用户名: 密码: 验证码:
MHC不同基因型哈萨克绵羊人工感染细粒棘球绦虫虫卵后小肠、肝脏差异表达基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细粒棘球蚴病,俗称包虫病,是细粒棘球绦虫的幼虫寄生于人、绵羊等中间宿主所致的一种人畜共患病。绵羊是细粒棘球绦虫最适宜的中间宿主,感染包虫病后生长发育缓慢,其毛、肉和奶的产量均严重受到影响,且患病绵羊肝、肺不能食用。最新调查显示,新疆存栏绵羊4000多万只,饲养数达6000多万只,而包虫病患病率达到50%,这给畜牧业的健康发展以及广大农牧民的生产创收带来严重影响。
     本研究前期做了大量的关于绵羊主要组织相容性复合体基因(MHC基因)与包虫病抗性、易感性的相关研究,对新疆三个主要绵羊品种:中国美利奴羊、多浪羊及哈萨克羊MHC-DRB1基因外显子2进行PCR-RFLP检测,成功筛选出哈萨克绵羊与包虫病抗性相关的单倍型MHC-DRB1MvaIbc-SacIIab-Hin1Iab,之后对带有该单倍型的绵羊(抗性组)和不带该单倍型的绵羊(非抗性组)进行人工攻虫,发现抗性组绵羊包虫病发病率比非抗性组绵羊低且差异显著。在此基础上,本文着重对前期筛选的具有包虫病抗性和非抗性的哈萨克绵羊的感染机制及其差异进行分析。
     依据前期研究,本研究采用PCR-RFLP方法对250只哈萨克绵羊进行了相应抗性单倍型分析,共筛选出具有包虫病抗性的个体(基因单倍型为MHC-DRB1MvaIbc-SacIIab-Hin1Iab)14只,非抗性个体(基因单倍型为MHC-DRB1MvaIbb-SacIIaa-Hin1Iaa)22只。进一步采用B超和ELISA结合的方法对筛选出的绵羊进行包虫病检测,随访后购买17只健康的绵羊,其中包括用于人工感染实验的绵羊14只(抗性组和非抗性组各7只),以及健康对照的绵羊3只。MHC抗性组绵羊记为A组,MHC非抗性组绵羊记为B组,健康对照的绵羊记为C组。人工感染实验的14只绵羊每只饲喂约5000个成熟细粒棘球绦虫虫卵,建立人工感染细粒棘球绦虫模型后,开展了以下后续试验:
     1.实验一旨在检测不同MHC基因型哈萨克绵羊感染细粒棘球绦虫虫卵后早期机体免疫指标的差异。本实验分别于感染前(0d)、感染后2h、3h、4h、9h、1d、2d、3d、7d采集绵羊颈静脉血,采用ELISA方法检测血清中抗体(IgM、IgE)、细胞因子(TNF-α、IFN-γ、IL-4、IL-10)及趋化因子(CXCL-9、CCL17)的水平,结果显示,MHC包虫病抗性组(A组)表现出以抗体IgE、IgM、Th1细胞因子(IFN-γ、TNF-α)和Th1趋化因子(CXCL-9)为优势的分泌水平,而非抗性组(B组)则表现出以Th2细胞因子(IL-4、IL-10)和Th2趋化因子(CCL17)为优势的分泌水平。且IgE、Th1细胞因子(IFN-γ、TNF-α)在虫卵感染后4h组间差异显著。提示,携带MHC抗性基因型的绵羊表现出强的包虫病抵抗力可能受其早期高水平的Th1细胞因子及IgE抗体的影响。
     2.实验二旨在筛选出不同MHC基因型哈萨克绵羊感染细粒棘球绦虫后小肠组织差异表达的基因。本实验中,实验动物分为MHC包虫病抗性组(A)、MHC包虫病非抗性组(B)和健康对照组(C),A、B两组分别于感染后2h、3h、4h采集小肠组织,以C组健康绵羊作为健康对照组,采用基因芯片的方法分析不同MHC基因型哈萨克绵羊感染细粒棘球绦虫后小肠差异表达基因,其中感染组(A)、(B)与健康对照组(C)进行比较,结果发现:A与C之间差异表达的基因共4712个,其中表达量上调的有1959个,表达量下调的有2753个。B与C比较之后差异表达的基因4944个,其中2076个表达上调,2868个表达下调。从中选择出同C相比,A和B同为上调或下调,且表达量差异显著的基因共141个,其中上调的有32个基因,下调的有109个。上调的32个基因中,A组显著高于B组的有6个,低于B组的有26个;在下调的109个基因中,A组显著高于B组的35个,低于B组的74个。
     3.实验三旨在筛选出不同MHC基因型哈萨克绵羊感染细粒棘球绦虫后不同时期(感染后8周、24周)肝脏组织差异表达基因。本实验中,实验动物分为MHC包虫病抗性组(A)、MHC包虫病非抗性组(B)和健康对照组(C),A、B两组分别于感染后8周、24周采集肝脏组织,以C组健康绵羊作为健康对照组,采用基因芯片的方法分析不同MHC基因型哈萨克绵羊感染细粒棘球绦虫后肝脏组织差异表达基因。
     1)感染后8周,基因芯片结果显示:MHC抗性组(A)与对照组(C)之间差异表达的基因共3087个,其中表达量上调的有1768个,表达量下调的有1319个。MHC非抗性组(A)与对照组(C)比较之后差异表达的基因4839个,其中1888个表达上调,2951个表达下调。采用同样标准进一步筛选获得差异候选基因153个,其中上调的有87个基因,下调的有66个。上调的87个基因中,A组显著高于B组的有13个,低于B组的74个;在下调的66个基因中,A组显著高于B组的54个,低于B组的12个。
     2)感染后24周,基因芯片结果显示:MHC抗性A组与C组之间差异表达的基因共3092个,其中表达量上调的有1374个,表达量下调的有1718个。MHC非抗性B组与对照C组比较之后差异表达的基因11717个,其中5381个表达上调,6336个表达下调。采用同样标准进一步筛选获得差异候选基因115个,其中上调的有40个基因,下调的有75个。上调的40个基因中,A组显著高于B组的有3个,低于B组的37个;在下调的75个基因中,A组显著高于B组的74个,低于B组的1个。对以上3组共8个样本的基因芯片结果进行荧光定量PCR检验,挑选8个基因进行验证,结果同芯片检测结果基本接近,说明检测结果真实可信。
     3)对筛选到的差异表达基因进行GO富集和KEGG通路分析发现,差异基因主要的生化功能集中在代谢、细胞进程等方面,值得注意的是:KEGG分析结果显示参与补体凝集素途径的基因数量在小肠和肝脏24周结果中均为最多,同时在肝脏8周组中也相对较多,提示MHC同补体之间抵抗寄生虫感染可能存在关联。
     4)结合相关文献报道和不同感染时期基因表达特点,本研究最终选择了杀伤细胞免疫球蛋白样受体(KIR2DS1)、补体凝集素C8、丝氨酸蛋白酶抑制剂、生长抑制DNA损伤基因(GADD45B)、PLA2G2A等基因作为绵羊抵抗包虫病的候选基因。
     综上所述得出如下结论:高水平的Th1细胞因子及IgE抗体能够影响绵羊对包虫病的早期抵抗,补体凝集素代谢通路可能在小肠和肝脏后期起到一定的抵抗作用。总体来说,参与抵抗包虫病的相关基因数量较多,涉及到能量代谢、免疫、信号转导等多个方面,说明包虫病抵抗是一个复杂的生理过程。同时,同非抗性组绵羊检测结果相比,在3个检测点上(小肠、肝脏8周、肝脏24周)MHC抗性组基因表现出基因表达不活跃的特点,具体表现为大部分基因上调或者下调幅度均低于非抗性组,但是一些可能同包虫病抵抗相关的基因仍表现出抗性组高于非抗性组的特点。
Cystic echinococcosis (CE) is a chronic parasitic zoonosis caused by infection with the larval stage of the cestode Echinococcus granulosus (E. granulosus), resulting in the development of cysts in human and domestic animals. In domestic animals, especially in sheep, which appear to be highly susceptible to infection, CE causes considerable health problems and economical disadvantages because of production loss, as sheep infected with this disease often suffer from reductions in live weight gain, in milk yielding, in the fertility rates, in the value of wool or other products. In Xinjiang, there are more than60million sheep, with the high prevalence of CE reaching50%, which causes considerable health problems in sheep and thereby significantly influences the income of herdsman.
     Previuosly, we carried a lot of studies to investigate the relationship between MHC-DRB1gene polymorphism and genetic resistance or susceptibility to CE in Chinese Merino, Duolang and Kazakh sheep. Genetic markers, MHC MvaⅠbc-SacⅡab-HinlIab haplotype, on CE resistance in Kazakh sheep have been divergently selected by us. The rates of Echinococcus granulosus (E. granulosus) infection in the internal organs of Kazakh sheep with this haplotype, is confirmed to be significantly lower than sheep without this haplotype, when exposure to the same level of parasites. CE resistant sheep therefore have an increased genetic capability to respond to and subsequently reject parasites when challenged. Carrying out a deep study in these sheep was, therefore, worth doing, since it could produce some interesting clues on the mechanism of resistance to E. granulosus infection both in immunology and genetics.
     According to the previous methods stablished by us, we selected the genetic markers in250Kazakh sheep, again. Seventeen healthy two-year-old Kazakh sheep with different haplotype were selected and maintained during the course of the experiments. They were negative for antibodies to hydatid cyst fluid (HCF) antigen, assayed by a commercial ovine hydatidosis ELISA kit, and no hydatid cysts presented in internal organs detected by ultrasonography, prior to the experiment. The seven sheep with the MHC MvaⅠbc-SacⅡab-HinlⅠab haplotype (CE resistant haplotype) referred to group A, while the other seven sheep without this haplotype constitute group B. Each sheep in the two groups was infected perorally via a medical syringe with5000E. granulosus eggs suspended in1000ul physiological saline. Another three sheep choosed as healthy controls were named as group C. Then, the following studies were carried out:
     1. The first experiment described here was designed to analyze the system immune response in the very early stage of E. granulosus infection in sheep with CE resistant haplotype. In this experiment, after experimentally infected with E. granulosus, blood samples from these sheep were collected on day0(prior to infection), hours2,3,4, and9post-infection as well as days1,2,3, and7 post-infection, respectively. ELISA assay was used to measure serum levels of antibodies (IgE and IgM), cytokines (Thl:TNF-α and IFN-γ; Th2:IL-4and IL-10) and chemokines (Thl:CXCL-9; Th2:CCL17) at different time points of E. granulosus infection in the two groups. Results showed that, in the early stage of E. granulosus infection, antibodies like IgM and IgE, Thl cytokines such as IFN-γ and TNF-a, as well as Thl chemokines CXCL-9were predominant in group A, especially for IgE and Thl cytokines, which were significantly higher, most were at or began from4h post-infection, as compared with group B. Our findings revealed that the influence of the host's genetic background on the immunopathology of E. granulosus infection in the early stage could be partially mediated by Thl-type cytokines and IgE.
     2. The second experiment was designed to detect differential gene expression in intestine of Kazakh sheep with different MHC haplotype after perorally infected with E. granulosus eggs. In this experiment, three sheep of each group (groups A and groups B) were sacrificed on hours2,3and4post-infection, respectively. Besides, another3healthy Kzakh sheep, referred to group C, were choosed as healthy controls. The intestine tissues of the three groups were collected, and gene expression profiles were assessed using sheep DNA microarray analysis. Gene expression profiles in groups A and B were compared with that in group C, respectively. Results showed that,4712differentially expressed genes were identified between group A and C, with1959up-regulated and2753down-regulated. On the other hand,4944differentially expressed genes, with2076up-regulated and2868down-regulated, were also identified between group B and C. Then, we chose141significantly differential expression genes in the above two comparasions, which showed the corresponding upward or downward trend, including32up-regulated genes and109down-regulated genes. Among32up-regulated,6genes were significantly higher in group A than in group B, while26genes were significantly lower in group A than that in group B. Additionally, among109down-regulated genes,35genes were significantly higher in group A when compared with group B, while74genes were significantly lower in group A when compared with group B.
     3. The third experiment was designed to detect differential gene expression in the liver of Kazakh sheep with different MHC haplotype after perorally infected with E. granulosus eggs, at different time points. In this experiment, one sheep of each group (groups A and groups B) were sacrificed at8and24weeks post-infection, respectively. Besides, another3healthy Kzakh sheep, referred to group C, were choosed as healthy controls. The liver tissues of the three groups were collected, and gene expression profiles were assessed using sheep DNA microarray analysis.
     1) At8weeks post-infection, gene expression profiles in groups A and B were compared with that in group C, respectively. Results showed that,3087differentially expressed genes were identified between group A and C, with1768up-regulated and1319down-regulated. On the other hand,4839differentially expressed genes, with 1888up-regulated and2951down-regulated, were also identified between group B and C. Then, we chose153significantly differential expression genes in the above two comparasions, which showed the corresponding upward or downward trend, including87up-regulated genes and66down-regulated genes. Among87up-regulated,13genes were significantly higher in group A than in group B, while74genes were significantly lower in group A than that in group b. Additionally, among66down-regulated genes,54genes were significantly higher in group A when compared with group B, while12genes were significantly lower in group A when compared with group B.
     2) At24weeks post-infection, gene expression profiles in groups A and B were compared with that in group C, respectively. Results showed that,3092differentially expressed genes were identified between group A and C, with1374up-regulated and1718down-regulated. On the other hand,11717differentially expressed genes, with5381up-regulated and6336down-regulated, were also identified between group B and C. Then, we chose115significantly differential expression genes in the above two comparasions, which showed the corresponding upward or downward trend, including40up-regulated genes and75down-regulated genes. Among40up-regulated,3genes were significantly higher in group A than in group B, while37genes were significantly lower in group A than that in group b. Additionally, among75down-regulated genes,74genes were significantly higher in group A when compared with group B, while1genes were significantly lower in group A when compared with group B.
     3) The differentially expressed genes were classified with gene ontology (GO) analysis according to their functions. Results showed that most of them were related to the metabolism amd cellular processes. KEGG biological pathway analysis showed that most genes involved in the complement lectin pathway, especially in the intestine tissue and in the liver at24weeks post-infection, which indicated that different MHC genotype resistance to CE might be associated with complement levels.
     4) Finally, the following genes:the killer cell immunoglobulin-like receptor (KIR2DS1), lectin complement C8, serine protease inhibitors, growth inhibition of DNA damage gene (GADD45B), PLA2G2A were choosed as candidate genes asscociated with CE resistance in sheep.
     In conclusion, our studies revealed that the influence of the host's genetic background on the immunopathology of E. granulosus infection in the early stage could be partially mediated by Thl-type cytokines and IgE. On the other hand, genes involved in the complement lectin pathway might participate in the resistance of CE, after E. granulosus infection in the intestine tissue (the very early stage of infection) or in the liver tissue (the late stage of infection). In addition to that, microarray analysis showed that, a large number of genes involved in CE resistance in sheep, varying from energy metabolism, immunity, to signal transduction, indicating that CE resistance is a complex physiological process. Compared with healthy controls, sheep with MHC CE resistance haplotype (group A) displayed an inactivate gene expression trend at the three time points detected, showing that most of the genes upward or downward were lower than that in sheep without this haplotype (group B), but interestingly, some genes related to CE resistance in group A showed a high expression level than that in group B. It is, therefore, a further deep study on the relationship between these genes and CE resistance should be carried out, in future.
引文
[1]McManus DP, Zhang W, Li J, et al. Echinococcosis [J]. Lancet,2003,362:1295-1304.
    [2]Jiang CP, McManus PD, Malcom J. Liver alveolar echinococcosis in China:clinical aspect with relative basic research [J].World J Gastroenterol,2005,11:4611-4617.
    [3]Raether W, Hanel H. Epidemiology, clinical manifestations and diagnosis of zoonotic cestode infections:an update [J]. Parasitol Res,2003,91:412-438.
    [4]Thompson RC, Lymbery AJ, Constantine CC. Variation in echinococcus:towards a taxonomic revision of the genus [J]. Adv Parasitol,1995,35:145-76.
    [5]Khuroo MS. Hydatid disease:current status and recent advances [J]. Ann Saudi Med,2002,22:56-64.
    [6]Craig PS, Rogan MT, Allan JC. Detection, screening and community epidemiology of taeniid cestode zoonoses:cystic echinococcosis, alveolar echinococcosis and neurocysticercosis [J]. Adv Parasitol,1996,38:169-250.
    [7]Budke CM. Global socioeconomic impact of cystic echinococcosis [J]. Emerg Infect Dis,2006,12:296-303.
    [8]Schantz PM, Gottstein B, Ammann R, et al. Hydatid and the Arctic [J]. Parasitol Today,1991,7:35-36.
    [9]Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern [J]. Clin Microbiol,2004,17:107-135.
    [10]Somocurcio JR, Sanchez EL, Naquira C, et al. First report of a human case of polycystic echinococcosis due to Echinococcus vogeli from neotropical area of Peru, South America [J]. Rev Inst Med Trop Sao Paulo,2004,46:41-42.
    [11]郝桂英.棘球绦虫分子分类学研究进展[J].中国畜牧兽医,2012,39(5):63-65.
    [12]Rausch, R L, Bernstein JJ. Echinococcus vogeli sp. n.(Cestoda:Taeniidae) from the bush dog, Speothos venaticus (Lund). Z. Tropenmed [J]. Parasitol,1972,23:25-34.
    [13]Xiao N, Qiu J, Nakao M, et al. Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China [J]. hit J Parasitol,2005,35:693-701.
    [14]赛塞,阎丙申,米赛良.包虫病免疫学诊断进展[J].动物医学防制,2003,19(2):108-109.
    [15]WHO Informal Working Group. International classification of International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings [J]. Acta Tropica,2003,85:253-261.
    [16]布威麦尔耶姆·阿卜来提,赵博,惠文巧,等.哈萨克绵羊肝包虫病的B超图像分析与诊断[J].石河子大学学报(自然科学版),2012,4:459-465.
    [17]Craig, PS, Gasser RB, Parada L, et al. Diagnosis of canine echinococcosis:comparison of coproantIgEn and serum antibody tests with arecoline purgation in Uruguay [J]. Vet Parasitol,1995,56:293-301.
    [18]贾万忠.我国包虫病的防治现状[J].兽医导刊,2011,6:30-33.
    [19]王立英,伍卫平,朱雪花.2004-2008年全国包虫病疫情分析[J].中国人兽共患病学报,2010,26(7):699-702.
    [20]薛敏,吴江平.我国包虫病流行病学调查现状[J].中国中医药咨询,2011,3(9):364.
    [21]Lei Zhenglong. Echinococcosis Surveillance and control in China[A]. Urumq:Ⅹ Ⅹ Ⅳ World Congress of Hydatidology Final Programme&Abstracts Book,2011,6.
    [22]李晓军,王文明,赵莉,等.新疆包虫病流行现状与防控对策[J],草食家畜,2012,4:47-52.
    [23]程海萍,刘小蓉.青南地区高原动物两型包虫病感染调查[J].高原医学杂志,2008,18(2):56-58.
    [24]郭莉,阳爱国,侯巍,等.四川省家畜包虫病防治现状及防控对策探讨[J].草业与畜牧,2011,11:52-54
    [25]郭莉,阳爱国,张壮志,等.四川省家畜包虫病流行病学调查报告[J].中国兽医杂志,2012,48(2):25-26.
    [26]常建华,宋爱军,陈伟,等.内蒙古边境地区动物棘求绦虫感染状况调查报告[J].畜牧与饲料科学,2011,32(3):117-119.
    [27]许翔,伍卫平.棘球蚴病流行因素研究进展[J].国家医学寄生虫病杂志,2007,34(5):262-265.
    [28]李岩,闫江林,李静,等.新疆绵羊棘球蚴病流行情况调查分析[J].石河子大学学报(自然科学版)2005,(23)2:60-63.
    [29]濮方德.新疆生产建设兵团动物疫病志[M].新疆人民出版社,1998.
    [30]柴君杰,焦伟,孟贺巴特,等.新疆北部地区囊性包虫病的流行现状[J].热带病与寄生虫学,2004,2(3):139-143.
    [31]马力克,努斯来提,祖力胡马尔,等.新疆家畜包虫病感染情况调查[J].中国动物传染病学报,2011,19(3):57-60.
    [32]Craig Philip S, Donald P McManus, Marshall W Lightowlers, et al. Prevention and control of cystic echinococcosis[J]. The Lancet.2007,7:385-394.
    [33]贾如.细粒棘球蚴Eg95基因的克隆、原核表达及抗体制备[D].合肥工业大学,硕士论文,2009.
    [34]李文桂,陈雅棠.细粒棘球绦虫疫苗研究进展[J].中国地方病学杂志,2003,22(6):564-566.
    [35]Heath D D, Lawrence S B. AntIgEnic polypeptides of Echinococcus granulosus oncospheres and definition of protective molecules[J]. Parasite Immunology,1996,18:347-357.
    [36]李文桂,陈雅棠.细粒棘球绦虫E995疫苗研究进展[J].中国人兽共患病学报,2006,22(11):1070-1072.
    [37]林仁勇,丁剑冰,温浩,等.新疆细粒棘球绦虫不同发育阶段95抗原基因克隆及序列分析[J].中国寄生虫学与寄生虫病杂志,2003,21(3):170-172.
    [38]丁剑冰,魏晓丽,林仁勇,等.E995基因疫苗不同免疫途径的体液免疫应答比较[J].新疆医科大学学报,2003,26(3):219-221.
    [39]丁剑冰,马秀敏,魏晓丽.细粒棘球绦虫e995基因疫苗和重组抗原诱导小鼠免疫应答的比较研究[J].中国人兽共患病学报,2006,22(4):347-351.
    [40]Lightowlers, M.W., Lawrence, S.B., Gauci, C.G, et al.Vaccination against hydatidosis using a defined recombinant antIgEn [J].Parasite Immunol,1996,18:457-462.
    [41]Lightowlers, M.W, Jensen, O, Fernandez, E, et al.Vaccination trials in Australia and Argentina confirm the effectiveness of the EG95hydatid vaccine in sheep[J].Int J Parasitol,1999,29:531-534.
    [42]Chow C, Gauci CG, Cowman AF, et al. A gene family expressing a host-protective antIgEn of Echinococcus granulosus [J]. Mol Biochem Parasitol,2001,118:83-88.
    [43]Wenbao Zhang, Zhuangzhi Zhang, Turhong Yimit, et al. A Pilot Study for Control of Hyperendemic Cystic Hydatid Disease in China[J]. Plos Neglected Tropical Disease,2009,3(10):1-7.
    [44]张壮志,石保新,张文宝,等.绵羊包虫病基因工程疫苗(Eg95)免疫试验[J].中国人兽共患病学报,2008,3:252-256.
    [45]郑宏,徐志新,汪师贞,等.宿主感染细粒棘球蚴免疫反应的研究进展[J].2002,15(1):55-58.
    [46]吕海龙,彭心宇.肝细粒棘球蚴病的免疫研究进展[J].中国寄生虫学与寄生虫病杂志,2007,25(5):426-429.
    [47]Thompson R C, L M Kumaratilake, J Eckert. Observations on Echinococcus granulosus of cattle origin in Switzerland [J]. Int. J. Parasitol,1984,14:283-291.
    [48]Chi P, W Zhang, Z Zhang, et al. Cystic echinococcosis in the Xinjiang/Uygur Autonomous Region, People's Republic of China. I. Demographic and epidemiologic data[J]. Trop Med Parasitol,1990,41:157-162.
    [49]Kamhawi S, N Hijjawi, A Abu-Gazaleh, et al. Prevalence of hydatid cysts in livestock from five regions of Jordan[J]. Ann Trop Med Parasitol,1995,89:621-629.
    [50]Sterla S, H Sato, A Nieto. Echinococcus granulosus human infection stimulates low avidity anticarbohydrate IgG2and high avidity antipeptide IgG4antibodies [J]. Parasite Immunol,1999,21:27-34.
    [51]Yong, W K., D D Heath, F Van Knapen. Comparison of cestode antIgEns in an enzyme-linked immunosorbent assay for the diagnosis of Echinococcus granulosus, Taenia hydatIgEna and Taenia ovis infections in sheep[J]. Res. Vet. Sci,1984,36:24-31.
    [52]Emery I, Liance M, Leclerc C C. Secondary Echinococcus multilocularis infection in A/J mice:delayed metacestode development is associated with Thl cytokine production [J]. Parasit Immunol,1997,19:493-503.
    [53]杜迎春.新疆多浪羊和中国美利奴羊MHC-DRB1、 DQB1基因SSCP多态性与包虫病抗性研究[D].石河子大学,2010,博士学位论文.
    [54]李仁燕.中国美利奴羊和哈萨克羊MHC-DRB1外显子2多态性与包虫病抗性研究[D].石河子大学,2011,博士论文.
    [55]Craig PS. Immunodiagnosis of Echinococcosis granulosus[M]. In:Andesen FL(Ed.). Conpdendium on Cystic Echinococcosis with Special Reference to the Xinjiang Uygur Autonomous Regon, The People's Republic of China. Brigham Young Univerdity, Provo, UT-PP,1993.85-118.
    [56]Gottstein B, A Hemphill, Immunopathology of echinococcosis [J]. Chemical Immunology,1997,66:177-208.
    [57]Shcherbakov AM. Human echinococcosis:the role of histocom-patibility antIgEns in realizing infestations and the characteristics of their course[J]. Med Parazitol(Mosk),1993,11(5):13-18.
    [58]Gottstein B, Bettens F, Parkinson AJ, et al. Immunological parameters associated with susceptibility or resistance to alveolar hydatid disease in Yupiks/Inupiats[J]. Arctic Med Res,1996,55(1):14-19.
    [59]Godot V, Harraga S, Beurton I, et al. Resistance/susceptibility to Echinococcus multilocularis infection and cytokine profile in humans. Ⅱ. Influence of the HLA B8, DR3, DQ2haplotype[J]. Clin Exp Immunol,2000,121(3):491-198.
    [60]Azab E, Bishara SA, Ramzy RM, et al. The evaluation of HLA-DRB1antIgEns as susceptibility markers for unilocular cystic echinococcosis in Egyptian patients[J]. Parasitol Res,2004,92(6):473-477.
    [61]Torres Rodriguez J M., C Wisnivesky. Kinetics of the serological response in the experimental primary hydatid disease of mice infected with Echinococcus granulosus embryophores[J]. Ann Parasitol Hum Comp,1978,53:479-486.
    [62]Yong W K, D D Heath, F Van Knapen. Comparison of cestode antIgEns in an enzyme-linked immunosorbent assay for the diagnosis of Echinococcus granulosus, Taenia hydatIgEna and Taenia ovis infections in sheep[J]. Res Vet Sci,1984,36:24-31.
    [63]172. Lloyd, S.1987. Cysticercosis, vol. Ⅱ. CRC Press, Inc., Boca Raton, Fla.
    [64]Rickard M D, J F Williams. Hydatidosis/cysticercosis:immune mechanisms and immunization against infection[J]. Adv. Parasitol,1982,21:229-296.
    [65]Zhang WB, AG Ross, DP McManus. Mechanisms of immunity in hydatid disease: implications for vaccine development[J]. J Immunol,2008,181:6679-6685.
    [66]Finkelman F D, E J Pearce, J F Urban, et al. Regulation and biological function of helminth-induced cytokine responses[J]. Immunol,1991,12:A62-A66.
    [67]Petrova R F. Blood picture in experimental hydatidosis in sheep [J]. Meteriali Seminara-Soveshch. Borbe Gel'mint. Zhivot. Chimk. Alma-Alap.1968,115-116.(In Russian.)
    [68]Rogan M T, P S Craig, E Zehyle, et al. In vitro killing of taeniid oncospheres, mediated by human sera from hydatid endemic areas[J]. Acta Trop,1992,51:291-296.
    [69]Fotiadis C, C Sergiou, J Kirou, et al. Experimental Echinococcus infection in the mouse model:pericystic cellular immunity reaction and effects on the lymphoid organs of immunocompetent and thymectomized mice [J]. In Vivo,1999,13:541-546.
    [70]Richards K S, C Arme, J F Bridges. Echinococcus granulosus equinus:an ultrastructural study of murine tissue response to hydatid cysts[J]. Parasitology,1983,86:407-417.
    [71]Riley E M, J B Dixon, D F Kelly, et al. The immune response to Echinococcus granulosus: sequential histological observations of lymphoreticular and connective tissues during early murine infection[J]. J. Comp. Pathol,1985,95:93-104.
    [72]Dematteis S, A Baz, M Rottenberg, et al. Antibody and Th1/Th2-type responses in BALB/c mice inoculated with live or dead Echinococcus granulosus protoscoleces[J]. Parasite Immunol,1999,21:19-26.
    [73]Haralabidis S, E Karagouni, S Frydas, et al. Immunoglobulinand cytokine profile in murine secondary hydatidosis [J]. Parasite Immunol,1995,17:625-630.
    [74]Ali-Khan Z, R Siboo. Pathogenesis and host response in subcutaneousalveolar hydatidosis. Ⅰ. Histogenesis of alveolar cyst and a qualitative analysis of the inflammatory infiltrates[J]. Z. Parasitenkd,1980,62:241-254.
    [75]Ali-Khan Z, R Siboo. Pathogenesis and host response in subcutaneousalveolar hydatidosis. Ⅱ. Intense plasmacellular infiltration in the paracortex of draining lymph nodes [J]. Z Parasitenkd,1980,62:255-265.
    [76]Archer G T, J E Robson, A R Thompson. Eosinophilia and mast cell hyperplasia induced by parasite phospholipid[J]. Pathology,1977,9:137-153.
    [77]Arias Irigoyen J, C J Senent Sanchez. Toxocariasis:a cause of hyper IgE and eosinophilia [J]. J Investig Allergol Clin Immunol,1995,5:232-234.
    [78]Richards K S, C Arme, J F Bridges. Echinococcus granulosus equinus:an ultrastructural study of murine tissue response to hydatid cysts[J]. Parasitology,1983,86:407-417.
    [79]Rigano R, E Profumo, A Teggi, et al.. Production of IL-5and IL-6by peripheral blood mononuclear cells (PBMC) from patients with Echinococcus granulosus infection[J]. Clin Exp Immunol,1996,105:456-459.
    [80]Riley E M, J B Dixon, D F Kelly, et al. The immune response to Echinococcus granulosus: sequential histological observations of lymphoreticular and connective tissues during early murine infection[J]. J. Comp. Pathol,1985,95:93-104.
    [81]Slais J, M Vanek. Tissue reaction to spherical and lobular hydatid cysts of Echinococcus granulosus (Batsch,1786)[J]. Folia Parasitol,1980,27:135-143.
    [82]Ramzy R M., H Helmy, E A El Zayyat, et al. An enzyme-linked immunosorbent assay for detection of IgGl antibodies specific to human cystic echinococcosis in Egypt[J]. Trop Med Int Health,1999,4:616-620.
    [83]Sterla S, H Sato, A Nieto. Echinococcus granulosus human infection stimulates low avidity anticarbohydrate IgG2and high avidity antipeptide IgG4antibodies [J]. Parasite Immunol,1999,21:27-34.
    [84]Allen J E, R M Maizels. Immunology of human helminth infection[J]. Int Arch Allergy Immunol,1996,109:3-10.
    [85]Finkelman F D, E J Pearce, J F Urban, et al. Regulation and biological function of helminth-induced cytokine responses[J]. Immunol,1991,12:A62-A66.
    [86]Lange A M., W Yutanawiboonchai, P Scott, et al. IL-4-and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cBYJ mice[J]. J Immunol,1994,153:205-211.
    [87]Mosmann T R., S. Sad. The expanding universe of T-cell subsets:Thl, Th2and more[J]. Immunol,1996,17:138-146.
    [88]Qaoud K M, Abdel S K. Humoral and cytokine response during protection of mice against secondary hydatidosis caused by Echinococcus granulosus[J].Parasitol Res,2005,98:54-60.
    [89]李富荣,石佑恩.细胞因子在棘球蚴感染治疗评价中的作用[J].国外医学寄生虫病分册,1999,26(4):145-147.
    [90]王松,许晏,朱明.继发性细粒棘球蚴病小鼠的细胞因子动态研究[J].地方病通报,2002,17:8-11.
    [91]Rigano R E, Profumo B, Buttari A, et al. Cytokine gene expression in peripheral blood mononuclear cells (PBMC) from patients with pharmacologically treated cystic echinococcosis [J]. Clin Exp Immunol,1999,118:95-101.
    [92]Rigano R E, Profumo G, Di Felice E, et al. In vitro production of cytokines by peripheral blood mononuclear cells from hydatid patients[J]. Clin Exp Immunol,1995,99:433-439.
    [93]Siracusano A, F Delunardo, A Teggi, et al. Host-Parasite Relationship in Cystic Echinococcosis:An Evolving Story[J]. Clin Dev Immunol,2012:1-12.
    [94]Rigano R E, Profumo S, Ioppolo S, et al. Cytokine patterns in seropositive and seronegative patients with Echinococcus granulosus infection[J]. Immunol Lett,1998,64:5-8.
    [95]Rigano R. E, Profumo S, Ioppolo S, et al. Serum cytokine detection in the clinical follow up of patients with cystic echinococcosis [J]. Clin Exp Immunol,1999,115:503-507.
    [96]Rigano R E, Profumo, A Siracusano. New perspectives in the immunology of Echinococcus granulosus infection[J]. Parassitologia,1997,39:275-277'.
    [97]Rigano R E, Profumo A, Teggi, et al. Production of IL-5and IL-6by peripheral blood mononuclear cells (PBMC) from patients with Echinococcus granulosus infection[J]. Clin Exp Immunol,1996,105:456-459.
    [98]Touil-Boukoffa C, B Bauvois, J Sanceau, et al. Production of nitric oxide (NO) in human hydatidosis:relationship between nitrite production and interferon-gamma levels[J]. Biochimie,1998,80:739-744.
    [99]McManus D P, C Bryant. Biochemistry, physiology and molecular biology of Echinococcus [J]. In R. C. A Thompson and A. J. Lymbery (ed.), The biology of Echinococcus and hydatid disease.1995.p.355-410.
    [100]Zhang W B, D Z Zhao. A comparison of calcification of hydatid cysts in sheep pastured and post-fed[J]. Chin J Vet Sci Technol,1992,22:28-29.
    [101]Rigano R, Profumo E, Di Felice G, et al. Immurological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J]. Clin Exp Immunol,1995,102:281-285.
    [102]Zhang W, H You, J Li, et al. Immunoglobulin profiles in a murine intermediate host model of resistance for Echinococcus granulosus infection[J]. Parasite Immunol,2003,25:161-168.
    [103]Fezreira A M, Iagion F. Breijo M.et aL How Echinococcus granulosas deals with complement[J].parasital Today,2000,16:168-172.
    [104]Wang D, Urisman A, Liu Y T, et al. Viral discovery and sequence recovery using DNA microarrays[J]. PLoS Biol,2003;1:E2.
    [105]Van't Veer L J, Dai H, van de Vijver M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature,2002,415:530-536.
    [106]Cheng R Y, Birely L A, Lum N L, et al. Expressions of hepatic genes, especially IGF-binding protein-1, correlating with serum corticosterone in microarray analysis[J]. J Mol Endocrinol,2004,32:257-78.
    [107]杨健美.不同终末宿主对日本血吸虫感染适宜性的差异分析[D].中国农业科学院,2012,博士论文
    [108]姜海,张建中.表达谱基因芯片在原核生物研究中的应用[J].中国全科医学,2004,7(12):928-930.
    [109]Sexton AC,Good RT,Hansen DS,et al. Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria[J]. J Infect Dis,2004,189(7):1245-1256.
    [110]Sarfo B Y, Armah H B, Irune I, etal. Plasmodium yoelii17XL infection up-regulates RANTES, CCR1, CCR3and CCR5expression, and induces ultrastructural changes in the cerebellum [J]. Malar J,2005,4:63.
    [111]Delahaye N F, Coltel N, Puthier D, etal. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice[J]. BMC Genomics,2007,8:452.
    [112]孙军,林绞绞,程国锋,等.利用基因表达谱芯片研究东方田鼠和小鼠感染日本血吸虫前后基因的差异性表达[J].北京大学学报(自然科学版),2004,40(4):532-536.
    [113]Jiang W, Hong Y, Peng J, et al. Study on Differences in the Pathology, T Cell Subsets and Gene Expression in Susceptible and Non-Susceptible Hosts Infected with Schistosoma japonicum[J]. PLoS ONE,2010,5(10):e13494.
    [114]程喆.我国内蒙古东北部三种泡状棘球绦虫感染延期宿主体内基因差异表达的研究[D].2008,厦门大学,博士学位论文.
    [115]Gottstein B, Wittwer M, Schild M, et al. Hepatic gene expression profile in mice perorally infected with Echinococcus multilocularis eggs[J]. PLoS One,2010,5(4):e9779.
    [116]谢文娟.泡球蚴感染小鼠肝脏基因表达谱的分析[D].2010,新疆大学,硕士论文.
    [117]Lin R, Lu G, Wang J, et al. Time Course of Gene Expression Profiling in the Liver of Experimental Mice Infected with Echinococcus multilocularis [J]. PLoS ONE,2011,6(1):e14557.
    [118]Diez-Tascon C, Keane O M, Wilson T, et al. Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep[J]. Physiol Genomics,2005,21(1):59-69.
    [119]MacKinnon K M, Burton J L, Zajac A M, et al. Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus[J]. Vet Immunol Immunopathol,2009,130(3-4):210-220.
    [120]彭林泽,申红,贾斌,等.中国美利奴羊MHC-DRBI基因PCR-RFLP多态性分析[J].畜牧兽医学报,2007,38(10):1115-1119.
    [121]贾斌,申红,余智勇,等.多浪羊和中国美利奴羊MHC-DRB1基因多态性包虫病的遗传易感性[J].中国人兽共患病学报,2007,23(10):1012-1014.
    [122]余智勇,李海,贾斌,等.多浪羊MHC-DRBI基因多态性与包虫病抗性分析[J].畜牧兽医学报,2007,38(11):1149-1153.
    [123]申红,贾斌,陈玉林,等.中国美利奴羊MHC-DQB1基因多态性与包虫病的抗性分析[J].中国预防兽医学报,2008,30(90):682-688.
    [124]申红,杜迎春,贾斌,等.多浪羊MHC-DQB1基因多态性与包虫病的抗性分析[J].中国人兽共患学报,2009,25(1):17-22.
    [125]申红.中国美利奴和多浪羊MHC-DRB I、MHC-DQB1基因与包虫病抗性关联分析[D].石河子大学,2008,博士学位论文.
    [126]Li R Y, B Jia, W J Zhang, et al. Analysis of the relationship between MHC-DRB1gene Polymorphism and hydatidosis in Kazakh Sheep[J]. Asian-Aust J Anim Sci,2010,9:1145-1151.
    [127]Li Li RY, Q Peng, B Jia. Antibody and Cytokine Responses to Hydatid in Experimentally Infected Kazakh Sheep with Hydatidosis Resistance Haplotype[J]. Parasitology Research,2011,108(5):1131-1137.
    [128]Kuenzel W J, Beck M M, Teruyama R. Neural sites pathways regulating food intake in birds: A comparative analysis tomammalian systems [J]. Journal of Experimental Zoology,1999,283(4-5):348-364.
    [129]邱加闽,罗成香,陈兴旺.几种含氯消毒剂杀灭棘球属绦虫卵的效果观察[J].实用寄生虫病杂志,1996,3:143-144.
    [130]何维.医学免疫学,第2版(M).人民卫生出版社.
    [131]Williams J F. Recent advances in the immunology of cestode infection [J]. J Parasitol,1976,65:337-349.
    [132]Zhang W, Allen G R, Donald P M. Mechanisms of Immunity in Hydatid Development Disease:Implications for Vaccine[J]. The journal of immunology,2008,181:6679-6685.
    [133]. Thompson R C A, A J Lymbery. Echinococcus and Hydatid Disease[M], CABI,1995:P496.
    [134]Pater C, V Muller, M Harraga, et al. Intestinal and systemic humoral immunological events in the susceptible Balb/C mouse strain after oral administration of Echinococcus multilocularis eggs[J]. Parasite Immunol,1998,20:623-629.
    [135]Li R, Qiang P, Bin J. Antibody and Cytokine Responses to Hydatid in Experimentally Infected Kazakh Sheep with Hydatidosis Resistance Haplotype[J]. Parasitology Research.2011,108(5):1131-1137.
    [136]Godot V, S Harraga, I Beurton, Resistance/susceptibility to echinococcus multilocularis infection and cytokine profile in humans. Ⅱ. Influence of the HLA B8, DR3, DQ2haplotype[J]. Clin Exp Immunol,2000,121:491-498.
    [137]Zhang W, H You, J Li, Z Zhang, et al. Immunoglobulin profiles in a murine intermediate host model of resistance for Echinococcus granulosus infection[J]. Parasite Immunol,2003,25:161-168.
    [138]Zhang WB, H Wen, J Li, et al. Immunology and Immunodiagnosis of Cystic Echinococcosis: An Update [J]. Clin Dev Immunol,2012,2012:1-10.
    [139]路慧丽,俞眉,韩伟.趋化因子CXCL9/Mig的研究进展[J].中国生物工程杂志,2006,26(10):59-63.
    [140]Kocherscheidt L, F Ann-Katrin, B Griiner, et al. Echinococcus multilocularis:Inflammatory and regulatory chemokine responses in patients with progressive, stable and cured alveolar echinococcosis[J]. Exp Parasitol,2008,119:467-474.
    [141]李东娅,章晓梅,唐莉.S100蛋白与相关疾病[J].医学研究杂志,2007,36(9):95-97.
    [142]朱立勇.VCL、PPA1、AR在前列腺癌中的表达及相关性研究[D].硕士论文,2009,中南大学.
    [143]Zhang W W, Churchill S, Lindahl R. Regulation of D-beta-hydroxybutyrate dehydrogenase in rat hepatoma cell lines[J]. Cancer Res.1989,49(9):2433-2437.
    [144]Khakoo S I, Thio C L, Martin M P, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection[J]. Science,2004,305:872-874.
    [145]Martin M P, Gao X, Lee J H, et al. Epistatic interaction between KIR3DS1and HLA-B delays the progression to AIDS[J]. Nat Genet,2002,31:429-434.
    [146]Luszczek W, Manczak M, Cislo M, et al. Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris[J]. Hum Immunol,2004,65:758-766.
    [147]Yen J H, Lin C H, Tsai W C, et al. Killer cell immunoglobulin-like receptor gene's repertoire in rheumatoid arthritis[J]. Scand J Rheumatol,2006,35:124-127.
    [148]林国跃,王彦斌,张和平,等.中国新疆地区维吾尔族人群杀伤细胞免疫球蛋白受体样基因多态性研究[J].中国组织工程研究,2012,16(5):847-851.
    [149]张健,刘义庆,卢志明,等.KIR多态性与相关疾病的研究进展[J].山东医药,2009,49(31):116-118.
    [150]Komiya T, Tanigawa Y, Hirohashi S. Cloning of the Novel Gene Intelectin, Which Is Expressed in Intestinal Paneth Cells in Mice[J]. Biochem Biophys Res Commun,1998,251(3):759-762.
    [151]Datta R, deSchoolmeester M L, Hedeler C, et al. Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite [J]. Infect Immun,2005,73:4025-4033.
    [152]Pemberton A D, Knight P A, Gamble J, et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis:inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10mice[J]. J Immunol,2004,173:1894-1901.
    [153]Lee J K, Schnee J, Pang M, et al. Human homologs of the Xenopus oocyte cortical granule lectin XL35[J]. Glycobiology,2001,11(1):65-73.
    [154]任鹏飞.AHSG基因的原核表达及其在原发性肝癌中的诊断价值[D].2010,硕士学位论文,郑州大学.
    [155]张春梅.SARS-CoVN蛋白通过AHSG介导对小鼠糖脂代谢的影响[D].2012,硕士学位论文,安徽大学.
    [156]李冉,吴新忠.珠蛋白基因的表达调控研究进展[J].实用医学杂志,2011,27:694-696.
    [157]Oh-Hashi K, Maruyama W, Isobe K. Peroxynitrite induces Gadd34,45and153via p38MAPK in human neuroblastoma SH-SY5Y cells[J]. Free Radic Biol Med,2001,30:213-221.
    [158]Nimmrich I, Friedl W, Kruse R, et al. Loss of the PLA2G2A gene in a sporadic colorectal tumor of a patient with a PLA2G2A germline mutation and absence of PLA2G2A germline alterations in patients with FAP[J]. Genet,1997,100(3-4):345-349.
    [159]Leung S Y, Chen X, Chu K M, et al. Phospholipase A2group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis [J]. Proc Natl Acad Sci USA,2002,99(25):16203-16208.
    [160]洪双双.PLAG1和PLA2G2A在肝癌中的异常表达[D].郑州大学,2011,硕士论文.
    [161]陈建勇,王聪,王娟,等.MAPK信号通路研究进展[J],中国医药科学,2011,8:32-34.
    [162]Wada T, Penninger J M. Mitogen-activated protein kinases in apoptosis regulation[J]. Oncogene,2004,23:2838-2849.
    [163]姜勇,龚小卫.MAPK信号转导通路对炎症反应的调控[J].生理学报,2000,52:267-271.
    [164]郭顺根,戴敏,张玮,等.肝纤维化发生发展与信号转导途径[J].中国组织化学与细胞化学杂志,2003,12:106-111.
    [165]Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Suppressor of cytokine signaling (SOCS)2, a protein with multiple functions [J]. Cytokine Growth Factor Rev,200617(6):431-439.
    [166]朱玉兆,张琼,王洋,等.细胞因子信号转导抑制因子2在乳腺癌中的表达[J].第二军医大学学报,2007,28(4):393-395.
    [167]Sasi W, Jiang W G, Sharma A, et al. Higher expression levels of SOCS1,3,4,7are associated with earlier tumour stage and better clinical outcome in human breast cancer[J]. BMC Cancer,2010,10:178.
    [168]郑永霞.MiR-376a在干细胞癌发生发展中的作用及其机制研究[D].博士论文,2012,第二军医大学.
    [169]Bachelor M A, Lu Y, Owens DM. L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis[J]. J Dermatol Sci,2011,63(3):164-172.
    [170]费建东,聂双发,胡晓峰,等.胃癌患者外周血微转移指标的检测及意义[J].中国老年学杂志,2011,31(22):4319-4321.
    [171]马茜,叶鸣宇,汪洋.NK细胞受体及作用机制[J].现代免疫学,2011,31(6):507-511.
    [172]刘丽莎,种天鹰.人类补体C8结构与功能研究进展[J].医学综述,2011,17(16):2433-2435.
    [173]刘龙丁.IFN-α刺激相关蛋白TIIMPSC和S24V2的功能分析[D].中国协和医科大学,2007,博士论文.
    [174]韩秀丽,陈丽婷,谢步善,等.PKIB抑制PKA活性调节细胞衰老[J].中国生物化学与分子生物学报,2009,25(11):1041-1046.
    [175]郑锦彪.人cAMP依赖性蛋白酶抑制剂β与ERp29的克隆、表达纯化和结构研究[D].复旦大学,硕士学位论文,2006.
    [176]张小飞,杨倩.几种黏膜免疫佐剂对小肠树突状细胞、MHC2类分子及核转录因子NF-kB的影响[J].免疫学杂志,2009,25(5):254-258.
    [177]Elwood C M, Hamblin A S, Batt R M. Quantitative and qualitative immunohistochemistry of T cell subsets and MHC Class II expression in the canine small intestine[J]. Vet Immunol Immunopathol,1997,58(3-4):195-207.
    [178]杜鑫立,惠文巧,赵博,郭玉强,马军德,马世俊,木叶沙尔·巴吐尔,刘贤侠,贾斌.两种MHC-DRB1单倍型哈萨克绵羊细粒棘球六钩蚴侵染期小肠消减文库的构建.石河子大学学报(自然科学版),2012,30(5):587-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700