用户名: 密码: 验证码:
行驶工况自适应的PHEV能量在线实时优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油经济性是衡量混合动力电动汽车(Hybrid Electric Vehicle, HEV)性能的一个重要指标。与传统汽车相比,HEV具有再生制动功能,其驱动电机在制动期间工作于发电状态,回收制动能量并将回收的能量存储到能量存储单元,以供未来车辆驱动或车载电子设备使用,从而提高车辆的燃油经济性。此外,HEV至少由两种动力源(一般为发动机和电机/电池)驱动,通过适当的控制策略使两种或多种动力源都工作在高效率区间,显著提高整车的燃油经济性。由HEV发展而来的插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle, PHEV)是汽车产业由传统汽油机汽车向纯电动汽车(Battery-powered Electric Vehicle, BEV)发展的过渡产品,在电池技术尚未达到BEV驾驶要求之前的很长一段时间将发挥重要作用,具有非常大的发展潜力。
     目前,HEV上的制动系统为液压制动,一般按一定比例对前后轴制动力进行分配,这样导致前后轮不能同时刹住,从而给车辆的稳定和安全带来隐患;另外,由于制动力无法精确控制,不能使再生制动能量得到最优利用。HEV普遍采用基于经验的逻辑门限控制对前轴再生制动与摩擦制动力矩进行控制,由于依赖于工程经验,门限值的选择比较困难。在驱动能量控制方面,因HEV电池容量较小且无外接充电装置,因此只能工作在CS (Charge-Sustaining)模式。而PHEV除了继承HEV的优点外,还搭载有较大容量电池及外接充电装置,在能量控制方面除了CS模式外还能工作在CD (Charge-Depleting)模式,即仅靠电池驱动车辆的纯电动模式。在PHEV上使用的能量控制策略主要为基于规则(Rule-Based, RB)的CD-CS控制策略,即先使用电池驱动PHEV,当电池充电状态(State of Charge, SOC)下降到一定的水平,再启动发动机配合电池一起工作,此时的能量控制与HEV一样。RB控制策略不能使电池和发动机工作在最优的工作区域,尤其是在CD模式下,当电池电流较大时,电池的内部损耗也会比较大,从而影响电池的效率导致燃油经济性下降。
     为了解决上述问题,提高PHEV的燃油经济性,本论文进行了如下研究工作:
     针对液压制动系统制动力矩不能得到精确控制从而影响到不能获得最大的再生制动能量问题,提出了一种新的PHEV结构,该结构采用电子机械制动(Electronic Mechanical Brake, EMB)系统对每个车轮提供制动力矩,制动力矩可精确控制。论文分析了新的PHEV结构的工作原理,建立了整车动力学模型。构建了相应的实验平台,通过实验测量得到了发动机、电动/发电机和锂离子电池的特性曲线,以实验数据为基础,建立了发动机、电动/发电机和锂离子电池的计算机仿真模型,为后续工作奠定了基础。
     针对目前的EMB系统在高温环境下永磁电机会产生“退磁”的现象,从而影响系统性能的问题,论文提出一种新型的EMB结构为PHEV提供制动力矩。进一步,对EMB系统的防抱死功能进行了研究。为解决ABS系统中常用的滑模控制算法存在“颤抖”问题,在路面识别的基础上提出了基于切换增益模糊调节的滑模控制算法的ABS的控制。提出了一种新的车身速度观测器设计方案,解决了车身速度在车轮打滑或抱死时不能准确测量的问题。
     由于EMB系统制动力矩可精确控制,本论文按照理想制动力分配曲线(Ⅰ曲线)将制动力分配到前后轴,并应用模糊逻辑控制策略取代基于经验的逻辑门限控制策略,对前轴再生制动力矩和摩擦制动力矩进行精确控制,从而实现了再生制动力矩的最大程度地利用。仿真实验结果表明该方法可回收更多的再生制动能量。
     分别采用动态规划(Dynamic Programming, DP)和二次规划(Quadratic Program, QP)方法对工况已知(UDDS、HFEDS、US06、SC03和冷UDDS工况)的PHEV进行能量离线优化,找出整个工况下的能量全局最优分配方案;比较分析了DP和QP优化方法的优缺点,为全局优化方法的选择提供了依据。
     为了解决采用DP和QP优化方法需要工况已知的问题,提出了工况预测算法。以美国环保局(EPA)提供的乘用车19种类型行驶工况为分类标准,提出了基于径向基神经网络(Radial Basis Function Neural Network, RBFNN)的工况预测算法。在工况预测的基础上,提出利用DP优化结果训练得到的RBFNN和利用QP优化结果训练得到的RBFNN两种PHEV能量在线实时控制策略,利用工况预测算法和能量优化控制的集成方法对PHEV的能量进行控制。与其它能量控制方法相比,仿真结果表明该方法使燃油经济性得到了明显的提高。
     为了验证本文提出的能量实时优化控制策略的可行性和有效性,在参数优化匹配的基础上将纯电动汽车改装成串联式PHEV,并将基于DP优化结果的能量实时优化控制策略下载到dSPACE中作为实车的能量控制策略。实车实验结果表明,在高速档、中速档、低速档和混合档工况下应用本文提出的能量实时优化控制策略PHEV的燃油经济性均有较大幅度的提高,分别为11.6%、13.1%、13.5%和10.4%。此实车实验结果表明,本文提出的能量在线实时优化控制策略可行、有效,为商用PHEV的能量在线实时优化控制提供了新的方法。
Fuel economy is an important indicator to measure the performance of Hybrid Electric Vehicle (HEV). Compared with traditional vehicles, HEV has the function of regenerative braking. Its driving motor is in generator mode during braking, recycling the braking energy, storing the energy in the energy storage unit, so as to offer energy for the vehicle driver or the vehicle electronic equipment in the future, which can improve the fuel economy of vehicles. In addition, HEV is driven by at least two sources of power (usually engine and electric motor/battery), and through appropriate control strategy, the two or multiple power sources are working in a range of high efficiency, significantly improving the vehicle fuel economy. Derived from HEV, Plug-in Hybrid Electric Vehicle (PHEV) is a transitional product from the traditional gasoline vehicles to a pure electric vehicle (Battery-powered Electric Vehicle BEV). It will play an important role and have a very large potential in a long time before the battery reaches the BEV driving requirements.
     The braking system of HEV is the hydraulic brake, usually allocating the braking force between the front and rear axles according to a certain percentage, the consequence of which is that the front and rear wheels can not be stopped at the same time, and this is harmful to the vehicle stability and security. Moreover, the regenerative braking energy can not be made to get the optimal use because the braking force can not be precisely controlled. The HEV universally adopts experience-based logic threshold control on the front axle regenerative braking and friction braking torque distribution. The choice of threshold is difficult because it depends on the engineering experience. As to the driving energy control, HEV battery capacity is small and has no external charging device, so it can only work in CS (Charge-Sustaining) Mode. However, in addition to inheriting the advantages of the HEV, PHEV, equipped with a larger capacity battery and an external charging device, can work in the CS mode as well as the CD (Charge-Depleting) Mode, which means, it is a pure electric mode of battery-powered-alone vehicles. The energy control strategy used in PHEV is the CSCD control strategy which is mainly based on rules (Rule-Based. RB); it means to use the battery to drive PHEV first, then when the battery state of charge (SOC) drops to a certain level, the engine can be started, working together with the battery. At this point, the energy control is the same as the one of HEV. RB control strategy can not make the battery and the engine work in the optimal area, especially in the CD mode. When the battery current is large, the battery internal losses will be relatively large, thus affecting the efficiency of the battery, resulting in decreased fuel economy.
     In order to solve these problems to improve the PHEV fuel economy, the research of this paper focus on the following aspects:
     Because the braking torque in the hydraulic brake system can not be precisely controlled, causing the vehicles not obtaining the largest regenerative braking energy, this paper puts forward a new structure of PHEV----the structure of using the system of Electronic Mechanical Brake (EMB) to provide braking torque to each wheel, precisely controlling the braking torque. The paper analyzes the principles of the new PHEV structure, establishing the vehicle dynamics model. This paper builds the corresponding experimental platform, getting the characteristic curve of the engine, electric/generator and lithium-ion battery by experimental measurements; based on experimental data, the computer simulation model of the engine, electric/generator and lithium-ion battery is also established in this model. This model contributes a lot to the follow-up research.
     To solve the problem that the permanent magnet motor of the EMB system produces the phenomenon of the demagnetization under high temperature, thus affecting the performance of system, this paper proposes a new EMB structure to provide braking torque to the PHEV. Furthermore, this paper also studies the function of the anti-lock braking of the EMB system. There is "trembling" in the sliding mode control algorithm commonly used in the ABS system, therefore on the basis of the road surface recognition, this paper brings forward the ABS of sliding mode control based on fuzzy switching gain adjustment. A new design of vehicle body speed observer is also proposed to solve the problem that the vehicle body speed can not be accurately measured when the wheels are skidding or locking.
     Because the EMB braking torque can be precisely controlled, this paper uses ideal braking force distribution method (I-curve) to distribute braking force to front and rear axle, and fuzzy logic control strategy is used to replace the experience-based logic threshold control strategy, the greatest degree of regenerative braking torque can be achieved by the precise allocation between the front axle regenerative braking torque and friction braking torque. The simulation results show that this method can recycle more regenerative braking energy.
     By using dynamic programming (DP) and quadratic programming (QP), the energy offline of the PHEV whose operating conditions are already known (UDDSn HFEDS、US06、SC03and cold UDDS) is optimized; the energy globally optimal allocation scheme is found out; the advantages and disadvantages of the DP and QP optimization methods are comparative analyzed; and a basis is provided for the choice of the global optimization method.
     Using the driving cycles of the19types of passenger cars of the U.S. Environmental Protection Agency as the classification criteria, this paper proposes driving cycle prediction algorithm based on Radial Basis Function Neural Network (RBFNN). On the basis of the driving cycle forecast, two PHEV energy online and realtime control strategies are proposed—one is the RBFNN resulting from using the QP to optimize the results of training; the other is RBFNN resulting from using the QP to optimize the results of training. By using the driving cycle prediction algorithm and energy optimization of the integrated control of the driving cycles, the PHEV energy can be controlled. Compared with other energy control method, the simulation results show that this method can significantly improve the fuel economy.
     In order to verify the feasibility and effectiveness of the energy online and realtime optimization of the control strategy proposed in this paper, pure electric vehicle is converted into a series PHEV on the basis of the parameter optimization; the online and realtime optimal energy control strategy based on the results of the DP optimization is downloaded to the dSPACE as a energy control strategy of a real car. The real vehicle test results show that the online and realtime optimal energy control strategy proposed in this paper in high speed, medium speed, low speed and mixed speed driving clcye, PHEV fuel economy have dramatically increased----11.6%,13.1%,13.5%and10.4%respectively. The real vehicle test results show that the energy online and realtime optimal control strategy proposed in this paper is feasible and effective, providing a new approach of online and realtime optimal energy control strategy for commercial PHEV.
引文
[1]Bob Dudley. BP Statistical Review of World Energy. London:BP Company, 2011,6-11
    [2]周文,赵安坤,周秋媚.中国石油战略问题思考和对策分析.成都理工大学学报(社会科学版),2010,18(3):56-63
    [3]Jaruwan Chontanawata, Lester C. Huntb, Richard Piersec. Does energy consumption cause economic growth?:Evidence from a systematic study of over 100 countries. Journal of Policy Modeling,2008,30(2):209-220
    [4]沈汝发,李晓慧,刘雪.中国原油进口依存度首超警戒度.经济参考报,2010-3-29
    [5]王建良,冯连勇.世界石油出口能力预测及对中国石油进口的影响.预测,2011,30(3):6-10
    [6]殷建平,孙德艳;.汽车消费增长与中国石油安全问题.改革与战略,2010,26(11):44-46
    [7]F. Willems, D. Foster. Integrated Powertrain Control to meet future CO2 and Euro-6 emissions targets for a diesel hybrid with SCR-deNOx system. In:Proc. of 2009 American Control Conference(ACC '09). St. Louis, Missouri, USA, 2009,3944-3949
    [8]彭海.增强汽车排放污染危害认识加快”国Ⅲ”实施步伐.农业技术与装备,2008,(6):14-15
    [9]马春阳,侯建坤.我国轻型汽车排放新标准及OBD系统.上海汽车,2008,(2):36-39
    [10]祝毓.世界新能源汽车发展动态.机电一体化,2011,(2):1-3
    [11]万钢.我国节能与新能源汽车发展模式的思考与探索.交通与运输,2008,24(2):1-3
    [12]戎喆慈.混合动力汽车现状与发展.农业装备与车辆工程,2008,(7):5-8
    [13]Cho Yong Ju, Jun Bum Su, Sin Soo Cheol, etc. Synchronous control method for four in-wheel otors of electric vehicle (EV). In:Proc. of 2010 International Conference on Electrical Machines and Systems (ICEMS). Incheon,2010. 2036-2039
    [14]邵汉桥,张维,陈鹏云.我国电动汽车发展状况分析.华中电力,2010,23(5):10-15
    [15]杨峰,傅俊.纯电动汽车经济性比较与分析.武汉理工大学学报(信息与管理工程版),2009,31(2):286-288,296
    [16]卢世刚,刘莎.电动汽车用动力电池的主要发展方向.新材料产业,2005,(4):49-54
    [17]白中浩,曹立波,杨健.纯电动汽车用动力电池性能评价方法研究.湖南大学学报(自然科学版),2006,33(5):48-51
    [18]D. B. Edwards, C. Kinney. Advanced lead acid battery designs for hybrid electric vehicles. In:Proc. of the Sixteenth Annual Battery Conference on Applications and Advances. Long Beach, CA, USA,2001,207-212
    [19]R. Carter, A. Cruden, P. J. Hall, etc. An Improved Lead--Acid Battery Pack Model for Use in Power Simulations of Electric Vehicles. IEEE Transactions on Energy Conversion,2011,29(99):1-8
    [20]M. Sarvi, M. A. S. Masoum. A neural network model for Ni-Cd batteries. In: Proc. of 43rd International Universities Power Engineering Conference(UPEC 2008). Padova,2008,1-5
    [21]孔祥华,王晓峰.镉镍旧电池巾镉镍资源的回收.电池,2000,30(5):4
    [22]Xuyun Feng, Zechang Sun. A battery model including hysteresis for State-of-Charge estimation in Ni-MH battery. In:Proc. of IEEE Vehicle Power and Propulsion Conference(VPPC'08). Harbin,2008,1-5
    [23]Zhang Pei, Du Changqing, Yan Fuwu, etc. Energy efficiency of a Ni-MH battery used in hybrid electric vehicles. In:Proc. of 2011 International Conference on Electric Information and Control Engineering (ICEICE). Wuhan, 2011,4996-4999
    [24]J. McDowall. Substation battery options-present and future. In:Proc. of 1999 IEEE Transmission and Distribution Conference. New Orleans, LA, USA,1999, 518-522
    [25]Zheng Minxin, Qi Bojin, Du Xiaowei. Dynamic model for characteristics of Li-ion battery on electric vehicle. In:Proc. of 4th IEEE Conference on Industrial Electronics and Applications(ICIEA 2009). Xi'an,2009,2867-2871
    [26]S. Bhide, T. Shim. Novel Predictive Electric Li-Ion Battery Model Incorporating Thermal and Rate Factor Effects. IEEE Transactions on Vehicular Technology,2011,60(3):819-829
    [27]N. Penina, Y. V. Turygin, V. Racek. Comparative analysis of different types of hybrid electric vehicles. In:Proc. of 2010 13th International Symposium MECHATRONIKA. Trencianske Teplice,2010,102-104
    [28]曾小华,王庆年,李骏.基于ADVISOR2002混合动力汽车控制策略模块开发.汽车工程,2004,26(4):394-396
    [29]张卫青.混合动力汽车的发展现状及其关键技术.重庆工学院学报,2006,20(5):19-22
    [30]杨妙樑.丰田普锐斯混合动力车制动系统的发展.汽车与配件,2010,(35):23-25
    [31]赵兴福,魏健.可外接充电式混合动力电动汽车特点和设计浅析.上海汽车,2010,(3):3-6
    [32]A. R. Salisa, N. Zhang, J. G. Zhu. A Comparative Analysis of Fuel Economy and Emissions Between a Conventional HEV and the UTS PHEV. IEEE Transactions on Vehicular Technology,2011,60(1):44-54
    [33]Zhiguang Zhou, Chris Mi. Power Management of PHEV Using Quadratic Programming. International Journal of Electric and Hybrid Vehicles,2011,3(3): 246-258
    [34]Yimin Gao, Mehrdad Ehsani. Design and Control Methodology of Plug-in Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics,2010, 57(2):633-640
    [35]A. Di Filippi, S. Stockar, S. Onori, etc. Model-based life estimation of Li-ion batteries in PHEVs using large scale vehicle simulations:An introductory study. In:Proc. of 2010 IEEE Vehicle Power and Propulsion Conference (VPPC). Lille,2010,1-6
    [36]A. Bandyopadhyay. Wang Lingfeng, V. K. Devabhaktuni, etc. Aggregator analysis for efficient day-time charging of Plug-in Hybrid Electric Vehicles. In: Proc. of 2011 IEEE Power and Energy Society General Meeting. San Diego, CA, USA,2011,1-8
    [37]于秀敏,曹珊,李君.混合动力汽车控制策略的研究现状及其发展趋势.机械工程学报,2006,42(11):10-16
    [38]王银辉,刘兴华,仇滔.混合动力电动汽车的研究.内燃机,2003,(3):27-31
    [39]李卫民.混合动力汽车控制系统与能量管理策略研究:[上海交通大学博士学位论文].上海:上海交通大学电子信息与电气工程学院,2008,5-8
    [40]Xu Jiang-Wen, Zheng Liang. Simulation and Analysis of Series Hybrid Electric Vehicle (SHEV) Based on ADVISOR. In:Proc. of 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).2010,354-357
    [41]S. Bogosyan, M. Gokasan, D. J. Goering. A Novel Model Validation and Estimation Approach for Hybrid Serial Electric Vehicles. IEEE Transactions on Vehicular Technology,2007,56(4):1485-1497
    [42]V. Sezer, M. Gokasan, S. Bogosyan. A Novel ECMS and Combined Cost Map Approach for High-Efficiency Series Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology,2011,60(8):3557-3570
    [43]U. D. Choi, K. T. Kim, Y. N. Kim, etc. Development of the Power Generator for Series Hybrid Electric Vehicle. In:Proc. of the 1st International Forum on Strategic Technology. Ulsan,2006,447-450
    [44]Li Xin, S. S. Williamson. Comparative Investigation of Series and Parallel Hybrid Electric Vehicle (HEV) Efficiencies Based on Comprehensive Parametric Analysis. In:Proc. of IEEE Vehicle Power and Propulsion Conference(VPPC 2007). Arlington, TX, USA,2007,499-505
    [45]Lee Hyeoun-Dong, Koo Euh-Suh, Sul Seung-Ki, etc. Torque control strategy for a parallel-hybrid vehicle using fuzzy logic. IEEE Industry Applications Magazine,2000,6(6):33-38
    [46]F. U. Syed, M. L. Kuang, J. Czubay, etc. Derivation and Experimental Validation of a Power-Split Hybrid Electric Vehicle Model. IEEE Transactions on Vehicular Technology,2006,55(6):1731-1747
    [47]Jeongmin Kim, Talchol Kim, Byungsoon Min. etc. Mode Control Strategy for a Two-Mode Hybrid Electric Vehicle Using Electrically Variable Transmission (EVT) and Fixed-Gear Mode. IEEE Transactions on Vehicular Technology, 2011,60(3):793-803
    [48]B. Mashadi, S. A. M. Emadi. Dual-Mode Power-Split Transmission for Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology,2010,59(7): 3223-3232
    [49]F. U. Syed, M. L. Kuang, Ying Hao. Active Damping Wheel-Torque Control System to Reduce Driveline Oscillations in a Power-Split Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology,2009,58(9):4769-4785
    [50]Liu Yi-Hwa, Hsieh Ching-Hsing, Luo Yi-Feng. Search for an Optimal Five-Step Charging Pattern for Li-Ion Batteries Using Consecutive Orthogonal Arrays. IEEE Transactions on Energy Conversion,2011,26(2):654-661
    [51]Y. C. Hsieh, C. S. Huang. Li-ion battery charger based on digitally controlled phase-shifted full-bridge converter. IET Power Electronics,2011,4(2):242-247
    [52]宋雪桦,吴和生,刘锦娟.混合电动汽车电池管理系统设计.电子测量与仪器学报,2011,25(9):787-792
    [53]S. G. Li, S. M. Sharkh, F. C. Walsh, etc. Energy and Battery Management of a Plug-In Series Hybrid Electric Vehicle Using Fuzzy Logic. Vehicular Technology, IEEE Transactions on,2011,60(8):3571-3585
    [54]徐玮,魏学哲,沈丹.电池管理系统中电压电流检测不同步对电池内阻辨识影响的分析.汽车工程,2009,31(3):228-233
    [55]Tang Xidong, Mao Xiaofeng, Lin Jian, etc. Li-ion battery parameter estimation for state of charge. In:Proc. of 2011 American Control Conference(ACC). San Francisco, CA, USA,2011,941-946
    [56]P. Spagnol, S. Rossi, S. M. Savaresi. Kalman Filter SOC estimation for Li-Ion batteries. In:Proc. of 2011 IEEE International Conference on Control Applications(CCA). Denver, CO, USA,2011,587-592
    [57]Shi Pu, Zhao Yiwen. Application of Unscented Kalman Filter in the SOC Estimation of Li-ion Battery for Autonomous Mobile Robot. In:Proc. of 2006 IEEE International Conference on Information Acquisition. Weihai,2006, 1279-1283
    [58]温家鹏,姜久春,文锋Kalman算法在纯电动汽车SOC估算中的应用误差分析.汽车工程,2010,32(3):188-192
    [59]N. A. Windarko, Choi Jaeho, Chung Gyo-Bum. SOC estimation of LiPB batteries using Extended Kalman Filter based on high accuracy electrical model. In:Proc. of 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia(ICPE & ECCE). Jeju,2011,2015-2022
    [60]戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计.机械工程学报,2007,43(2):92-95
    [61]G. Capizzi, F. Bonanno, C. Napoli. Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage. In:Proc. of 2011 International Conference on Clean Electrical Power(ICCEP). Ischia,2011, 341-344
    [62]Cai Cheng-Hui, Du Dong, Liu Zhi-Yu, etc. Artificial neural network in estimation of battery state of-charge (SOC) with nonconventional input variables selected by correlation analysis. In:Proc. of 2002 International Conference on Machine Learning and Cybernetics. Beijing.2002,1619-1625
    [63]刘倩.基于人工神经网络的电池容量预测.武汉理工大学学报(信息与管理工程版),2006,28(3):28-30
    [64]Y. Ota, H. Taniguchi, T. Nakajima, etc. Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition. In:Proc. of 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe). Gothenburg,2010,1-6
    [65]M. C. Kisacikoglu, B. Ozpineci, L. M. Tolbert. Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger. In:Proc. of 2010 IEEE Energy Conversion Congress and Exposition(ECCE). San Jose, California, USA,2010,870-876
    [66]Lee Tae-Kyung, Z. S. Filipi. Response surface modeling approach for the assessment of the PHEV impact on the grid. In:Proc. of 2011 IEEE Vehicle Power and Propulsion Conference(VPPC). Chicago, IL, USA,2011,1-6
    [67]U. K. Madawala, D. J. Thrimawithana. A Bi-directional Inductive Power Interface for Electric Vehicles in V2G Systems. IEEE Transactions on Industrial Electronics,2011,58(10):4789-4796
    [68]X. Zhou, S. Lukic, S. Bhattacharya, etc. Design and control of grid-connected converter in bi-directional battery charger for Plug-in hybrid electric vehicle application. In:Proc. of 2009 IEEE Vehicle Power and Propulsion Conference(VPPC'09). Dearborn, MI, USA,2009,1716-1721
    [69]孔繁森,郭孔辉,宗长富.全局演化局部模拟优化技术在汽车结构参数优化中的应用.汽车工程,2001,23(2):73-77
    [70]Wang Zhancheng, Huang Bufu, Xu Yangsheng, etc. Optimization of Series Hybrid Electric Vehicle Operational Parameters By Simulated Annealing Algorithm. In:Proc. of IEEE International Conference on Control and Automation(ICCA 2007). Guangzhou,2007,1536-1541
    [71]Chen Keliang, Deng Yuanwang, Zhou Fei, etc. Control strategy optimization for hybrid electric vehicle based on particle swarm and simulated annealing algorithm. In:Proc. of 2011 International Conference on Electric Information and Control Engineering (ICEICE). Wuhan,2011,2054-2057
    [72]Liu Xudong, Wu Yanping, Duan Jianmin. Optimal Sizing of a Series Hybrid Electric Vehicle Using a Hybrid Genetic Algorithm. In:Proc. of 2007 IEEE International Conference on Automation and Logistics. Jinan,2007,1125-1129
    [73]李剑平.基于遗传算法的汽车传动系参数优化.拖拉机与农用运输车,2008,35(4):63-67
    [74]文孝霞,杜子学.基于遗传算法的汽车动力传动系匹配设计变量优化.重庆交通学院学报,2005,24(2):128-130
    [75]Sun Tsung-Ying, Huang Cheng-Sen, Tsai Shang-Jeng. Particle Swarm Optimizer based controller design for Vehicle Navigation System. In:Proc. of IEEE International Conference on Systems, Man and Cybernetics(SMC 2008.). Singapore,2008,909-914
    [76]Wang Zhancheng, Huang Bufu, Li Weimin, etc. Particle Swarm Optimization for Operational Parameters of Series Hybrid Electric Vehicle. In:Proc. of IEEE International Conference on Robotics and Biomimetics(ROBIO '06). Kunming, 2006,682-688
    [77]Song Enzhe, Yao Chong, Fan Liyun. Analysis and investigation on PHEV Economy flow. In:Proc. of 2011 International Conference on Electronics, Communications and Control(ICECC). Zhejiang,2011,4172-4175
    [78]Wang Junmin, R. G. Longoria. Coordinated and Reconfigurable Vehicle Dynamics Control. IEEE Transactions on Control Systems Technology,2009, 17(3):723-732
    [79]柳剑玲.汽车液压制动主缸技术条件及试验方法的研究.安徽建筑工业学院学报(自然科学版),2010,18(3):93-95
    [80]朱伯比.论现代汽车的制动性能及对策.汽车工程,1997,12(2):89-95
    [81]丁问司.工程车辆全液压制动系统管路压力传递特性.液压与气动,2010,(5):86-89
    [82]周海涛.液压制动分泵温度过高引起的问题.汽车运用,2001,(11):43-44
    [83]赵广俊,吕建刚,宋彬.液压混合动力履带车辆联合制动模糊控制.控制理论与应用,2010,27(12):1674-1680
    [84]秦大同,李江,杨阳.全轮驱动混合动力汽车再生制动系统控制策略.重庆大学学报,2008,31(9):971-976
    [85]詹迅,秦大同,杨阳.轻度混合动力汽车再生制动控制策略与仿真研究.中国机械工程,2006,17(3):321-324
    [86]林逸,沈沉,王军.线控制动系统防抱死特性模糊控制方法的仿真研究.公路交通科技,2006,23(10):124-127
    [87]孙仁云,李治.基于变路面SBC最佳滑移率的研究.中国机械工程,2008,19(4):481-486
    [88]周之光,张桂香.基于带切换增益模糊调节的滑模控制算法的车辆电液制动系统.汽车工程,2010,32(3):228-233
    [89]Zhang Bingzhan, C. C. Mi, Zhang Mengyang. Charge-Depleting Control Strategies and Fuel Optimization of Blended-Mode Plug-In Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology,2011,60(4):1516-1525
    [90]Jeffrey Gonder, Tony Markel. Energy management strategies for plug-in hybrid electric vehicles. In:Proc. of 2007 World Congress. Detroit, Michigan,2007, 1-6
    [91]A. Simpson. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology. In:Proc. of 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-22). Yokohama, Japan,2006, 1-15
    [92]T. Markel, A. Simpson. Plug-in hybrid electric vehicle energy storage system design. In:Proc. of Advanced Automotive Battery Conference. Baltimore, Maryland, USA,2006,1033-1039
    [93]Tony Markel, Andrew Simpson. Energy storage systems considerations for grid-charged hybrid electric vehicles. In:Proc. of SAE Future Transportation Technology and IEEE Vehicle Power and Propulsion Joint Conferences. Chicago, Illinois, USA,2005,1-6
    [94]Tony Markela, Keith Wipkea. Modeling grid-connected hybrid electric vehicle using ADVISOR. In:Proc. of 16th Annual Battery Conference on Applications and Advances. Long Beach, California, USA,2001,23-29
    [95]Qiuming Gong, Yaoyu Li, Zhong-Ren Peng. Trip-Based Optimal Power Management of Plug-in Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology,2008,57(6):3393-3401
    [96]Qiuming Gong, Yaoyu Li, Zhong-Ren Peng. Trip Based Power Management of Plug-in Hybrid Electric Vehicle with Two-Scale Dynamic Programming. In: Proc. of IEEE Vehicle Power and Propulsion Conference. Arlington, TX, USA, 2007,12-19
    [97]S. J. Moura, H. K. Fathy, D. S. Callaway. A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology,2010,19(3):545-555
    [98]Qiuming Gong, Yaoyu Li, Zhong-Ren Peng. Optimal power management of plug-in HEV with intelligent transportation system. In:Proc. of 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich,2007,1-6
    [99]Chan-Chiao Lin, Huei Peng, J.W. Grizzle. A Stochastic Control Strategy for Hybrid Electric Vehicles. In:Proc. of Proceedings of the 2004 American Control Conference. Boston, MA, USA,2004,4710-4715
    [100]Xiaolan Wu, Binggang Cao, Xueyan Li. Component sizing optimization of plug-in hybrid electric vehicles. Applied Energy.2011,88(3):799-804
    [101]Y. Cheng, R. Trigui, C. Espanet, etc. Specifications and Design of a PM Electric Variable Transmission for Toyota Prius Ⅱ. IEEE Transactions on Vehicular Technology,2011,60(9):4106-4114
    [102]S. A. Syed, W. Lhomme, A. Bouscayrol. Modelling comparison of planetary gear using EMR and Simdriveline for Hybrid Electric Vehicles. In:Proc. of IEEE Vehicle Power and Propulsion Conference(VPPC '09). Dearborn, MI, USA,2009,1835-1841
    [103]彭栋.混合动力汽车制动能量回收与ABS集成控制研究:[上海交通大学博士学位论文].上海:上海交通大学机械与动力工程学院,2007,21-24
    [104]J. D. Setiawan, M. Safarudin, A. Singh. Modeling, simulation and validation of 14 DOF full vehicle model. In:Proc. of 2009 International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). Bandung,2009,1-6
    [105]J. Sorstedt, L. Svensson, F. Sandblom, etc. A New Vehicle Motion Model for Improved Predictions and Situation Assessment. IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1209-1219
    [106]马春卉.基于MATLAB的汽车ESP系统控制模型及方法研究:[南京理工大学硕士学位论文].南京:南京理工大学机械工程学院,2008,18-20
    [107]李君.车辆ABS控制系统快速开发研究:[上海交通大学博士学位论文].上海:上海交通大学机械与动力工程学院,2002,19-20
    [108]B.W Anthony, H. Z. Stanislaw. Modeling and control of an automated vehicle. Vehicle System Dynamics,1997,27(3):131-155
    [109]秦建国,雷雨龙.基于神经网络的发动机稳态模型研究.汽车技术,1998,(9):14-15,23
    [110]郝峥,刘懿,靳晓雄.汽车发动机模型的建立和研究.轻型汽车技术,2009,(6):11-14
    [111]朱阳,赵治国.混合动力汽车发动机建模方法研究.上海汽车,2009,(6):9-12
    [112]王立峰,李正熙.前向神经网络快速学习算法在发动机模型辨识中的应用.航空动力学报,2003,18(5):705-708
    [113]钱峰,邓方林.航空发动机的模糊马尔可夫模型辨识方法研究.西北工业大学学报,2002,20(1):113-116
    [114]A. Dutka, H. Javaherian, M. J. Grimble. Data driven engine model identification and real-time adaptation. In:Proc. of 2011 American Control Conference (ACC). San Francisco, CA, USA,2011,3320-3325
    [115]张涛,蒋静坪,张国宏.交流永磁同步电机伺服系统的线性化控制.中国电 机工程学报,2001,21(6):40-43
    [116]费德成.HEV用永磁同步电机优化设计与系统性能分析:[江苏大学博士学位论文].南京:江苏大学电气信息工程学院,2008,160-162
    [117]刘艳,邵诚.感应电机广义模型的建立及仿真研究.系统仿真学报,2004,16(9):2052-2055
    [118]段梦凡,谭永红.基于神经网络的超声波电机模型辨识.控制工程,2010,17(5):607-610
    [119]王新,戴先中.一种基于神经网络逆的感应电动机解耦线性化改进策略.电工技术学报,2008,23(4):32-38
    [120]王家军.基于自回归小波神经网络的感应电动机滑模反推控制.自动化学报,2009,35(1):1-8
    [121]郝伟娜,章明明,朱学忠.基于系统辨识的开关磁阻电机P1参数整定.微电机,2010,43(9):74-76
    [122]U Kinche, A Dasis. Estimation of Tyre Friction for Enhanced ABS-systems. Tokyo:Aveg Congress,1994,221-222
    [123]刘国福,张圮,王跃科.防抱死制动系统基于最佳滑移率的滑模变结构控制方法.国防科技大学学报,2004,26(2):70-74
    [124]刘国福,张玘,王跃科.一种基于模型的最佳滑移率计算方法.公路交通科技,2004,21(7):111-114
    [125]M Burckhardt, Fahrwerktechnik. Radschlupf-Regelsysteme. Wrzburg:Vogel Verlag,1993,162-165
    [126]Chunting Mi, Hui Lin, Yi Zhang. Iterative Learning Control of Antilock Braking of Electric and Hybrid Vehicles. IEEE Transactions on Vehicular Technology,2005,54(2):486-494
    [127]Line Chris, Manzie Chris, C. Good Malcolm. Electromechanical Brake Modeling and Control:From PI to MPC. IEEE Transactions on Control Systems Technology,2008,16(3):446-457
    [128]Krishnamurthy Prashanth, Lu Wenzhe, Khorrami Farshad. Robust Force Control of an SRM-Based Electromechanical Brake and Experimental Results. IEEE Transactions on Control Systems Technology,2009,17(6):1306-1317
    [129]Kun Yang, Jing Li, You-de Li. Study of EBD/ABS Based on Electromechanical Brake System. Journal of System Simulation,2009,21(6):1785-1788
    [130]文朝举,陈昊,于东升.四相开关磁阻电动机系统混沌特性研究.中国科技论文在线,2009,4(8):599-603
    [131]曲荣海,姚若萍,刘大庆.开关磁阻电机滑模变结构控制与仿真.清华大学 学报(自然科学版),1997,37(4):11-13
    [132]H. Hannoun, M. Hilairet, C. Marchand. Design of an SRM Speed Control Strategy for a Wide Range of Operating Speeds. IEEE Transactions on Industrial Electronics,2010,57(9):2911-2921
    [133]谭国俊,熊树,蒯松岩.基于全数字电流控制开关磁阻电机的研究.电力电子技术,2005,39(6):92-94
    [134]陈新,郑洪涛,蒋静坪.基于MATLAB的开关磁阻电动机非线性动态模型仿真.电气传动,2002,(6):52-56
    [135]X. D. Xue, K. W. E. Cheng, J. K. Lin, etc. Optimal Control Method of Motoring Operation for SRM Drives in Electric Vehicles. IEEE Transactions on Vehicular Technology,2010,59(3):1191-1204
    [136]J. David Irwin. Switched Reluctance Motor Drives-Modeling, Simulation, Analysis, Design, and Applications. London:CRC Press,2001,344-345
    [137]何祈雯,朱伟兴.滑模变结构汽车ABS滑移率控制方法的研究.汽车科技,2004,(2):19-21
    [138]刘波,张玘,罗飞路.汽车防抱制动系统自适应滑模控制算法的研究和半实物仿真.国防科技大学学报,2008,30(5):125-130
    [139]赵治国,方宗德,傅卫平.防抱制动系统滑模状态观测和控制系统仿真.计算机仿真,2002,19(1):69-74
    [140]杨坤,李静,郭立书.汽车电子机械制动系统设计与仿真.农业机械学报,2008,39(8):24-27
    [141]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005,123-125
    [142]吴诰珪,刘绍辉.汽车ABS制动轮缸压力函数的试验研究.机床与液压,2001,(3):25-26
    [143]Mehrdad Ehsani. Gao Yimin, Sabastien E.Gay. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals, Theory, and Design. London: CRC Press LLC,2005,56-60
    [144]Qiuming Gong, Yaoyu Li, Zhong-Ren Peng. Computationally efficient optimal power management for plug-in hybrid electric vehicles based on spatial-domain two-scale dynamic programming. In:Proc. of IEEE International Conference on Vehicular Electronics and Safety. Columbus, OH, USA,2008,90-95
    [145]M.P. O'Keefe, T. Markel. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV. In:Proc. of 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-22). Yokohama, Japan,2006,1-12
    [146]Zhang Han, Zhu Yuan, Tian Guangyu. Optimal Energy Management Strategy for Hybrid Electric Vehicles. In:Proc. of 2004 SAE World Congress. Detroit, MI, USA,2004,1-10
    [147]巨永锋.最优控制.重庆:重庆大学出版社,2005,151-155
    [148]R. C. Chen, G. L. Blankenship. Dynamic programming equations for discounted constrained stochastic control. IEEE Transactions on Automatic Control,2004,49(5):699-709
    [149]Tan Guangming, Sun Ninghui, G. R. Gao. Improving Performance of Dynamic Programming via Parallelism and Locality on Multicore Architectures. IEEE Transactions on Parallel and Distributed Systems,2009,20(2):261-274
    [150]Michiel Koot, J. T. B. A. Kessels. Energy Management Strategies for Vehicular Electric Power Systems. IEEE Transactions on Vehicular Technology,2005, 54(3):771-782
    [151]Scott J. Mouraa, Duncan S. Callawayb, Hosam K. Fathya. Tradeoffs between Battery Energy Capacity and Stochastic Optimal Power Management in Plug-In Hybrid Electric Vehicles. Journal of Power Sources,2010,195(9):2979-2988
    [152]袁泉,郭锐,李一兵.基于人体损伤的轿车碰撞行人事故车速神经网络分类模型In:Proc. of The 6th International Forum of Automotive Traffic Safety(INFATS). Xiamen, China,2008,115-119
    [153]任卫群,金国栋,张云清.人工神经网络在汽车轮胎侧偏特性研究中的应用.系统仿真学报,1999,11(3):185-189
    [154]郭孔辉,潘峰,马凤军.预瞄优化神经网络驾驶员模型.机械工程学报,2003.39(1):26-28
    [155]田国富,张国忠,孙书会.人工神经网络辅助汽车变速箱设计.中国工程机械学报,2004,2(1):60-63
    [156]姜万录,雷亚飞,张齐生.基于RBFNN建模的动态流量软测量方法研究.仪器仪表学报,2008,29(9):1888-1893
    [157]林海军,滕召胜,迟海.基于多RBF神经网络的汽车衡误差补偿.湖南大学学报(自然科学版),2010,37(5):40-44
    [158]万书亭,李和明,李永刚.基于两层迭代聚类算法的RBFNN及在发电机诊断中的应用.电力系统自动化,2004,28(21):65-68
    [159]Eva Ericsson. Variability in urban driving patterns. Transportation Research Part D:Transport and Environment,2000,5(5):337-354
    [160]Eva Ericsson. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment,2001,6(5):325-345
    [161]R. Langari, Won Jong-Seob. Intelligent energy management agent for a parallel hybrid vehicle-part I:system architecture and design of the driving situation identification process. IEEE Transactions on Vehicular Technology,2005,54(3): 925-934
    [162]Wiki. Mpge. http://www.eaa-phev.org/wiki/Template:Mpge,2008-03-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700