用户名: 密码: 验证码:
库车坳陷秋里塔格构造带盐相关构造及其形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
库车坳陷秋里塔格构造带沉积有较厚的古近系和新近系膏盐层,受盐下基底构造、沉积差异负载和构造挤压应力等因素影响,膏盐层发生了明显的塑性流动,影响了该地区的构造变形与演化过程,形成了丰富多样的盐相关构造样式,并对油气运聚成藏过程有重要的控制作用。
     秋里塔格构造带构造变形特征表现为复杂的盐下层、盐层和盐上层“三位一体”叠加构造变形。纵向上,可分为盐下构造、盐层构造和盐上构造三类,横向上,盐相关构造表现出明显的分段差异变形特征。
     秋里塔格构造带西段前古近纪基底表现为受先存基底断裂控制的古隆起形态,其雏形开始形成于奥陶纪,在泥盆纪-三叠纪得到进一步发展,定型期则主要为侏罗纪。前古近纪基底古构造对盐相关构造的形成产生了重要的影响作用。
     通过平衡剖面复原,得出秋里塔格构造带盐相关构造的主要形成期为库车期-第四纪。库车坳陷南北向缩短量为20~35 km,约占整个剖面的20%~35%。库车坳陷挤压构造变形具有“分层缩短、分带缩短”的特点,膏盐层在盐上层和盐下层的差异变形过程中起到了非常重要的滑脱、调节作用。
     库车坳陷盐构造形成演化序列整体具有从北往南迁移的特点,在前缘秋里塔格构造带则表现为从西往东迁移。在盐构造发育的初期阶段,控制盐体运动与盐构造发育的主要因素是由拜城凹陷巨厚沉积物所导致的沉积差异负载作用,但对目前已发育较成熟的盐构造而言,最主要的影响因素则是挤压应力作用。
     盐构造物理模拟实验证实,基底断裂、古隆起和构造斜坡的存在影响了盐体的运动方式,导致盐体在古隆起顶部聚集增厚,以及大型北倾滑脱断层和断层传播褶皱的形成。膏盐层在构造变形过程中主要起滑脱层作用及充填背斜核部,很少形成刺穿型盐构造。
     通过对秋里塔格构造带盐相关构造特征对油气运聚成藏的控制作用的综合分析,建立了该地区可能存在的油气聚集成藏模式,并指出了下一步有利油气勘探方向。
The Paleogene Kumugeliemu Formation and Neogene Jidike Formation attain thick halite layers in the Qiulitag structural belt which is located in the most frontal range of the Kuqa depression. Influenced by the subsalt basement tectonics, differential loading and compressional stresses, the halite layers easily flowed from one place to another, and then formed numerous salt-related structures in the Qiulitag structural belt, which had important influences on the hydrocarbon migration and accumulation.
     The superimposed structural models composed of the subsalt, salt and suprasalt sequences of the Qiulitag structural belt have been carried out using data from seismic profiles interpretation based on the fault-related folding and salt tectonics. In vertical direction, subsalt, salt and suprasalt structures have been classified, and in plane, the differential deformation and segmentation of the salt-related structures are obvious.
     The Pre-Paleogene basement in the western Qiulitag structural belt appears as a paleo-uplift controlled by basement boundary faults. The basement paleo-uplift initially presented in the Ordovician, and developed during the Silurian to Triassic followed by the termination in the Jurassic. The Pre-Paleogene basement tectonics influenced the development of salt-related structures.
     According to the balanced cross sections, the salt-related structures mainly formed within the Kuche period to Quaternary. In the Kuqa depression, the SN- striking shortening strains are 20~35 km which occupied the ratio of 20%~35% of the total sections. The different shortening rates in varying tectono-stratigraphic layers and belts are prevalent in the depression where the salt layers could act as detachment and adjusting during the differential deformation of the subsalt and suprasalt layers.
     On the whole, the salt structures in the northern part of the Kuqa depression formed earlier than those in the south, and the salt structures in the western Qiulitag structural belt also formed earlier, with larger size, and in the eastern portion, the salt structures developed later, with smaller size. The model of elastic-viscous plate indicated that differential loading induced by the thicker sediments in the Baicheng sag dominated in the early stage of salt structural development. At the present, however, the compressional stresses should play largest effects on the salt structures.
     The physical modelling also showed that the basement faults, paleo-uplift and structural slopes and steps influenced the salt flowage which resulted in the salt thicken on top of the paleo-uplift and the formation of large-scaled north-dipping detachment faults. During the structural distortion, salt bodies acted mainly as the detachment layer and filled the anticline crest, and few salt diapirs formed in the analogue modelling.
     By the integrated analysis of the influences of salt-related structures on the hydrocarbon migration and accumulation in the Qiulitag structural belt, the reservoir formation models have been documented, and favorable exploration objectives have also been predicted.
引文
[1] 贾承造.塔里木盆地构造演化.见:李清波,戴金星,刘如琦,等.现代地质学研究文集(上).南京:南京大学出版社,1992:22-29
    [2] 贾承造,杨树峰,陈汉林,等.特提斯北缘盆地群构造地质与天然气.北京:石油工业出版社,2001:1-162
    [3] Chen Chuming, Huafu Lu, Dong Jia, et al. Closing history of the southern Tianshan oceanic basin, western China, an oblique collisional orogeny. Tectonophysics, 1999, 302(1-2): 23-40
    [4] Shi Yangshen, Lu Huafu, Jia Dong, et al. Paleozoic plate tectonic evolution of the Tarim and western Tianshan regions, western China. International Geology Review, 1994, 36(11): 1058-1066
    [5] 邵学钟,张家茹,范会吉.塔里木盆地地壳深部构造的地震转换波探测和研究.见:童晓光,梁狄刚,贾承造.塔里木盆地石油地质研究新进展.北京:科学出版社,1996:139-149
    [6] 张先康,赵金仁,张成科,等.帕米尔东北侧地壳结构研究.地球物理学报,2002,45(5):665-671
    [7] 赵俊猛,刘国栋,卢造勋,等.天山造山带与准噶尔盆地壳幔过渡带及其动力学含义.中国科学(D 辑),2001,31(4):272-282
    [8] 赵俊猛,李植纯,马宗晋.天山分段性的地球物理学分析.地学前缘,2003,10(特刊):125-131
    [9] Bally A W, Snelson S. Realms of subsidence. In: Miall A D. Facts and principles of world petroleum occurrence. Canadian Society Petroleum Geologists Memoir 6, 1980: 9-94
    [10] Lu Huafu, Howell D G, Jia D, et al. Rejuvenation of the Kuqa foreland basin, north flank of Tarim basin, northwest China. International Geological Review, 1994, 36(12): 1151-1158
    [11] 陈发景,汪新文,张光亚,等.中国中新生代前陆盆地的构造特征和地球动力学.地球科学,1996,21(4):266-372
    [12] 何登发,李德生.塔里木盆地构造演化与油气聚集.北京:地质出版社,1996:44-67
    [13] 贾承造,何登发,雷振宇,等.前陆冲断带油气勘探.北京:石油工业出版社,2000:1-351
    [14] Brown E T, Bourles D L, Burchfiel B C. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. GSA Bulletin, 1998, 110(3):377-386
    [15] 刘志宏,卢华复,贾承造,等.库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义.石油勘探与开发,2000,27(1):12-15
    [16] 刘志宏,卢华复,李西建,等.库车再生前陆盆地的构造演化.地质科学,2000,35(4):482-492
    [17] 卢华复,贾承造,贾东,等.库车-柯坪再生前陆冲断带构造.北京:科学出版社,2003:1-171
    [18] 卢华复,贾承造,贾东,等.库车再生前陆盆地冲断构造楔特征.高校地质学报,2001,7(3):257-271
    [19] 汪新,贾承造,杨树锋.南天山库车冲断褶皱带构造几何学和运动学.地质科学,2002,37(3):372-384
    [20] 汪新,贾承造,杨树锋,等.南天山库车冲断褶皱带构造变形时间——以库车河地区为例.地质学报,2002,76(1):55-63
    [21] 王胜利,卢华复,陈剑.库车再生前陆逆冲带生长褶皱的倾斜剪切恢复.石油学报,2002,23(3):18-22
    [22] 杨庚,钱祥麟,李茂松,等.塔里木北缘库车盆地冲断构造平衡地质剖面研究.地球科学,1996,21(3):295-299
    [23] 范湘涛,卢华复,阎福礼,等.航天飞机成像雷达数据在库车冲断带前缘构造分析中的应用.地质科学,2002,37(3):257-263
    [24] 陈书平.库车前陆区西段新生代盐构造形成和演化:[博士学位论文],石油大学(北京),北京:2002
    [25] 陈书平,汤良杰,贾承造,等.库车坳陷西段盐构造及其与油气的关系.石油学报,2004,25(1):30-34
    [26] 陈书平,汤良杰,贾承造,等.秋立塔克构造带盐构造形成的传力方式的构造物理模拟.西安石油大学学报(自然科学版),2004,19(1):6-10
    [27] 胡剑风,刘玉魁,杨明慧,等.塔里木盆地库车坳陷盐构造特征及其与油气的关系.地质科学,2004,39(4):580-588
    [28] 吕修祥,金之钧,周新源,等.塔里木盆地库车坳陷与膏盐岩相关的油气聚集.石油勘探与开发,2000,27(4):20-21
    [29] 汤良杰,贾承造,金之钧,等.库车前陆褶皱冲断带中段第三系盐枕构造.地质科学,2003,38(3):281-290
    [30] 汤良杰,贾承造,金之钧,等.塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集.地质论评,2003,49(5):501-506
    [31] 汤良杰,贾承造,皮学军,等.库车前陆褶皱带盐相关构造样式.中国科学(D 辑),2003,33(1):38-46
    [32] 汤良杰,金之钧,贾承造,等.库车前陆褶皱-冲断带前缘大型盐推覆构造.地质学报,2004,78(1):17-25
    [33] 王子煜.库车坳陷断层控制下的盐岩塑性流动及对上覆地层构造影响的沙箱模拟.石油实验地质,2002,24(5):441-445
    [34] 王子煜.库车坳陷秋立塔克盐构造形成过程物理模拟.西安石油学院学报(自然科学版),2002,17(6):1-3
    [35] 邬光辉,刘玉魁,罗俊成,等.库车坳陷盐构造特征及其对油气成藏的作用.地球学报,2003,24(3):249-254
    [36] 邬光辉,王招明,刘玉魁,等.塔里木盆地库车坳陷盐构造运动学特征.地质论评, 2004,50(5):476-483
    [37] 邬光辉.塔里木盆地库车坳陷盐构造特征及其与油气的关系:[博士学位论文],中国科学院研究生院,北京:2005
    [38] 张朝军,田在艺.塔里木盆地库车坳陷第三系盐构造与油气.石油学报,1998,19(1):6-10
    [39] 陈楚铭,卢华复,贾东,等.塔里木盆地北缘库车再生前陆褶皱逆冲带中丘里塔格前锋带的构造与油气.地质论评,1999,45(4):423-433
    [40] 管树巍,汪新,杨树锋,等.位移转换的两种概念模型与实例.中国科学(D辑),2004,34(9): 807-817
    [41] 管树巍,汪新,杨树峰,等.南天山库车秋里塔格褶皱带三维构造分析.地质论评,2003,49(5):464-473
    [42] 管树巍,陈宁华,徐峰,等.库车地区秋里塔格褶皱带几何学和运动学特征与油气圈闭.石油学报,2003,24(5):30-34
    [43] 何光玉,卢华复,李树新.库车盆地秋里塔格构造带构造圈闭及油气勘探方向.地质科学,2003,38(4):506-513
    [44] 余一欣,汤良杰,王清华,等.受盐层影响的前陆褶皱-冲断带构造特征分析—?—以库车秋立塔克构造带为例.石油学报,2005,26(4):1-4
    [45] 苗继军,贾承造,王招明,等.塔里木盆地北部库车地区秋里塔格构造带地层结构及其对构造变形的制约.地质科学,2005,40(4):558-569
    [46] 王鸿桢,刘本培,李思田.中国及邻区大地构造划分和构造发展阶段.见:王鸿桢,杨森楠,刘本培.中国及邻区构造古地理和生物古地理.武汉:中国地质大学出版社,1990:3-34
    [47] 汤良杰.塔里木盆地演化和构造样式.北京:地质出版社,1996:1-136
    [48] 张光亚.塔里木古生代克拉通盆地形成演化与油气.北京:地质出版社,2000:1-115
    [49] 李春昱,王荃,刘雪亚,等.亚洲大地构造图说明书.北京:地质出版社,1982:1-49
    [50] 黄汲清,任纪舜,姜春发,等.中国大地构造及其演化.北京:科学出版社,1980:1-124
    [51] 张文佑.断块构造导论.北京:石油工业出版社,1984:1-385
    [52] 张良臣,吴乃元.新疆板块构造格局及地壳演化.新疆第二届天山地质矿产讨论会文集,1991:198-213
    [53] 贾润胥,翟晓先,张志国,等.塔里木盆地东北地区地质构造基本特征.见:贾润胥.中国塔里木盆地北部油气地质研究(一):地层沉积.武汉:中国地质大学出版社,1991:9-29
    [54] 许靖华.弧后碰撞造山作用及其大地构造相.南京大学学报(自然科学版)1994,6(1):1-12
    [55] 马杏垣.中国岩石圈动力学纲要,1:400 万中国及邻近海域岩石圈动力学图说明书.北京:地质出版社,1987
    [56] 贾承造,魏国齐,姚慧君,等.塔里木盆地构造演化与区域构造地质.北京:石油工业出版社,1996:1-174
    [57] 马文璞.区域构造解析——方法理论和中国板块构造.北京:地质出版社,1992:1-328
    [58] 程裕淇.中国区域地质概论.北京:地质出版社,1994:1-571
    [59] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189: 419-426
    [60] Tapponnier P, Molnar P. Active faulting and tectonics of China. Journal of Geophysics Research, 1977, 82(20): 2905-2930
    [61] Molnar P, Tapponnier P. Active tectonics of Tibet. Journal of Geophysics Research, 1978, 83(B11): 5361-5375
    [62] Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal Regions. Journal of Geophysics Research, 1979, 84(B7): 3425-3459
    [63] 徐鸣洁,王良书,钟锴,等.塔里木盆地重磁场特征与基底结构分析.高校地质学报,2005,11(4):585-592
    [64] 滕吉文.塔里木地球物理场与油气:塔里木油气地质(2).北京:科学出版社,1991:1-121
    [65] 高锐,序常,高弘,等.西昆仑-塔里木-天山岩石圈深地震探测综述.地质通报,2002,21(1):11-18
    [66] 詹麒.塔里木盆地东北部-天山地区地电结构初探.见:贾润胥.中国塔里木盆地北部油气地质研究(三):物化探和钻井.武汉:中国地质大学出版社,1991:62-68
    [67] 车自成,刘洪福,刘良,等.中天山造山带的形成与演化.北京:地质出版社,1994:1-135
    [68] 卢德源,李秋生,高锐,等.横跨天山的人工爆炸地震剖面.科学通报,2000, 45(9):982-988
    [69] 赵俊猛,李植纯,程宏岗,等.天山造山带岩石圈密度与磁性结构研究及其动力学分析.地球物理学报,2004,47(6):1061-1067
    [70] 赵俊猛,王清晨,段永华,等.天山造山带基底结构的有限差分研究.中国科学(D 辑),2004,34(增刊Ⅰ):13-18
    [71] McClay K R, Price N J. Thrust and nappe tectonics. London: Blackwell Scientific Publications, 1981: 1-539
    [72] McClay K R. Thrust Tectonics. London: Chapman & Hall, 1992: 1-447
    [73] Platt J P, Coward M P, Deramond J, et al. Thrusting and deformation. Journal of Structural Geology, 1986, 8(3-4): 215-492
    [74] Suppe J, Namson J. Fault bend origin of frontal folds of the western Taiwan fold-and- thrust belt. Petroleum Geology of Taiwan, 1979, 16(1): 1–18
    [75] Suppe J. Geometry and kinematics of fault bend folding. American Journal of Science, 1983, 283(7): 684-721
    [76] Suppe J, Medwedeff D A. Geometry and kinematics of fault propagation folding. Eclogae Geologicae Helvetiae, 1990, 83(3): 409-454
    [77] Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata. In: McClay K R. Thrust tectonics. London: Chapman & Hall, 1992: 105-121
    [78] Jamison W R. Geometric analyses of fold development in overthrust terranes. Journal of Structural Geology, 1987, 9(2): 207-219
    [79] Mitra S. Fault propagation folds: geometry, kinematic evolution and hydrocarbon traps. AAPG Bulletin, 1990, 74(6): 921-945
    [80] Mosar J, Suppe J. Role of shear in fault propagation folding. In: McClay K R. Thrust tectonics. London: Chapman & Hall, 1992: 123-132
    [81] Chester J S, Chester F M. Fault-propagation folds above thrusts with constant dip. Journal of Structural Geology, 1990, 12(7): 903-910
    [82] Shaw J H, Connors C, Suppe J. Seismic interpretation of contractional fault-related folds: An AAPG Seismic Atlas. Tulsa: AAPG, 2003: 1-156
    [83] Boyer S E, Elliott D. Thrust systems. AAPG Bulletin, 1982, 66(9): 1196-1230
    [84] Mitra S. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential. AAPG Bulletin, 1986, 70(9): 1087-1112
    [85] Boyer S E. Geometric evidence for synchronous thrusting in the southern Alberta and northeast Montana thrust belts. In: McClay K R. Thrust tectonics. London: Chapman & Hall, 1992: 377-390
    [86] Epard J L, Escher A. Transition from basement to cover: a geometric model. Journal of Structural Geology, 1996, 18(5): 533-548
    [87] Fischer M P, Woodward N B. The geometric evolution of foreland thrust systems. In: McClay K R. Thrust tectonics. London: Chapman & Hall, 1992: 181-189
    [88] Hardy S, Poblet J. Geometric and numerical model of progressive limb rotation in detachment folds. Geology, 1994, 22(4): 371-374
    [89] Poblet J, Hardy S. Reverse modeling of detachment folds: application to the Pico del Agulia anticline in the South Central Pyrenees (Spain). Journal of Structural Geology, 1995, 17(12): 1707-1724
    [90] Zapata T R, Allmendinger R W. Growth strata records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 1996, 15(5): 1065-1083
    [91] Homza. T X, Wallace W K. Geometric and kinematic models for detachment folds with fixed and variable detachment depth. Journal of Structural Geology, 1995, 17(4): 575-588
    [92] Poblet J, McClay K, Storti F, et al. Geometries of syntectonic sediments associated with single layer detachment folds. Journal of Structural Geology, 1997, 17(3-4): 369-381
    [93] 戈红星,Jackson M P A.盐构造与油气圈闭及其综合利用.南京大学学报(自然科学版),1996,32(4):640-649
    [94] Jackson M P A. Retrospective salt tectonics. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 1-28
    [95] 唐祥华.世界含盐盆地中的油气.中国地质,1990,24(7):27-28
    [96] Jackson M P A, Talbot C J. External shapes, strain rates, and dynamics of salt structures. GSA Bulletin, 1986, 97(3): 305-323
    [97] Koyi H. The shaping of salt daipirs. Journal of Structural Geology, 1998, 20(4): 321-338
    [98] Vendeville B C, Jackson M P A. The rise of daipirs during thin-skinned extension. Marine and Petroleum Geology, 1992, 9(4): 331-353
    [99] Vendeville B C, Jackson M P A. The fall of daipirs during thin-skinned extension. Marine and Petroleum Geology, 1992, 9(4): 354-371
    [100] Jackson M P A, Vendeville B C. Regional extension as a geologic trigger for diapirism. GSA Bulletin, 1994, 106(1): 57-73
    [101] Koyi H, Petersen K. Influence of basement faults on the development of salt structures in the Danish Basin. Marine and Petroleum Geology, 1993, 10(2): 82-93
    [102] Seni S J, Jackson M P A. Evolution of salt structures, East Texas diapir province, part 1: sedimentary record of halokinesis. AAPG Bulletin, 1983, 67(8): 1219- 1244
    [103] Jackson M P A, Talbot C J. Anatomy of mushroom-shaped diapirs. Journal of Structural Geology. 1989, 11(1-2): 211-230
    [104] Ewing M, Antoine J. New seismic data concerning sediments and diapiric structures in Sigbee Deep and upper contiental slope, Gulf of Mexico. AAPG Bulletin, 1966, 50(3): 479-504
    [105] Ge Hongxing, Jackson M P A, Zhou Guoqing. Salt structures in the Meso-Cenozoic basins in China——a review. GSA Abstract with Programs, 1993, 25(7): A168
    [106] 何亚伟,姚合法,段红梅,等.东濮凹陷沙三段盐构造类型及地震识别.石油地球物理勘探,2003,38(5):552-556
    [107] Hossack J R, McGuinness D B. Balanced sections and the development of fault and salt structures in the Gulf of Mexico(GOM). GSA Abstract with Programs, 1990, 22(7): A48
    [108] Trusheim F. Mechanism of salt migration in northern Germany. AAPG Bulletin, 1960, 44(9): 1519-1540
    [109] Seni S J, Jackson M P A. Evolution of salt structures, east Texas diapir province, part 2: patterns and rates of halokinesis. AAPG Bulletin, 1983, 67(8): 1245-1274
    [110] DeCelles P G, Giles K A. Foreland basin systems. Basin Research, 1996, 8(2): 105-123
    [111] Beydoun Z R. Arabian plate hydrocarbon geology and potential——a plate tectonic approach. AAPG studies in geology, 1991, 33: 1-77
    [112] 何登发,尹成,杜社宽,等.前陆冲断带构造分段特征——以准噶尔盆地西北缘断裂构造带为例.地学前缘,2004,11(3):91-101
    [113] 卢华复,陈楚铭,刘志宏,等.库车再生前陆逆冲带的构造特征与成因.石油学报,2000,21(3):18-24
    [114] 王清华,杨明慧,吕修祥.库车褶皱冲断带秋里塔格构造带东、西分段构造特征与油气聚集.地质科学,2004,39(4):523-531
    [115] 周新源.库车前陆盆地分段性特征及对油气成藏的控制作用:[博士学位论文],中国石油大学(北京),北京:2005
    [116] 苗继军.库车前陆盆地秋里塔格构造带构造样式解析及含油气性评价:[硕士学位论文],中国石油勘探开发研究院,北京:2002
    [117] 罗俊成.塔里木盆地库车坳陷秋里塔格构造带西段构造地质特征:[硕士学位论文],中国石油大学(北京),北京:2004
    [118] 贾承造,魏国齐,王良杰,等.中国塔里木盆地构造特征与油气.北京:石油工业出版社,1997:1-438
    [119] 邵学钟,徐树宝,周东延,等.塔里木盆地地壳结构特征.石油勘探与开发,1997,24(2):1-5
    [120] 张明山,陈发景.平衡剖面技术应用的条件及实例分析.石油地球物理探勘,1998,33(4):532-540
    [121] 曲国胜,张宁,刘洁,等.塔北隆起-库车坳陷区中新生代基底-盖层构造变形机理.地质通报,2004,23(2):113-119
    [122] 彭更新.库车前陆盆地却勒塔格区带构造特征研究:[硕士学位论文],中国石油大学(北京),北京:2004
    [123] 杨文静.库车坳陷天然气分布规律及主控因素研究:[硕士学位论文],中国石油大学(北京),北京:2004
    [124] Koyi H, Jenyon M K, Petersen K. The effect of basement faulting on diapirism. Journal of Petroleum Geology, 1993, 16(3): 285-312
    [125] Letouzey J, Colletta B, Vially R, et al. Evolution of salt-related structures in compressional settings. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 41-60
    [126] Stewart S A, Harvey M J, Otto S C, et al. Influence of salt on fault geometry: examples from the UK salt basins. In: Alsop G I, Blundell D G, Davison I. Salt tectonics. London: The Geological Society, 1996: 175-202
    [127] Larsen B D, Avraham Z B, Shulman H. Fault and salt tectonics in the southern Dead Sea basin. Tectonophysics, 2002, 346(1-2): 71-90
    [128] Woodward N B, Boyer S E, Suppe J. Balanced Geological Cross sections. American Geophysical Union Short Course in Geology. 贾维民, 杜秀霞, 译. 武汉: 中国地质大学出版社, 1991: 1-170
    [129] Dahlstrom C D A. Balanced cross sections. Canadian Journal of Earth Sciences, 1969, 6(5): 743-757
    [130] Bitterli T. The kinematic evolution of a classical Jura fold: a reinterpretation based on 3dimensional balancing techniques (Weissenstein Antic line, Jura Mountains, Switzerland). Eclogae Geologicae Helvetiae, 1990, 83(3): 493-511
    [131] Mitra S. Three  dimensional geometry and kinematic evolution of the Pine Mountain thrust system, southern Appalachians. GSA Bulletin, 1988, 100(1): 72-95
    [132] Mason R A. Structure of the Alice anticline, Papua New Guinea: serial balanced cross sections and their restoration. Journal of Structural Geology, 1997, 19(5): 719-734
    [133] Moretti I, Larrere M. LOCACE, computer-aided construction of balanced geologic cross sections. Geobyte. 1989, 4(5): 16-24
    [134] Rowan M G, Kligfield R. Cross section restoration and balancing as an aid to seismic interpretation in extensional terranes. AAPG Bulletin, 1989, 73(8): 955-966
    [135] 陈伟,卢华复,施央申.平衡剖面计算机模拟及应用.北京:科学出版社,1993:1-195
    [136] Peel F J, Travis C J, Hossack J R. Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico: a preliminary analysis. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 153-175
    [137] Hossack J R. Geometric rules of section balancing for salt structures. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 29-40
    [138] Rowan M G. Benefits and limitations of section restoration in areas of extensional salt tectonics: an example from offshore Louisiana. In: Buchanan P G, Nieuwland D A, Modern development in structural interpretation, validation and modelling. London: The Geological Society, 1996: 147-161
    [139] Diegel F A, Karlo J F, Schuster D C, et al, Cenozoic structural evolution and tectono-stratigraphic framework of the northern gulf coast continental margin. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 109-151
    [140] Buchanan P G, Bishop D J, Hood D N. Development of salt-related structures in the Centrak North Sea: results from section balancing. In: Alsop G I, Blundell D G, Davison I. Salt tectonics. London: The Geological Society, 1996: 111-128
    [141] Volozh Y A, Talbot C, Ismail-Zadeh A. Salt structures and hydrocarbons in the Pricaspian basin. AAPG Bulletin, 2003, 87(2): 313-334
    [142] Hudec M R, Jackson M P A. Regional restoration across the Kwanza basin, Angola: salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 2004, 88(7): 971-990
    [143] Hudec M R, Jackson M P A. Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the Inner Kwanza Basin, Angola. GSA Bulletin, 2002, 114(10): 1222-1244
    [144] Rowan M G. A systematic technique for the sequential restoration of salt structures. Tectonophysics, 1993, 228(3-4): 331-348
    [145] Brewer R C, Groshong H. Restoration of cross sections above intrusive salt domes, AAPG Bulletin, 1993, 77(10): 1769-1780
    [146] Petersen K, Lerche I. Interactive salt and sediment evolution: self-consistent quantitative models. Tectonophysics, 1993, 228(3-4): 211-238
    [147] McBride B C,Rowan M G, Weimer P. The evolution of allochthonous salt systems, Western Green Canyon and Ewing Bank(Offshore Louisiana), Northern Gulf of Mexico. AAPG Bulletin, 1998, 82(5B):1013-1036
    [148] Bishop D J, Buchanan P G, Bishop C J. Gravity-driven thin-skinned extension above Zechstein Group evaporites in the western central North Sea: an application of computer-aided section restoration techniques. Marine and Petroleum Geology, 1995, 12(2): 115-135
    [149] Koyi H. Estimation of salt thickness and restoration of cross-sections with diapiric structures: a few critical comments on two powerful methods. Journal of Structural Geology, 1994, 16(8): 1121-1128
    [150] Sorensen K. Rim syncline volume estimation and salt diapirism. Nature, 1986, 319: 23-27
    [151] 雷刚林,张国伟,刘志宏.库车前陆逆冲带生长地层及其在油气勘探中的意义.新疆石油地质,2001,22(2):107-110
    [152] 杨明慧,金之钧,吕修祥,等.库车褶皱冲断带克拉苏三角带及其油气潜力.地球科学——中国地质大学学报,2002,27(6):745-750
    [153] Chen Shuping, Tang Liangjie, Jin Zhijun, et al. Thrust and fold tectonics and the role of evaporite in deformation in the western Kuqa foreland of Tarim Basin, northwest China. Marine and Petroleum Geology, 2004, 21(8): 1027-1042
    [154] 管树巍.南天山库车、喀什晚新生代冲断褶皱带构造几何学和运动学分析:[博士学位论文],浙江大学,杭州:2004
    [155] Gussow W C. Salt diapirsm: importance of temperature, and energy source of emplacement. In: Braunstein J, O.Brien G D. Diapirism and diapirs. Tulsa: AAPG, 1968: 16-52
    [156] Kent P E. Recent studies of south Persian salt plugs. AAPG Bulletin, 1958, 42(12): 2951-2972
    [157] Brunstro R G W, Walmsley P J. Permain evaporites in North Sea basin. AAPG Bulletin, 1969,53(4): 870-883
    [158] 胡炳煊,余芳权.潜江凹陷的盐丘构造及形成条件分析.石油勘探与开发,1984,11(6):62-70
    [159] Williams-Stroud S C, Paul J. Initiation and growth of gypsum piercement structures in the Zechstein Basin. Journal of Structural Geology, 1997, 19(7): 897-907
    [160] Acheson D J. Elementary fluid dynamics. Oxford: Clarendon Press, 1990: 1-397
    [161] Cohen H, Hardy S. Numerical modelling of stratal architectures resulting from differential loading of mobile substrate. In: Alsop G I, Blundell D G, Davison I. Salt tectonics. London: The Geological Society, 1996: 265-274
    [162] Last N C. Deformation of a sedimentary overburden on a slowly creeping substratum. In: Swoboda G. Numerical methods in geomechanics. Rotterdam: A. A. Balkema, 1988: 577-585
    [163] Waltham D. Why does salt start to move?. Tectonophysics, 1997, 282(1-4): 117-128
    [164] Daudre B, Cloetingh S. Numerical modeling of salt daipirism: influence of the tectonic regime. Tectonophysics. 1994, 240(1-4): 59-79
    [165] Turcotte D, Schubert G. Geogynamics. New York: Wiley, 1982: 450
    [166] Bishop R S. Mechanism for emplacement of piercement diapirs. AAPG Bulletin, 1978, 62(9): 1561-1583
    [167] 何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化.石油与天然气地质,2005,26(1):64-77
    [168] 汤良杰,贾承造,金之钧,等.中国西北叠合盆地的主要构造特征.地学前缘,2003,10(特刊):118-124
    [169] Koyi H. Analogue modelling: from a qualitative to a quantitative technique——a historical outline. Journal of Petroleum Geology, 1997, 20(2): 223-238
    [170] Ramberg H. Gravity, deformation and the Earth’s crust. 2nd ed. New York: Academic Press, 1981: 1-452
    [171] Koyi H, Mancktelow N. Tectonic Modelling: a volume in honor of Hans Ramberg. Colorado: GSA, 2001: 1-286
    [172] Dixon J M. Finite strain and progressive deformation in models of diapiric structures. Tectonophysics, 1975, 28(1-2): 89-124
    [173] Talbot C J. Inclined and asymmetric upward-moving gravity structures. Tectonophysics, 1977, 42(2-4): 159-181
    [174] Koyi H. Experimental modeling of the role of gravity and lateral shortening in the Zagros mountain belt. AAPG Bulletin, 1988, 72(11): 1381-1394
    [175] Koyi H. Modelling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal. Geology, 2001, 29(5): 387-390
    [176] Koyi H, Skelton A. Centrifuge modelling of initiation of low-angle detachment faults. Journal of Structural Geology, 2001, 23(8): 1179-1186
    [177] Hubbert M K. Theory of scale models as applied to the study of geologic structures. GSA Bulletin, 1937, 48(10): 1459-1519
    [178] Vendeville B C, Cobbold P R, Davy P, et al. Physical models of extensional tectonics at various scales. In: Coward M P, Dewey J F, Hancock P L. Continental Extensional Tectonics. London: The Geological Society, 1987: 95-107
    [179] Vendeville B C, Cobbold P R. How normal faulting and sedimentation interact to produce listric fault profiles and stratigraphic wedges. Journal of Structural Geology, 1988, 10(7): 649-659
    [180] Ge Hongxing, Jackson M P A, Vendeville B C. Rejuvenation and subsidence of salt diapers by regional extension. Gulf Coast Association of Geological Societies Transactions, 1995, 45: 212-218
    [181] Koyi H. Gravity overturns, extension and basement fault activation. Journal of Petroleum Geology, 1991, 14(2): 117-142
    [182] Vendeville B C, Ge Hongxing, Jackson M P A. Scaled models of salt tectonics during basement-induced extension. Petroleum Geoscience, 1995, 1(2): 179-183
    [183] Ge Hongxing, Vendeville B C. Influence of active subsalt normal faults on the growth and location of suprasalt structures. Gulf Coast Association of Geological Societies Transactions, 1997, 47: 169-175
    [184] Withjack M O, Gallay S. Active normal faulting beneath s salt layer: an experimental study of deformation patterns in the cover sequence. AAPG Bulletin, 2000, 84(5): 627-651
    [185] Berastegui X, Banks C J, Puig C, et al. Lateral diapiric emplacement of Triassic evaporites at the Southern Margin of the Guadalquivir Basin, Spain. In: Mascle A, Puigdefabregas C, Hans P. et al..Cenozoic Foreland Basins of Western Europe. London: The Geological Society, 1998: 49-68
    [186] Costa E, Vendeville B C. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic decollement. Journal of Structural Geology, 2002, 24(11): 1729-1739
    [187] Richard P, Krantz R W. Experiments on fault reactivation in strike-slip mode. Tectonophysics, 1991, 188(1-2): 117-131
    [188]Sims D, Ferril D A, Stamatakos J A. Role of a ductile decollement in the development of pull-apart basins: experimental results and natural examples. Journal of Structural Geology, 1999, 21(5): 533-554
    [189] Davison I, Insley M, Harper M, et al. Physical modelling of overburden deformation around salt diapirs. Tectonophysics, 1993, 228(3-4): 255-274
    [190] Schultz-Ela D D, Jackson M P A, Vendeville B C. Mechanics of active salt diapirism. Tectonophysics, 1993, 228(3-4): 275-284
    [191] Talbot C J. Centrifuged models of Gulf of Mexico profiles. Marine and Petroleum Geology, 1992, 9(4): 412-432
    [192] 戈红星,Vendeville B C,Jackson M P A.前陆褶皱冲断带厚皮缩短盐构造运动的物理模拟.高校地质学报,2004,10(1):39-49
    [193] 余一欣,汤良杰,李京昌,等.库车前陆褶皱-冲断带基底断裂对盐构造形成的影响.地质学报,2006,80(3):330-336
    [194] Weijermars R. Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications. Tectonophysics, 1986, 124(3-4): 325-358
    [195] Weijermars R, Jackson M P A, Vendeville B C. Rheological and tectonic modeling of salt provinces. Tectonophysics, 1993, 217(1-2): 143-174
    [196] Ge Hongxing, Jackson M P A, Vendeville B C. Kinematics and dynamics of salt tectonics by progradation. AAPG Bulletin, 1997, 81(3): 398-423
    [197] Ge Hongxing, Jackson M P A. Physical modeling of structures formed by salt withdrawal: implications for deformation caused by salt dissolution. AAPG Bulletin, 1998, 82(2): 228-250
    [198] Ge Hongxing, Jackson M P A, Vendeville B C, et al. Deformation of prograding wedges over a ductile layer-application of physical models to geologic examples. Gulf Coast Association of Geological Societies Transactions, 1997, 47: 177-184
    [199] 马新华,华爱刚,李景明,等.含盐油气盆地.北京:石油工业出版社,2000:1-112
    [200] Edgell H S. Salt tectonism in the Persian Gulf Basin. In: Alsop G I, Blundell D G, Davison I. Salt tectonics. London: The Geological Society, 1996: 129-151
    [201] De Las Cuevas C. Pore structure characterization in rock salt. Engineering Geology, 1997, 47(1-2): 17-30
    [202] Rowan M G. Structural styles and evolution of allochthonous salt, Central Louisiana Outer Shelf and Upper Slope. In: Jackson M P A, Roberts D G, Snelson S. Salt Tectonics: A Global Perspective. Tulsa: AAPG, 1995: 199-228
    [203] 周江羽,林忠民,周凌方,等.塔里木盆地北部石炭系盐体塑性变形与油气圈闭.石油与天然气地质,1999,20(3):216-219
    [204] Petersen K, Lerche I. Temperature dependence of thermal anomalies near evolving salt structures: importance for reducing exploration risk. In: Alsop G I, Blundell D G, Davison I. Salt tectonics. London: The Geological Society, 1996: 275-290
    [205] Demaison G, Huizinga B J. Genetic classification of petroleum system. AAPG Bulletin, 1991, 75(10): 1626-1643
    [206] 王飞宇,张水昌,张宝民,等.塔里木盆地库车坳陷中生界烃源岩有机质成熟度.新疆石油地质,1999,20(3):221-224
    [207] Jenyon M K. Salt tectonics. London: Elsevier, 1986: 174-179
    [208] 马玉杰,郜国玺,张丽娟,等.迪那 2 气田气藏类型研究.天然气地球科学,2004,15(1):91-94
    [209] 吕修祥.石油运移物理模拟及在塔里木盆地的应用.石油大学学报(自然科学版),2000,24(4):112-114
    [210] Harding T P, Tuminas A C. Interpretation of footwall (lowside) fault traps sealed by reverse faults and convergent wrench faults. AAPG Bulletin, 1988, 72(6): 738-757
    [211] 童晓光,关增淼.世界石油勘探开发图集——亚洲太平洋地区分册.北京:石油工业出版社,2001:1-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700