139]Ek A R. A model for estimating branch weight and branch leaf weight in biomass studies [J]. Forest Science,1979,25(2):303-306.
    [140]Enquist B J. Universal scaling in tree and vascular plant allometry:toward a general quantitative theory linking plant form and function from cells to ecosystems[J]. Tree physiology,2002, 22(15-16):1045-1064.
    [141]Feldpausch T R, Banin L, Phillips O L, et al. Height-diameter allometry of tropical forest trees[J]. Biogeosciences,2011,8(5):1081-1106.
    [142]Feng L, de Reffye P, Dreyfus P, et al. Connecting an architectural plant model to a forest stand dynamics model-application to Austrian black pine stand visualization[J]. Annals of forest science, 2012,69(2):245-255.
    [143]Foli E G, Alder D, Miller H G, et al. Modelling growing space requirements for some tropical forest tree species[J]. Forest Ecology and Management,2003,173(1):79-88.
    [144]Fowler G W, Damschroder L J. A red pine bark factor equation for Michigan[J]. Northern Journal of Applied Forestry,1988,5(1):28-30.
    [145]Garber S M, Maguire D A. Vertical trends in maximum branch diameter in two mixed-species spacing trials in the central Oregon Cascades[J]. Canadian Journal of Forest Research,2005,35(2): 295-307.
    [146]Garneau F X, Riedl B, Hobbs S, et al. The use of sensor array technology for rapid differentiation of the sapwood and heartwood of Eastern Canadian spruce, fir and pine[J]. Holz als Roh-und Werkstoff,2004,62(6):470-473.
    [147]Gill S J, Biging G S, Murphy E C. Modeling conifer tree crown radius and estimating canopy cover[J]. Forest Ecology and Management,2000,126(3):405-416.
    [148]Gill S J, Biging G S. Autoregressive moving average models of crown profiles for two California hardwood species[J]. Ecological modelling,2002,152(2):213-226.
    [149]Godin C, Puech O, Boudon F, et al. Space occupation by tree crowns obeys fractals laws: evidence from 3D digitized plants[C]//4th International Workshop on Functional-Structural Plant Models, Montpellier, France.2004:79-83.
    [150]Gordon A. Estimating bark thickness in Pinus radiata[J]. New Zealand Journal of Forestry Science,1983,(13):340-353
    [151]Gort J, Zubizarreta-Gerendiain A, Peltola H, et al. Differences in branch characteristics of Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing[J]. Annals of forest science, 2010,67(7):705-705.
    [152]Grace J C. Jarvis P G, Norman J M. Modelling the interception of solar radiant energy in intensively managed stands[J]. New Zealand Journal of Forestry Science,1987,17 (2-3):193-209
    [153]Grace J C, Pont D, Goulding C J. et al. Modelling branch development for forest managemen[J]. New Zealand Journal of Forestry Science.1999,29(3):391-408.
    [154]Groot A, Schneider R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species[J]. The Forestry Chronicle,2011,87(4):542-551.
    [155]Halle F, Oldeman R A A, Tomlinson P B. Tropical trees and forests:an architectural analysis[M]. Springer-Verlag.,1978.
    [156]Hann D W. Adjustable predictor of crown profile for stand-grown Douglas-fir trees[J]. Forest Science,1999,45(2):217-225.
    [157]Hasenauer H, Monserud R A. A crown ratio model for Austrian forests[J]. Forest Ecology and Management,1996,84(1):49-60.
    [158]Hamilton G J. The dependence of volume increment of individual trees on dominance, crown dimensions, and competition. Forestry,1969,12(1):133-134.
    [159]Hein S, Makinen H, Yue C, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest ecology and Management,2007,242(2):155-164.
    [160]Hein S, Weiskittel A R, Kohnle U. Branch characteristics of widely spaced Douglas-fir in south-western Germany:comparisons of modelling approaches and geographic regions[J]. Forest Ecology and Management,2008,256(5):1064-1079.
    [161]Hein S, Weiskittel A R, Kohnle U, et al. Models on Branch Characteristics of Wide-Spaced Douglas-fir[C]. Forest Growth and Timber Quality:Crown Models and Simulation Methods for Sustainable Forest Management,2009:23.
    [162]Hepp T E, Brister G H. Estimating crown biomass in loblolly pine plantations in the Carolina flatwoods[J]. Forest Science,1982,28(1):115-127.
    [163]Hester A S, Hann D W, Larsen D R. ORGANON:southwest Oregon growth and yield model user manual:version 2.0[J]. Collections,1989.
    [164]Hynynen J. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models[J]. Silva Fennica.1995,29(3):225-246.
    [165]Inose M. A tree growth model based on grown competition in Todomatsu (Abies sachalinensis),1: The relationship between crown development and volume increment[R]. Bulletin of the forestry and forest products research institute,1982.
    [166]Ishii H, Wilson M E. Crown structure of old-growth Douglas-fir in the western Cascade Range, Washington[J]. Canadian Journal of Forest Research,2001,31(7):1250-1261.
    [167]Ishii H, Ford E D, Boscolo M E, et al. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production[J]. Tree Physiology, 2002.22(1):31-40.
    [168]Jiang L, Brooks J R. Predicting diameter distributions for young longleaf pine plantations in southwest Georgia[J]. Southern Journal of Applied Forestry,2009,33(1):25-28.
    [169]Jonckheere I, Fleck S. Nackaerts K, et al. Review of methods for in situ leaf area index determination:Part Ⅰ. Theories, sensors and hemispherical photography[J]. Agricultural and forest meteorology,2004,121(1):19-35.
    [170]Kantola A, Makinen H, Makela A. Stem form and branchiness of Norway spruce as a sawn timber-Predicted by a process based model[J]. Forest Ecology and Management,2007,241(1): 209-222.
    [171]Kershaw Jr J A, Maguire D A, Hann D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian journal of forest research,1990,20(11):1690-1695.
    [172]Kershaw A, Maguire A. Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir[J]. Forest Science,2000,46(1): 86-94.
    [173]Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. Forest Ecology and management,2001,146(1):199-209.
    [174]Kloeppel B D, Gower S T, Treichel I W, et al. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers:a global comparison[J]. Oecologia,1998,114(2): 153-159
    [175]Knapic S, Pereira H. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.)[J]. Forest ecology and Management,2005,210(1):81-89.
    [176]Kohnle U, Hein S, Sorensen F C, et al. Effects of seed source origin on bark thickness of Douglas-fir (Pseudotsuga menziesii) growing in southwestern Germany[J]. Canadian Journal of Forest Research,2012,42(2):382-399.
    [177]Kokutse A D, Stokes A, Kokutse N K, et al. Which factors most influence heartwood distribution and radial growth in plantation teak [J]. Annals of Forest Science,2010,67(4):407-416.
    [178]Kozak A. A variable-exponent taper equation[J]. Canadian Journal of Forest Research,1988, 18(11):1363-1368.
    [179]Krajicek J E, Brinkman K A. u. Gingrich, SF,1961:Crown competition. A measure of density[J]. For. Sci,7:35-42.
    [180]Kujansuu J, Yasue K, Koike T, et al. Responses of ring widths and maximum densities of Larix gmelinii to climate on contrasting north-and south-facing slopes in central Siberia[J]. Ecological research,2007,22(4):582-592.
    [181]Kuprevicius A P. Quantifying the influence of crown size on mechanical wood properties in White Spruce{Picea Glauca)[D]. University of Toronto,2011.
    [182]Kurth W. Morphological models of plant growth:Possibilities and ecological relevance[J]. Ecological Modelling,1994,75:299-308.
    [183]Laasasenaho J, Melkas T, Alden S. Modelling bark thickness of Picea abies with taper curves[J]. Forest ecology and management,2005,206(1):35-47.
    [184]Landsberg J J. Effects of global change on managed forests:a strategic plan for research on managed forest ecosystems in a globally changing environment[M]. GCTE; Vienna, Austria: IUFRO,1995.
    [185]Laubhann D, Eckmullner O, Sterba H. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce{Picea abies L. Karst.) focusing on traditional forest crown measures[J]. Forest Ecology and Management,2010,260(9):1498-1506.
    [186]Law B E, Van Tuyl S, Cescatti A, et al. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon[J]. Agricultural and Forest Meteorology,2001,108(1):1-14.
    [187]Leduc D, Goelz J. A height-diameter curve for longleaf pine plantations in the Gulf Coastal Plain[J]. Southern journal of applied forestry,2009,33(4):164-170.
    [188]Leites L P, Robinson A P, Crookston N L. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator[J].Canadian Journal of Forest Research.2009. 39(3):655-665.
    [189]Levia Jr D F. A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine (Finus strobus L.)[J]. Forest Ecology and Management,2008, 255(5):1789-1792.
    [190]Li R, Weiskittel A R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach:comparison of model forms and subsampling strategies[J]. European Journal of Forest Research,2011,130(2):219-233.
    [191]Little C H A, Pharis R P. Radial and longitudinal growth in the tree stem[J]. Plant stems: physiology and functional morphology,1995:281.
    [192]Long J N, Smith F W. Relation between size and density in developing stands:a description and possible mechanisms[J]. Forest Ecology and Management,1984,7(3):191-206.
    [193]Longuetaud F, Mothe F, Leban J M, et al. Picea abies sapwood width:variations within and between trees[J]. Scandinavian Journal of Forest Research,2006,21(1):41-53.
    [194]Lowman M D, Rinker H B. Forest canopies[M]. Academic Press,2004.
    [195]Maguire D A, Hann D W. Bark thickness and bark volume in southwestern Oregon Douglas-fir[J]. Western Journal of Applied Forestry,1990,5(1):5-8.
    [196]Maguire D A, Kershaw J A. Hann D W. Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir[J]. Forest Science,1991,37(5):1409-1428.
    [197]Maguire D A. Branch mortality and potential litterfall from Douglas-fir trees in stands of varying density[J]. Forest Ecology and Management,1994,70(1):41-53.
    [198]Maguire D A, Bennett W S. Patterns in vertical distribution of foliage in young coastal Douglas-fir[J]. Canadian Journal of Forest Research,1996,26(11):1991-2005.
    [199]Maguire DA. Johnston S R, Cahill J. Predicting branch diameters on second-growth Douglas-fir from tree-level descriptors[J]. Canadian Journal of Forest Research,1999,29(12):1829-1840.
    [200]Makela A, Makinen H. Generating 3D sawlogs with a process-based growth model[J]. Forest ecology and management,2003,184(1):337-354
    [201]Makinen H, Colin F. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information[J]. Canadian Journal of Forest Research,1998, 28(11):1686-1696.
    [202]Makinen H, Colin F. Predicting the number, death, and self-pruning of branches in Scots pine[J]. Canadian Journal of Forest Research,1999,29(8):1225-1236.
    [203]Makinen H. Growth, suppression, death, and self-pruning of branches of Scots pine in southern and central Finland[J]. Canadian Journal of Forest Research,1999,29(5):585-594.
    [204]Makinen H. Effect of stand density on the branches development of silver birch (Betula pendula Roth.) in central Finland. Trees-Structure and Function,2002,16(4-5):346-353.
    [205]Makinen H,Ojansuu R, Niemisto P. Predicting external branch characteristics of planted silver birch{Betula pendula Roth.) on the basis of routine stand and tree measurements[J]. Forest Science. 2003,49(2):301-317.
    [206]Marshall D D, Johnson G P. Hann D W. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Canadian Journal of Forest Research,2003,33(11): 2059-2066.
    [207]Mawson J C, Thomas J W. DeGraaf R M. Program HTVOL:the determination of tree crown volume by layers[M]. Forest Service. US Department of Agriculture,Northeastern Forest Experiment Station,1976.
    [208]Meinzer F C, Bond B J, Warren J M, et al. Does water transport scale universally with tree size?[J]. Functional Ecology,2005,19(4):558-565.
    [209]Meinzer F C. Tree Physiology:Size-and Age-Related Changes In Tree Structure and Function[M]. Springer Science+Business Media,2011.
    [210]Medhurst J L, Battaglia M, Cherry M L, et al. Allometric relationships for Eucalyptus nitens (Deane and Maiden) Maiden plantations[J]. Trees,1999,14(2):91-101.
    [211]Meyer H A. Bark volume determination in trees[J]. Journal of Forestry,1946,44(12):1067-1070.
    [212]Miranda I, Gominho J, Pereira H. Variation of heartwood and sapwood in 18-year-old Eucalyptus globulus trees grown with different spacings[J]. Trees,2009,23(2):367-372.
    [213]Mitchell K J. Dynamics and simulated yield of Douglas-fir[J]. Forest Science Monograph, 1975,21(17):1-39.
    [214]Mizunaga H. Simulation of the thinning effects on the stability of crowns[J]. Bulletin of the Faculty of Agriculture-Kagoshima University,1998.
    [215]Morataya R, Galloway G, Berninger F, et al. Foliage biomass-sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina arborea Roxb.:Silvicultural implications[J]. Forest Ecology and Management,1999,113(2-3):231-239.
    [216]Morling T, Valinger E. Effects of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine[J]. Scandinavian Journal of Forest Research,1999,14(5):462-469.
    [217]Mottus M, Sulev M, Lang M. Estimation of crown volume for a geometric radiation model from detailed measurements of tree structure[J]. Ecological modelling.2006.198(3):506-514.
    [218]Nadkami N M, Parker G G, Lowman M D. Forest canopy studies as an emerging field of science[J]. Annals of Forest Science,2011,68(2):217-224.
    [219]Nawrot M, Pazdrowski W, Szymanski M. Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.)[J]. For. Sci.,2008,54(9):409-417.
    [220]Newton P F, Amponsah I G. Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability[J]. Forest ecology and management,2007,247(1):149-166.
    [221]Nicholls D, Monserud R A, Dykstra D P. International bioenergy synthesis-lessons learned and opportunities for the Western United States[J]. Forest ecology and management,2009,257(8): 1647-1655.
    [222]Niinemets O. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris[J]. Tree Physiology,2002, 22(8):515-535.
    [223]Nemec A F L, Goudie J W, Parish R. A Gamma-Poisson model for vertical location and frequency of buds on lodgepole pine{Pinus contorta) leaders[J]. Canadian Journal of Forest Research,2010,40(10):2049-2058.
    [224]Nouvellon Y, Laclau J P, Epron D, et al. Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo[J]. Forest Ecology and Management, 2010,259(9):1796-1807.
    [225]Oker-Blom P. Photosynthetic radiation regime and canopy structure in modeled forest stands[JJ. Acta Forestalia Fennica,1986,197:1-25.
    [226]Oldeman R A. Forests:elements of silvology[M]. Springer-Verlag,1990.
    [227]Oliver C D. Larson B C. Forest stand dynamics[M]. McGraw-Hill, Inc.,1990.
    [228]Onaka F. The longitudinal distribution of radial increments in trees[J]. Bull. Kyoto Univ. For.. 1950(18):1-153.
    [229]Ottorini J M. Growth and development of individual Douglas-fir in stands for applications to simulation in silviculture[J]. Annals of Forest Science,1991,3(48):651-666.
    [230]Vasyutkina E A, Adrianova I Y, Kozyrenko M M, et al. Genetic differentiation of larch populations from the larix olgensis range and their relationships with larches from Siberia and Russian Far East[J]. Forest Science and Technology,2007,3(2):132-138.
    [231]Peng C, Liu J, Dang Q, et al. TRIPLEX:a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics[J].Ecological Modelling.2002,153(1):109-130.
    [232]Perlack R D, Wright L L, Turhollow A F, et al. Biomass as feedstock for a bioenergy and bioproducts industry:the technical feasibility of a billion-ton annual supply[R]. Oak Ridge:Oak Ridge National Laboratory,2005.
    [233]Piboule A, Collet C, Frochot H, et al. Reconstructing crown shape from stem diameter and tree position to supply light models.I. Algorithms and comparison of light simulations[J]. Annals of forest science,2005,62(7):645-657.
    [234]Pinto I, Pereira H, Usenius A. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems[J]. Trees,2004,18(3):284-294.
    [235]Porte A, Trichet P, Bert D, et al. Allometric relationships for branch and tree woody biomass of Maritime pine(Pinus pinaster Ait.)[J]. Forest Ecology and Management,2002,158(1):71-83.。
    [236]Pretzsch H. Species-specific allometric scaling under self-thinning:evidence from long-term plots in forest stands[J]. Oecologia,2006,146(4):372-583.
    [237]Rautiainen M, Stenberg P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and forest meteorology,2005,128(1):123-129.
    [238]Rautiainen M, Mottus M, Stenberg P, et al. Crown envelope shape measurements and models[J]. Silva Fennica,2008,42(1):19.
    [239]Rennolls K. Pipe-model theory of stem-profile development[J]. Forest Ecology and Management, 1994,69(1):41-55.
    [240]Rijal B, Weiskittel A R, Kershaw Jr J A. Development of height to crown base models for thirteen tree species of the North American Acadian Region[J]. The Forestry Chronicle,2012,88(1):60-73.
    [241]Ritchie M W, Hann D W. Equations for predicting basal area increment in Douglas-fir and grand fir[J]. Collections,1985.
    [242]Roeh R L, Maguire D A. Crown profile models based on branch attributes in coastal Douglas-fir[J]. Forest Ecology and Management,1997,96(1):77-100.
    [243]Russell M S, Dawson J O. Variation among northern red oak provenances in bark thickness:dbh ratios[J]. Notes,1995:565-572..
    [244]Ryu Y, Sonnentag O, Nilson T, et al. How to quantify tree leaf area index in an open savanna ecosystem:a multi-instrument and multi-model approach[J]. Agricultural and Forest Meteorology, 2010,150(1):63-76.
    [245]Sheppard PR, Graumlich LJ,Conkey LE. Reflected light image analysis of conifer tree rings for reconstructing climate [J].Holocene,1996,6(1):62-68
    [246]Shinozaki K, Yoda K, Hozumi K, et al. A Quantitative Analysis of Plant Form--The Pipe Model Theory I. Basic Analyses[J]. Japanese Journal of Ecology,1964,14(3):97-105.
    [247]Sievanen R, Lindner M, Makela A, et al. Volume growth and survival graphs:a method for evaluating process-based forest growth models[J]. Tree physiology,2000,20(5-6):357-365.
    [248]Stenberg P, Kuuluvainen T, Kellomaki S, et al. Crown structure, light interception and productivity of pine trees and stands[J]. Ecological Bulletins,1994:20-34.
    [249]Steppe K, Niinemets U, Teskey R O. Tree size-and age-related changes in leaf physiology and their influence on carbon gain[M]//Size-and age-related changes in tree structure and function. Springer Netherlands,2011:235-253.
    [250]Stokes A, Berthier S. Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth[J]. Forest ecology and Management,2000,135(1):115-121.
    [251]Soares P, Tome M. A tree crown ratio prediction equation for eucalypt plantations[J]. Annals of forest science,2001,58(2):193-202.
    [252]Sundberg A, Holmbom B, Willfor S, et al. Weakening of paper strength by wood resin[J]. Nordic Pulp and Paper Research Journal,2000,15(1):46-53.
    [253]Taylor A M, Gartner B L, Morrell J J. Heartwood formation and natural durability-a review[J]. Wood and Fiber Science,2002,34(4):587-611.
    [254]Temesgen H, Goerndt M E, Johnson G P, et al. Forest measurement and biometrics in forest management:status and future needs of the Pacific Northwest USA[J]. Journal of Forestry,2007, 105(5):233-238.
    [255]Tome M, Tome J, Ribeiro F, et al. Equacao de volume total, volume percentual e de perfil do tronco para Eucalyptus globulus Labill. em Portugal[J]. Silva Lusitana,2007,15(1):25-39.
    [256]Trincado G, Burkhart H E. A framework for modeling the dynamics of first-order branches and spatial distribution of knots in loblolly pine trees[J]. Canadian Journal of Forest Research,2009, 39(3):566-579.
    [257]Tyree M T, Ewers F W. The hydraulic architecture of trees and other woody plants[J]. New Phytologist,1991,119(3):345-360.
    [258]Valentine H T, Ludlow A R, Furnival G M. Modeling crown rise in even-aged stands of Sitka spruce or loblolly pine[J]. Forest ecology and management,1994,69(1):189-197.
    [259]Valentine H T, Makela A. Bridging process-based and empirical approaches to modeling tree growth[J]. Tree Physiology,2005,25(7):769-779.
    [260]Vann D R, Palmiotto P A, Richard Strimbeck G. Allometric equations for two South American conifers:test of a non-destructive method[J]. Forest Ecology and Management,1998,106(2): 55-71.
    [261]Vermetten A W M, Ganzeveld L, Jeuken A, et al. CO2 uptake by a stand of Douglas fir:flux measurements compared with model calculations[J]. Agricultural and Forest Meteorology,1994, 72(1):57-80.
    [262]Waguchi Y. Accuracy and precision of crown profile, volume, and surface area measurements of 29-year-old Japanese cypress trees using a Spiegel relascope[J]. Journal of Forest Research,2004, 9(2):173-176.
    [263]Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management,2006,222(1):9-16.
    [264]Wang X, Jiang Z, Ren H. Distribution of wet heartwood in stems of Populus xiaohei from a spacing trial[J]. Scandinavian Journal of Forest Research,2008,23(1):38-45.
    [265]Wang X, Wang C, Zhang Q, et al. Heartwood and sapwood allometry of seven Chinese temperate tree species[J]. Annals of Forest Science,2010,67(4):410-410.
    [266]Weiskittel A R, Maguire D A. Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations:Implications for predicting tree growth[J]. Forest Ecology and Management,2007,251(3):182-194.
    [267]Weiskittel A R, Kershaw Jr J A, Hofmeyer P V, et al. Species differences in total and vertical distribution of branch-and tree-level leaf area for the five primary conifer species in Maine, USA[J]. Forest Ecology and Management,2009,258(7):1695-1703.
    [268]Weiskittel A R, Seymour R S, Hofmeyer P V, et al. Modelling primary branch frequency and size for five conifer species in Maine, USA[J]. Forest Ecology and Management,2010,259(10): 1912-1921.
    [269]Weiskittel A R, Hann D W, Kershaw Jr J A, et al. Forest growth and yield modeling[M]. Wiley, 2011.
    [270]Wiant Jr H V, Wingerd D E.Variation of DIB/DOB ratios with height on hardwood trees[J]. West Virginia For,1984,132(11):19-20.
    [271]Wilkes J. Heartwood development and its relationship to growth in Pinus radiata[J]. Wood Science and technology,1991,25(2):85-90.
    [272]Will R E, Narahari N V, Shiver B D, et al. Effects of planting density on canopy dynamics and stem growth for intensively managed loblolly pine stands[J]. Forest Ecology and Management, 2005,205(1-3):29-41.
    [273]Xiao C W, Yuste J C, Janssens I A, et al. Above-and belowground biomass and net primary production in a 73-year-old Scots pine forest[J]. Tree Physiology,2003,23(8):505-516.
    [274]Xiao C W, Ceulemans R. Allometric relationships for below-and aboveground biomass of young Scots pinesfJ]. Forest Ecology and Management,2004,203(1):177-186
    [275]Xu M, Harrington T B. Foliage biomass distribution of loblolly pine as affected by tree dominance, crown size, and stand characteristics[J]. Canadian Journal of Forest Research,1998, 28(6):887-892.
    [276]Zabek L M, Prescott C E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia[J]. Forest ecology and management,2006,223(1): 291-302.
    [277]Zamoch S J, Bechtold W A, Stolte K W. Using crown condition variables as indicators of forest health[J]. Canadian Journal of Forest Research,2004,34(5):1057-1070.
    [278]Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass[J]. Forest Ecology and Management,2004,187(2):311-332.
    [279]Zuur A F. Mixed effects models and extensions in ecology with R[M]. Springer,2009.
    [280]Zimmerman M H, Brown C L. Trees:structure and function[M]. New York, USA, Springer-Verlag.,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700