用户名: 密码: 验证码:
面向精细农业的无线传感器网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田是不可增长的自然资源,如何在有限的农田资源基础上,借助先进的科技手段提高农田的生产效率、经济效益与环境效益已经成为我国必须解决的重大课题。以信息技术与农业技术融合为特点的“精细农业”技术成为解决以上问题的关键,而利用无线传感器网络(WSN)技术进行农田信息采集与管理,是目前农业信息技术研究的热点。
     无线传感器网络技术集传感器技术、微机电系统技术(MEMS)、无线通信技术、嵌入式计算技术和分布式信息处理技术于一体,具有易布置、易控制、低功耗、通信灵活、低成本等特点。与传统的公网通信技术不同,无线传感器网络是面向应用的、以任务或数据为中心的无线网络技术,无法找到应对各种不同应用领域的统一架构。因此,需要依据不同应用领域和相关需求,设计优化、适用的无线网络结构,并研究相应的组网技术、能量管理、数据管理与融合方法等。
     精细农业应用具有作物类型与地势多样、天气状况复杂、监测面积大、传感器节点数量多、各节点往往配置多源信息(各种土壤属性、环境属性与作物生长信息等)、农作物生长周期长等特点,这些特点为面向精细农业的无线传感器网络技术研究带来了挑战。本论文以良好的环境适应性、低功耗、低成本、标准化为目标,以设施农业与大田两种应用对象,研究了面向精细农业的无线传感器网络关键技术,包括网络结构、组网方式、节点定位方法、数据融合方法、能量快速自给与节能策略,并介绍了无线传感器网络系统性能评价方法、面向物联网的中间件设计方法、通用节点软硬件设计方法与典型应用系统。主要研究内容和成果如下:
     (1)首先从农业应用环境对无线信道传播特性的影响出发,分别对裸地、平地和山地进行了实验,建立了无线信道传播损耗模型,为无线传感器网络的组织结构、组网方式与不同应用环境的节点部署方法提供了依据。
     (2)对面向精细农业的无线传感器网络组织结构和组网方式进行了研究。针对设施农业与大田的实际应用环境,设计了无线传感器网络系统架构,提出了分簇有限自组网的组网方式,并设计了双链交叉通信的通信方式。
     (3)面向大田应用,提出用改进的DV-Hop算法对节点进行定位,利用该算法采用四边测距方式定位节点位置。针对农业多源信息WSN终端节点,设计了基于太阳能MPPT的能量快速自给方法,并设计了传感器间歇采样、深度休眠的工作方式,有效增加了节点的供电可靠性。
     (4)数据融合是农业无线传感器网络系统的重要支撑技术,本文运用了基于空间相关性的压缩感知理论对节点数据进行融合;采用压缩感知理论,减少了数据的传输量,有效地降低了节点能耗。
     (5)目前,尚无面向精细农业的无线传感器网络系统行业标准,本文在上述研究的基础上,设计了网络服务质量目标驱动的农业无线传感器网络系统评价策略与评价方法,为面向精细农业的无线传感器网络系统行业标准的建立提供参考。
     (6)针对农业无线传感器网络系统低成本、标准化与方便数据管理的需要,设计了面向农业物联网的WSN中间件,并开发了软硬件系统,针对大田灌溉、设施栽培环境监控等进行了应用示范,结果表明,本文设计的无线传感器网络技术较好地满足了精细农业应用需求,软硬件皆方便系统集成,适合标准化需求与大规模推广。
Farmland is the natural resources which is not growth, improve the production efficiency of farmland, economic benefits and environmental benefits has become the significant problems need to solve of our country with the help of advanced technology means based on the limited farmland resources. At present,"precision agriculture" technology which with modern information technology and agricultural technology fusion as characteristics becomes one of the key supporting technologies to solve the above problems, and the use of wireless sensor network technology for farmland information collection and management, is the hot spot in the study of agricultural information technology.
     Wireless sensor network (WSN) technology is connect Sensor technology、Micro Electro-Mechanical System (MEMS)、Embedded computing technology and Distributed information processing technology together, Is easy to decorate, flexible control, low power consumption, convenient communication, low cost, etc. Different with the traditional public network communication technology, it is hard to find the complete reunification of the networking technology to deal with all sorts of different applications because of WSN is centered on the task or data. Therefore, It is necessary to design optimization, application of wireless network structure for different application areas and related requirements. And studies the corresponding networking technology, energy management, data management and integration methods.
     Precision agriculture application has the following features:Crop types and diverse topography、weather conditions complex, monitoring area is large、the sensor node number each node often configuration multi-source information (all kinds of soil properties, environmental attribute and crop growth information, etc.), crop growth cycle is longer, These characteristics of precision agriculture for wireless sensor network system application take challenges. In this paper be aim to good environment adaptability, low power consumption, low cost, standard, consider facility agriculture and two kinds of application objects in open field, studied key technologies of WSN of agriculture, including network structure, network mode, the node positioning method, method of data fusion, energy self-sufficiency and energy conservation strategy, and introduced the system performance evaluation method for WSN, the middleware design method for IOT, the general node software and hardware design method and the typical application systems. The main research contents and results were as follows:
     1. Firstly, experiments are respectively carried out on the bare ground, plains and mountain, starting from agricultural application environment on the wireless channel propagation characteristics, and established the wireless channel propagation loss model. It provides the basis for wireless sensor network organization structure, Network mode and methods for different application environment of nodes deployed.
     2. Discuss the network structure and network mode of precision agriculture WSN. Design the system architecture of wireless sensor network in view of the field and the practical application of facilities agriculture environment. The system adopts the limited since the network with cluster. And cross double chain communication way of communication is adopted.
     3. Use the improved DV-Hop algorithm to positioning nodes, this algorithm uses the four sides ranging positioning for the location node in field application. Design the energy supply method based on MPPT for agricultural multi-source information WSN terminal node, adopting solar energy combined with rechargeable lithium batteries, sensors work in intermittent sampling, deep sleep mode, can supply of energy rapidly.
     4. Data processing is an important part of agriculture WSN; Use compressed sensing theory based on space-time correlation to the network data fusion. It can reduce the transmission of data, and reduce the energy consumption effectively.
     5. At present, there is no wireless sensor network system industry standard for precision agriculture. In this paper designed agricultural wireless sensor network system evaluation strategies and evaluation method as the goal of the power and the power and quality of service based on the study of the above,it provide the reference for Wireless sensor network system industry standard used for precision agriculture.
     6. Finally, In order to deal with agricultural standardization of WSN working in low cost, and convenient data management needs. Design the middleware for IOT, and develops the software and hardware system for Irrigation in open field cultivation environment and facilities. The results show that the design of WSN technology is meet the demand of the application of precision agriculture, both of Hardware and software is convenient for system integration, Suitable for standardized requirements and large-scale promotion.
引文
[1]孙利民.无线传感器网络[M].北京:清华大学出版社,2005,3-5.
    [2]马骏.精确灌溉与施肥自动化控制系统的研究[D].山西:山西农业大学,2005.
    [3]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    [4]叶涛.精准农业的农田信息采集系统研究与开发[D].中国农业科学院博士后研究工作报告,2006.
    [5]Pierce FJ, Elliott TV. Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington [J]. Computers and Electronics in Agriculture,2008,61(1):32~43.
    [6]邮志刚,卢胜利,刘景泰.面向精准灌溉的传感器网络的研究[J].仪器仪表学报,2006,27(6)增刊:294-296.
    [7]刘卉,汪懋华,王跃宣,等.基于无线传感器网络的农田土壤温湿度监测系统的设计与开发[J].吉林大学学报:工学版,2008,38(3):04-608.
    [8]裘正军.基于GPS、GIS及虚拟仪器的精细农业信息采集与处理技术的研究[D].浙江:浙江大学,2003.
    [9]蔡德聪.农用机械设备的总线标准[J].测控技术,2003,22(3):35-37.
    [10]邓小蕾,郑立华,车艳双等.基于ZigBee和PDA的农田信息无线传感器网络[J].农业工程学报,2010,26(Supp.2):103-108.
    [11]Speckmann Hermann, Jahns Gethard..Development and application of an agriculture BUS fordatatransfe [J]. Computers and Electronic in Agriculture,1999,23(3):219-237.
    [12]杨玮,李民赞,王秀.农田信息传输方式现状及研究进展[J].农业工程学报,2008,24(5):297-302.
    [13]柳桂国,应义斌.蓝牙技术在温室环境检测与控制系统中的应用[J].浙江大学学报(农业与生命科学版),2003,29(3):329-335.
    [14]李莉,刘刚.基于蓝牙技术的温室环境监测系统设计[J].农业机械学报,2006,37(10)97-100.
    [15]Silva A R, Vuran M C. Development of a Testbed for Wireless Underground Sensor Networks [J]. EURASIP Journal on Wireless Communications and Networking,2010, (4): 1~14.
    [16]Ash J.N and Moses R.L, Acoustic time delay estimation and sensor network self-localization: experimental results [J]. Journal of the Acoustical Society of America,2005,118(2):841~850.
    [17]Savvides A., Park H., Srivastava M.B, The bits and flops of the N-hop multilateration Primitive for node localization Problems [J].in Proceedings of First ACM International Workshops on wireless sensor network and Applications (WSNA), Atlanta, GA, USA, Sep.28,2008.
    [18]Priyantha N.B., Chakraborty A., The cricket location-support system [J].in Proceedings of ACM MobiCom, Boston, MA, USA, Aug.6~11,2000.
    [19]Zhou Y. and Lamont L., Constrained linear least squares approach for TDOA localization:a global optimum solution, in Proceedings of IEEE International Conference on Acoustics [J].Speech and Signal Proceedings, Las Vegas, NV, USA, Mar.30-Apr.4,2008.
    [20]Cheng X., Thaeler A., et al. TPS:a time-based Positioning scheme for outdoor wireless sensor network [J]. in Proceedings of IEEE INFOCOM, Hong Kong, China, Mar.7~11,2004.
    [21]Peng R. and Sichitiu M. L. Angle of arrival localization for wireless sensor Network [J]. in Proceedings of 3rd Annual IEEE Communications Society Conference On Sensor and Ad hoc Communications and Network, Reston, VA, USA, Sep.25~28.
    [22]Nieuleseu D and Nath B., Ad hoc Positioning system(APS) using AOA[J].in Proceedings of IEEE INFOCOM San Franeisco, CA, USA, Mar.30-Apr.3,2003.
    [23]Tang B., Zhu X., Subrarmaninan A., et al., a Distributed localization in sensor networks using local angle measurement[J].in Proceedings of 18th International Conference on Computer Communications and Networks, SanFraneisco, CA, USA, Aug.3-6,2009.
    [24]Malhotra N., Krasniewski M., Yang C., et al., Location estimation in Ad-hoc networks with directional anterinas[J].in Proceedings of25th IEEE International Conference on Distributed Computing Systems (ICDC), Columbus, OH, USA, Jun.6-10,2005.
    [25]NasiPuri A. and Li K., A dircetionality based location discovery seheme for wireless sensornetorks [J].in Proceedings of First ACM International Workshop on Wireless Sensor Network and Applications (WSNA), Atlanta, GA, USA, Sep.28,2002.
    [26]Geziei S., A survey on wireless position estimation [J].Wireless personal Communications, 2008,44 (3):263~280.
    [27]Madigan D., Einahrawy E., Martin R., et al., Bayesian indoor Positioning systems [J].in Proeeedings of IEEE INFOCOM Miami, FL, USA, Mar.13-17,2005.
    [28]Wei Zhang, Yong He, Fei Liu, et al. Research on WSN channel fading model and experimental analysis in orchard environment [A]. In: Daoliang Li. Proceedings of Computer and Computing Technologies in Agriculture Ⅴ[C]. Beijing, China, October,2011. 326~333
    [29]朱肖肖.无线传感器网络无需测距技术节点定位算法研究与实现[D].浙江工业大学,2007.
    [30]廖先林,耿娜,石凯,赵林亮.无线传感器网络节点自身定位算法[J].东北大学学报(自然科学版),2007,(06).
    [31]梁小满,姜小奇,李英玲.无线传感器网络节点的三维质心定位算法研究[J].通信技术,2009,(02).
    [32]张正勇,孙智,王刚,余荣,梅顺良.基于移动锚节点的无线传感器网络节点定位[J].清华大学学报(自然科学版),2007,(04).
    [33]GJ Pottie, WJ Kaiser. Wireless integrated network sensors [C]. In:communications of the ACM,2000,43(5):51~58.
    [34]He T, Huang C, Blum B M, et al. Range-Free Localization Schemes for Large Scale Sensor Networks [J]. In San Diego, CA, United States:Association for Computing Machinery,2003: 81~95.
    [35]Zhibin S, Chao T, Jun C, et al. LDPC code design for asynchronous Slepian-wolf coding [J]. IEEE Transaction on Communications,2010, (2),511-520.
    [36]Oohama Y, Te S H, Universal coding for the Slepian-wolf data compression system and the strong converse theorem[J]. IEEE Transaction on Communications,1994,40(6):1908~1916.
    [37]Willems F M J. Totally asynchronous Slepian-wolf data compression [J]. IEEE Transaction on Information Theory,1998, (2):35~45.
    [38]Sunhee Y, Shallabi C. Exploiting spatial correlation towards an energy efficient clustered aggregation technique(CAG) [J].IEEE International Conference on Communications, ICC 2005,2005,5:3307~3313.
    [39]Gionis A, Mannila H, Tsaparas P. Clustering Aggregation Proceedings [J].21 st International Conference on Data Engineering, ICDE2005,2005,341~352.
    [40]Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289~1306.
    [41]Candes E J, Wakin M B.An introduction to compressive sampling[J]. IEEE Signal Processing Magazine,2008,25(2):21~30.
    [42]田丰民,陈向东,张传武.无线传感器网络动态功率管理方法[J].传感器技术,2005,24(11):33-35.
    [43]Aharon M, Elad M, Bruckstein A M.The K-SVD: An algo-rithm for designin g of over complete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006,54(11):4311~4322.
    [44]Rauhut H, Schnass KVP. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory,2008,54(5):2210-2219.
    [45]Crovella M, Kolaczyk E. Graph wavelets for spatial traffic analysis. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications.IEEE Societies,2003, 3:1848~1857.
    [46]Haupt J, Bajwa W U, Rabbat M, et al. Compressed Sensing for Networked Data. Signal Processing Magazine, IEEE,2008,25(2):92~101.
    [47]Neff R, Zakhor A. Very low bit-rate video coding based on matching Pursuits.IEEE Transactions on Circuits and Systems for VideoTeehnology,1997,7(1):158~171.
    [48]Wang R R, Yunqiang C, Huang T. Basis pursuit for tracking. International Conference on image Processing.2001,2001,1:401~404.
    [49]Shaobing C, Donoho D. Basis Pursuit. Signal, Systems and Computers, Conference Record of the Twenty-Eighth Asilomar Conference on,1994,1:41~44.
    [50]Rebollo-Neira L, Lowe D. Optimized orthogonal matching Pursuit approach. Signal Processing Letters, IEEE,2002,9(4):137-140.
    [51]Tropp JA, Gilbert A C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Transactions on information Theory,2007,53(12):4655~4666.
    [52]La Chinh, DO M N. Tree-Based Orthogonal Matching Pursuit Algorithm for Signal Reconstruction.2006 IEEE International Conference on Image Processing,2006:1277~1280.
    [53]E Candes. Compressive sampling[A]. Proceedings of the Inter-naitonal Congress of Mathematicians[C]. Madrid, Spain,20063:1433~1452.
    [54]ECandes, J Romberg, Terence Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans.on Information Theory, 2006,52(2):489~509.
    [55]D L Donoho. Compressed sensing[J]. IFEE Trans. On Information Theory.2006, 52(4):1289~1306.
    [56]李树涛,魏丹.压缩传感综述[J].自动化学报,2009年,第35卷,第11期:1369-1377.
    [57]Donoho D L.Compressed sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289~1306.
    [58]Wang Ying, PandhariPande, Ashish, et al. Distributed Compressive Wide-Band Spectrum Sensing[J].IEEE Information Theory and Applications workshop La Jolla, CA, FEB, 2009:08~13.
    [59]Boufounos, Petros T, araniuk, Richard G.1-bit compressive sensing[J].42nd Annual Information sciences and systems Princeton, NJ, MAR19-21,2008.
    [60]Shi haoJi. Bayesian Compressive Sensing[J].IEEE Transactions on Signal Proeessing June 2008, vol.56, NO.6.
    [61]G. Hua andW. Chen. Correlated data gathering in wireless sensor networks based on distributed source coding[J]. International journal of sensor Networks,2008, vol.4:13~22.
    [62]J.HauPt, W.Bajwa, M. Rabbat, et al. Compressive wireless sensing for networked data[J].IEEE Signal Proeessing Magazine, March2008, vol.25:92~101.
    [63]M.R.Duarte, M.B.Wakin, D.Baron, et al. Universal Distributed sensing via Random Projections[J].The Fifth International Conference on Information processing in Sensor Networks-IPSN'06, April 2006:177-155.
    [64]D.Baron, M.B.Wakin, Duarte.etc.Distributed ompressed sensing[OL].http://www.dsp.rice.edu/-drorb/pdf/DCS112005.pdf.
    [65]W. SWELDENS. The lifting scheme:a new philosophy in biorthogonal wavelet constructions [J]. SPIE,1995,2569:68~79.
    [66]K. Romer and F. Mattem, The design space of wireless sensor networks [J]. IEEE Wireless Communications, vol.11, no6,pp.54~61,2004.
    [67]V. Mhatre and C. Rosenberg, Homogeneous vs heterogeneous clustered sensor networks:a comparative study [C].IEEE International Conference on Communications (ICC), vol.6.IEEE.2004, pp.3646-3651.
    [68]缪迪,基于ZigBee的无线传感器网络硬件设计及应用[D].硕士学位论文,浙江大学,2010年3月.
    [69]J. Hespanha, P. Naghshtabriz, and Y Xu, A survey of recent results in networked control system [J]. Proceeding of the IEEE, vol.95, no.1, pp.138~162, January 2007.
    [70]Q. Yu, J.Chen, Y. Fan, X.S.Shen, and Y.Sun, Multi-channel assignment in wireless sensor networks:A game theoretic approach[C].in Pro. IEEE International Conference on ComPuter Communication(INFOCOM) San Diego, CA, USA, March 2010.
    [71]J.Chen, Q.Yu, P.Cheng, Game theoretical approach for channel allocation in wireless sensor and actuator networks [J]. IEEE Transactions on Automatic Control(TAC),2010, Accepted.
    [72]F.Sivrikaya and B.Yener, Time synchronization in sensor networks:a survey[J].IEEE Network, vol.18, no.4, pp.45-50, Jul-Aug.2004.
    [73]G. Hackmann, C.-L.Fok, G.-C. Roman, and C. Lu. Agimone: Middleware support for seamless integration of sensor and in Networks[A]. DCOSS'2006[C].
    [74]陈雄,杜以书,唐国新.无线传感器网络的研究现状及发展趋势[J].系统仿真技术,2005.7,1(2):67-73.
    [75]Culler D, Estrin D, Srivastava M. Overview of Sensor Networks[J]. Computer,2004,37(8): 41~49.
    [76]Jiang Q, Manivannan D. Routing Protocols for Sensor Networks [A]. In:Proceedings of 1st IEEE Consumer Communications and Networking Conference[C]. IEEE Press,2004:93-98.
    [77]Chen D, Varshney P.K. QoS Support in Wireless Sensor Networks:A Survey[A]. In: Proceedings of International Conference on Wireless Networks[C]. CSREA Press,2004: 227~233.
    [78]P. Bonnet, J. Gehrke and P. Seshadri. Towards Sensor Database Systems[J]. Proc.2ndInt 1Conf. Mobile Data Management (MDM01),2001,314~810.
    [79]S. R. Madden, M. J. Franklin and J. M. Hellerstein. TinyDB:An Acquisitional Query Processing System for Sensor Networks [J]. ACM Trans. Database Systems, v01.30, no.1, 2005, PP.122~173.
    [80]Coulson G, Baichoo S, Moonian O. A Retrospective on the Design of the Middleware Platform[J]. ACM Multimedia Journal,2002,8(5):340-352.
    [81]石光明,刘丹华等.压缩感知理论及其研究进展[J].电子学报,May 2009,37(5):1070-1081.
    [82]Nagy C, Itron C. Embedded systems design using the TI MSP430 series[J]. Elsevier,2003.
    [83]沈建华,翟骁曙.MSP430系列16位超低功耗单片机实践与系统设计[M].清华大学出版社,2005.
    [84]韩安太,何勇,李剑锋等.基于无线传感器网络的粮虫声信号采集系统设计[J].农业工程学报,2010,26(6):81-187.
    [85]肖克辉,肖德琴,罗锡文.基于无线传感器网络的精细农业智能节水灌溉系统[J].农业工程学报,2010,26(11):170-175.
    [86]张伟,何勇,裘正军等.基于无线传感网络与模糊控制的精细灌溉系统设计[J].农业工程学报,2009,25(增刊2):7-12.
    [87]姜晟,王卫星等.能量自给的果园信息采集无线传感器网络节点设计[J].农业工程学报,2012,28(9)
    [88]罗隆福,李鑫,李芬芬.光伏系统最大功率点跟踪算法的改进及应用[J].电力电子技术,2011,45(4)
    [89]李珂,杨雪等.适用于无线传感器网络太阳能系统的MPPT算法[J].清华大学学报,2011,51(5)
    [90]Wei Zhang, Yong He, Fei Liu, et al. The Fuzzy Decision-Making Method of Irrigation Amount Based on ET and Soil Water Potentioal [A]. In: In: Proceedings of 2011 ICECC [C]. Ningbo, China, September 2011.2927-2931
    [91]Schier, Michael. Optimizing selective ARQ for H.264 live streaming: A novel method for predicting loss-impact in real time [J]. IEEE Trans on Multimedia,2012,14(2):415-430.
    [92]Wei Zhang, Yong He, Fei Liu, et al. Research on WSN channel fading model and experimental analysis in orchard environment [A]. In:Daoliang Li. Proceedings of Computer and Computing Technologies in Agriculture V [C]. Beijing, China, October,2011.326-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700