用户名: 密码: 验证码:
爆炸火焰真温测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸火焰温度是表征导弹、炸药爆炸威力的重要参数,对其测量技术开展研究对于国防、化学、材料等领域有着十分重要的现实意义。由于爆炸过程具有破坏性及瞬时性,使得对爆炸火焰温度进行测量具有一定的难度。本课题受国家级项目资助,目的是对爆炸火焰真温测量技术进行研究,为评估爆炸威力提供依据。
     论文紧紧围绕爆炸火焰真温测量这一主题,对国内外测量爆炸火焰温度已有的方法和仪器进行研究,针对其不足加以创新与改进,成功研制可用于测量爆炸火焰真温的多光谱高温计;针对目前高温计标定领域存在的问题,提出了两种无源温区标定方法:基于幂函数的无源温区标定方法和基于对数函数的无源温区标定方法,两种标定方法的提出对于完善辐射测温理论、拓宽辐射高温计的测温范围、提高无源温区测量精度具有重要的意义。
     目前大多数辐射高温计存在两方面的问题:一、在未知发射率的条件下,只能测量物体的亮温而非真温,采用估计发射率的方法误差较大;二、防爆性差、响应速度慢、采样率低及测量范围小。针对以上问题,本文研制了测量爆炸火焰真温的多光谱高温计。以辐射测温理论为基础,采用二次测量法和亮温逼近法相结合解决真温测量理论问题;提出了光学远传结构使高温计的主体与光学瞄准系统分离,提高了高温计的防爆性能;设计了自动选择量程功能拓宽了高温计的测量范围;设计了自启动功能大大增强了高温计的自动化程度;设计了超高速同步数据采集系统增加了高温计的响应速度与采样率;加入了无线传输与上位机的结构,保证了工作人员的安全。
     为了解决目前无源温区标定方法存在的问题,提出了基于幂函数模型的无源温区标定方法。利用幂函数曲线图形与高温计有源温区的温度—电压曲线具有很高相似性,建立以幂函数为基础的数学模型,应用对曲线走势有很强控制能力的导数最小二乘法对模型求解,从而实现对无源温区的标定。在此基础之上,应用Plank定律验证此标定方法的理论精度,同时采用有源温区的实测数据精度验证与无源温区的理论验证共同实现对此方法在实际应用中精度的验证。实验结果证明:此方法外推温度区间3100℃~3500℃,实测数据精度优于0.7%。
     提出了基于对数函数模型的无源温区标定方法。借助于高温计的传递函数建立了温度—电压曲线,并应用导数最小二乘法求解模型。分别应用黑体辐射出度及高温计有源温区的实际标定数据对此方法进行了精度验证。实验结果证明:此标定方法在理论上具有极高精度,在实际应用中的精度令人满意,外推温度区间3100℃~3500℃,实测数据精度为1.1%。
     为了确定两种标定方法的使用条件进行了大量的仿真实验。通过分析不同波长和不同温度点个数对两种方法标定精度的影响分别确定了两种方法的应用点数与波长;通过分析不等间隔温度点及温度点选取区间对两种方法精度的影响,得到了温度点选取的理论依据;通过对两种方法进行了抗随机误差能力的分析,得到两种方法适用的精度范围。仿真实验结果证明:基于幂函数模型的标定方法使用条件容易实现,且抗随机误差能力强;基于对数函数模型的标定方法对使用条件要求较为苛刻,抗随机误差能力弱。
     利用所研制的多光谱高温计分别进行了黑体炉模拟实验及TNT炸药爆炸实验。通过快速遮挡高温黑体输出窗口仿真快速变化的温度场以考察此高温计对于快速变化的温度场的响应,并在野外对3kgTNT炸药爆炸进行了测量,分析了实验结果并给出了此高温计的测量不确定度。在全量程范围内,此多光谱高温计的测量不确定度为1.2%。
Explosion flame temperature is an important parameter that characterizesthe explosive forces of missiles and explosives. Its research has practicalsignificance in the field of national defense, chemistry, and material sciences etc.Because of the destructiveness and instantaneity in the explosion process, it israther difficult to measure the explosion flame temperature. This research,sponsored by funds on the national level, researched on the true temperaturemeasurement technology of the explosive flame so as to lay foundation for theevaluation of explosive force.
     The existing methods and instruments in the measurement of the explosiveflame true temperature were researched on and improvement was made directingat the existing faults. The multi-spectral pyrometer was successfully developedfor this purpose. For the high temperature calibration, two non-sourcetemperature calibration methods were proposed, one being power-function based,and the other being logarithmic function based. The two methods proposed aresignificant in improving the radiation temperature measurement theory,broadening the measurement range of the pyrometers, and upgrading themeasurement precision of non-source temperature.
     At present, most radiation pyrometers have the following two faults. First,they can only measure the brightness temperature rather than the true temperaturewhen the emissivity is unknown. The emissivity estimation method usuallyresults in comparatively large error. Secondly, it has low anti-explosion ability,low response speed, low sample rate and narrow measurement range. To solvethe problem mentioned above, a multi-spectral pyrometer was developed tomeasure the true temperature of the explosive flame in this research. Based onthe radiation temperature measurement theory, the Second Measurement Methodand Brightness Temperature Approximation Method were combined to resolvethe theoretical issue in the true temperature measurement. An optical structurewas established to separate the main body of the pyrometer and the opticaltargeting system, which improved the anti-explosion property of the pyrometer.The automatic selection of the measurement range was designed to widen the range of the pyrometer. Automatic activation designed greatly increased theextent of automation of the pyrometer. high-speed synchronized data collectionsystem was developed which improved the response rate and sampling rate. Thewireless transmission and host computer were implemented to ensure the safetyof the personnel.
     In order to solve the existing problem in the non-source temperaturecalibration, a non-source temperature calibration method was proposed based onthe power function. Since the curve of power function and that of thetemperature-voltage in source temperature region have great similarity, amathematical model was established based on the power function. Since theDerivative Least-Square has high controllability over the shape of the curve, itwas used to obtain the solution of the model so as to realize the non-sourcetemperature calibration. In addition, Plank Law was used to testify the theoreticalprecision of this calibration method. The experimental data collected in thesource temperature range and the theoretical testing in the non-sourcetemperature range were employed to testify the precision of this method in thepractical application. The test results show that the extrapolation temperaturerange is between3100℃and3500℃,and the actual experimental data precisionis greater than0.7%.
     A calibration method in non-source temperature range was proposed basedon the logarithmic function model. The transfer function of the pyrometer wasused to establish the temperature-voltage curve and the solution to the model wasobtained using derivative Least-Square. The blackbody emissivity and the actualcalibration data of the pyrometer in the source temperature range were usedrespectively to testify the precision of this method. The result shows that thecalibration has both high theoretical precision and satisfactory precision inpractical applications. The extrapolation temperature range is between3100℃and3500℃, and the actual data measurement precision is1.1%.
     In order to define the applicable condition of the two calibration methods,large amount of simulations were conducted. Through the analyzing the influenceof different wavelengths and the numbers of temperature points on the precisionof the two methods, the wavelength and number of points were determined forthe two methods respectively. Through the analysis of the influence of temperature points at unequal intervals and the range of temperature selection onthe precision of the two methods, the theoretical basis of temperature pointselection was established. Through the analysis of anti-random-error ability ofthe two methods, their applicable precision ranges were determined. Thesimulation results showed that the conditions for the calibration method based onthe power function model could be easily realized and the ability of anti-random-error was strong, while the method based on the logarithmic function modelrequired strict application condition and the ability of anti-random-error wasweak.
     The blackbody furnace simulation and TNT explosion experiment wereconducted using multi-spectral pyrometer developed in the research. The reactionof this pyrometer to temperature field was tested through rapidly shielding thehigh-temperature blackbody output window to simulate the rapidly changingtemperature field. In the field experiment, the3kg TNT explosive was tested andthe experimental results were analyzed. The uncertainty of the measurement ofthe pyrometer is obtained which is1.2%in the overall measurement range.
引文
1M. A. Marr, J. S. Wallace, S. Chandra. A Fast Response Thermocouple forInternal Combustion Engine Surface Temperature Measurements[J].Experimental Thermal and Fluid Science.2010,34(2):183-189
    2J. Niu, G. Zhou. Investigation on the Welding Temperature FieldMeasurement in Gas Tungsten Arc Welding[J]. Materials Science Forum.2011,704:786-789
    3J. Dai, C. Xin, X. He. Measuring for the Thermal Expansion Coefficient ofNonuniform Temperature Specimen[J]. Chinese Optics Letters.2008,6(9):669-672
    4C. Xin, J. Dai, X. He. Experimental Study on Measurement of the ElectricalResistivity of A Specimen At High Temperature[J]. Chinese Optics Letters.2009,7(7):585-589
    5戴景民,王强,辛春锁.多参数动态热物性测量方法综述[J].仪器仪表学报.2008,29(4):187-190
    6H. Q. Li, Y. S. Zhang, Li Wang, Emissivity Calibration and TemperatureMeasurement of High Strength Steel Sheet in Hot Stamping Process[J].Mechanical Engineering.2012,148:1473-1477
    7K. M. Pedersen, N. Tiedje. Temperature Measurement during Solidificationof Thin Wall Ductile Cast Iron. Part1: Theory and Experiment[J].Measurement.2008,41(5):551-560
    8K. M. Pedersen, N. Tiedje. Temperature Measurement during Solidificationof Thin Wall Ductile Cast Iron. Part2: Numercial Simulation[J].Measurement.2008,41(4):341-348
    9Tao Zhu, Tao Ke, Yunjiang Rao. Fabry–Perot Optical Fiber Tip Sensor forHigh Temperature Measurement[J]. Optics Communications.2010,283(19):3683-3685
    10Y. J. Rao, Z. L. Ran, Xian Liao, H. Y. Deng. Hybrid Lpfg/Mefpi Sensor forSimultaneous Measurement of High-Temperature and Strain[J]. OpticsExpress.2007,22(15):14936-14941
    11H. Krisch, N. Fernandes, K. Gossner. High-Temperature Fiber-Optic Sensorfor Low-Power Measurement of Wide Dynamic Strain Using InterferometricTechniques and Analog/Dsp Methods[J]. Sensors Journal.2012,12(1):33-38
    12J. L. Kou, J. F. Liang, Y, F, Xu. Miniaturized Fiber Taper ReflectiveInterferometer for High Temperature Measurement[J]. Optics Express.2010,18(13):14245-14250
    13G. J. Villiers, J. Treurnicht, R. T. Dobson. In-Core High TemperatureMeasurement Using Fiber-Bragg Gratings for Nuclear Reactors[J]. AppliedThermal Engineering.2012,38:143-150
    14J. Kang, X. Dong, C. Zhao, W. Qian. Simultaneous Measurement of Strainand Temperature with A Long-Period Fiber Grating Inscribed SagnacInterferometer[J]. Optics Communications.2011,284(8):2145-2148
    15S. Baccar, T. Levi, D. Dallet. Modeling Methodology for Analog Front-EndCircuits Dedicated to High-Temperature Instrumentation and MeasurementApplications[J]. Instrumentation and Measurement.2011,60(5):1555-1564
    16H. You, M. Yu, L. Zheng. Study on Suppression of the CoalDust/Methane/Air Mixture Explosion in Experimental Tube by Water Mist[J].Procedia Engineering.2011,26:803-810
    17Q. Zhang, W. Li, D. Lin. Experimental Study of Gas DeflagrationTemperature Distribution and Its Measurement[J]. Experimental Thermal andFluid Science.2011,35(3):503-508
    18Y. M. Chang, J. C. Lee, C. Chen. Fire and Explosion Properties Examinationsof Toluene–Methanol Mixtures Approached to the Minimum OxygenConcentration[J]. Journal of Thermal Analysis and Calorimetry.2009,96(3):741-749.
    19姬建荣,苏健军,刘艳萍.非理想炸药爆炸热作用的实验研究[J].火炸药学报.2010,33(4):49-52
    20L. Brundage, A. B. Donaldson, W. Gill. Thermocouple Response in Fires,Part1: Considerations in Flame Temperature Measurements by aThermocouple[J]. Journal of Fire Sciences.2011,29(3):195-211
    21X. Silvani, F. Morandini. Fire Spread Experiments in the Field: Temperatureand Heat Fluxes Measurements[J]. Fire Safty Journal.2009,44(2):279-285
    22郝晓剑,孙伟,周汉昌.蓝宝石光纤黑体腔高温计[J].应用基础与工程科学学报.2004,12(2):218-223
    23郝晓剑,李科杰,刘健.蓝宝石光纤黑体腔瞬态高温传感器测量系统特性参数研究[J].仪器仪表学报.2008,29(10):2121-2125
    24X. Y. Wang, W. Gao. Investigation on Sapphire Fiber Blackbody Sensor[C].
    2010International Conference on Computer Application and SystemModeling (Iccasm2010).2010,13:452-455
    25周汉昌,王高,郝晓剑.蓝宝石光纤传感器在瞬态高温测量中的应用[J].仪器仪表学报.2004,25(4):221-222
    26V. G. Knorre,A. G. Lyakhov. Detonation Temperature of Acetylene. Fiz[J].Goreniya Vzryva.1978,14(2):151-152
    27李鸿德,廖继卿,夏自柱.瓦斯煤灰爆炸火焰温度的测定[J].计量学报.1988,9(4):275-279
    28R. Usamentiaga, D. F. García, J. Molleda, Bulnes. Temperature MeasurementUsing the Wedge Method: Comparison and Application to EmissivityEstimation and Compensation[J]. Instrumentation and Measurement2011,60(5):1768-1778
    29刘大斌,杨栋,蒋荣光.导爆管起爆器瞬态电火花温度的光谱法测定[J].光谱学与光谱分析.2002,22(4):670-672
    30周新丽,李燕,刘祖亮.爆炸爆轰瞬态温度的光谱法测定[J].光谱学与光谱分析.2003,23(5):982-983
    31郭学永,李秀丽,张黎明.非理想炸药爆炸产物温度的光谱法测试[J].南京理工大学学报.2007,31(5):647-649
    32李秀丽,惠君明,张琳.光谱法遥感测定温压炸药爆炸温度的研究[J].弹道学报.2008,20(2):90-94
    33W. K. Lewis, C. G. Rumchik. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy[J]. Journal ofApplied Physics.2009,105(5):056104
    34赵文华,唐皇哉,沈岩.谱线强度法所测得温度的物理意义[J].光谱学与光谱分析.2007,27(11):2145-2149
    35李驰,唐晓亮,邱高常压射流等离子体发射光谱研[J].光谱学与光谱分析.2008,28(12):2754-2757
    36S. P. Medvedev, B. E. Gelfand, V. V. Zhukov. Complete Solution for OpticalTemperature Measurements in the Field of Explosion Phenomena[C].Proceedings of the24th International Congress on High-Speed Photographyand Photonics.2001,4183:696-704
    37M. D. Tarasov, I. I. Karpenko, V. A. Sudovtsov. Measuring the BringhtnessTemperature of a Detonation Front in a Porous Explosive. Combustion[J].Explosion and Shock Waves.2007,43(4):465-467
    38刘庆明,白春华.应用比色测温仪测量燃料空气炸药爆炸过程温度响应[J].兵工学报.2009,30(4):425-430
    39C. Xiong, C. Yan, H. Qiu. Multicycle Detonation Investigation by Emission–Absorption-Based Temperature Diagnostics[J]. Combustion Science andTechnology.2010,183(1):62-74
    40王喜世,伍小平,秦俊.用红外热成像方法测量火焰温度的实验研究[J].激光与红外.2001,31(3):169-172.
    41李秀丽,惠君明.温压炸药的爆炸温度[J].爆炸与冲击.2008,28(5):471-475
    42李秀丽,惠君明,解立峰.红外热成像技术在云团爆炸测温中的应用[J].聚能材料.2009,30(4):425-430
    43郭学永,李斌,王连炬.温压药剂的爆炸温度场测量及热辐射效应研究[J].弹箭与制导学报.2008,28(5):119-124
    44D. Y. Svet, V. J. Sayapina, V. V. Levchuk. Optical Photoelectronic Pyrometerfor Measuring the True Temperature of Metals by Radiation[J]. High Temp-High Pressures.1979,11:117-118
    45G. A. Lyzenga, T. J. Ahrens. Multiwavelength Optical Pyrometer for ShockCompression Experiments[J]. Review of Science Instrument.1979,50(11):1421-1424
    46J. L. Gradner, T. P. Jones. A Six-Wavelength Pyrometer[J]. High Temp-HighPressures.1981,13(4):459-466
    47J. F. Babelot, J. Magill, R. W. Ohse. Micro-Second and Submicro-SecondMulti-Wavelength Pyrometer for Pulsed Heating Technique Diagnostics[J].Temperature, Its Measurement and Control in Science and Industry.1982,5:439-446
    48K. L. Cashdollar, M. Hertzberg. Infrared Pyrometers for Measuring DustExplosion Temperatures[J]. Optics Engineering.1982,21(1):82-86
    49J. P. Hiernaut. Submillisecond Six Wavelength Pyrometer for HighTemperature Measurements in the Range2000to5000k[J]. High Temp-HighPressures.1986,18:617-625
    50J. P. Hiernaut, F. Sakuma, C. Ronchi. Determination of the Melting Point andthe Emissivity of Refractory Metals with a Six-Wavelength Pyrometer[J].High Temp-High Pressures.1989,21(2):139-148
    51M. B. Boslough. A Sensitive Time-Resolved Radiation Pyrometer for ShockTemperature Measurements above1500k[J]. Review of Science Instrument.1989,60(12):3711-3717
    52Y. A. Levendis. Development of Multicolor Pyrometers to Monitor theTransient Response of Burning Carbonaceous Particles[J]. Review ofScience Instrument.1992,63(7):3608-3622
    53G. Ruffino, Z. Chu, S. Kang, J. Dai. Multi-Wavelength Pyrometer withPhotodiode Array[J]. Temperature, Its Measurement and Control in Scienceand Industry.1993,6(2):807-810
    54戴景民.多光谱辐射测温技术研究[D].哈尔滨工业大学博士论文.1995,23-45
    55戴景民,卢小冬.具有同步数据采集系统的多点多波长高温计的研制[J].红外与毫米波学报.2000,19(1):62-66
    56范毅,李成伟,褚载祥.脉冲加热材料热物性多光谱动态测量装置的研制[J].红外与毫米波学报.2002,21(3):218-220
    57萧鹏,戴景民,王青伟.多目标多光谱辐射高速高温计的研制[J].光谱学与光谱分析.2008,28(11):2730-2734
    58李占英,席兰霞,陈军.多光谱辐射测温技术测量火工烟火药剂燃烧温度[J].光谱学与光谱分析.2010,38(8):2062-2064
    59G. L. Gardner. Computer Modelling of a Multiwavelength Pyrometer forMeasuring True Surface Temperature[J]. High Temp-High Pressures.1980,12:669-705
    60P. B. Coates. Multi-Wavelength Pyrometry[J]. Metrologia.1981,17(3):103-109
    61P. B. Coates. Wavelength Specification in Multi-Wavelength Pyrometry[J].High Temp-High Pressures.1988,20(4):443-448
    62P. B. Coates. The Least-Squares Approach to Multiwavelength Pryometry[J].High Temp-High Pressures.1988,20:433-441
    63M. A. Khan. Noncontact Temperature Meausrement. I. Interpolation BasedTechniques[J]. Review of Scientific Instruments.1991,62(2):392-402
    64M. A. Khan. Noncontact Temperature Measurement. II. Least Squares BasedTechnique[J]. Review of Scientific Instruments.1991,62(2):403-409
    65G. L. Gardner. Monte Carlo Studies of Multiwavelength Pyrometry UsingInearized Equations[J]. International Journal of Thermophysics.1992,13(2):326-328
    66G. L. Gardner. Analysis of Multiwavelength Pyrometry Using Nonlinear Chi-Square Fits and Monte Corlo Methods[J]. International Journal ofThermophysics.1992,13(3):539-554
    67K. Chrzanowski, M. Szulim. Measure of the Influence of Detector Noise onTemperature-Measurement Accuracy for Multiband Infrared Systems[J].Applied Optics.2003,37(22):5051-5057
    68Modeling of Noncontact Temperature Measurement System UsingMultiwavelength Pyrometry[C]. Proceedings of Spie.2001,4516:120-124
    69Mazikowski, K. Chrzanowski. Non-Contact Multiband Method forEmissivity Measurement[J]. Infrared Physics and Technology.2003,44(2):91-99
    70孙晓刚,戴景民,王雪峰.一种测量固体火箭发动机羽焰温度的数据处理方法研究[J].红外与毫米波学报.2003,22(2):141-144
    71X. G. Sun, G. B. Yuan, J. M. Dai. Processing Method of Multi-WavelengthPyrometer Data for Continuous Temperature Measurement[J]. InternationalJournal of Thermophysics.2005,26(4):1255-1261
    72郝金波,董士奎,谈和平.固体火箭发动机尾喷焰红外特性数值模拟[J].红外与毫米波学报.2003,22(4):246-250
    73孙晓刚,原桂彬,林科锋.基于神经网络的多光谱测温数据处理方法[J].清华大学学报.2005,24(4):999-1001
    74金钊,萧鹏,戴景民.固体推进剂火箭发动机羽焰温度诊断的遗传算法研究[J].燃烧科学与技术.2006,12(3):213-216
    75李奇楠,徐晓轩,武中臣.多光谱辐射测温的正交多项式回归方法[J].光谱学与光谱分析.2006,26(12):2173-2177
    76Y. Song, S. Sun, H. Tang. Method for Changing Brightness Temperature intoTrue Temperature Based on Twice Recognition Method[J]. Chinese OpticsLetters.2007,8(5):457-549
    77原桂彬.导弹羽焰及云层背景红外辐射特性研究[D].哈尔滨工业大学博士论文.2008:21-47
    78K. L. Cashdollar, I. A. Zlochower. Explosion Temperatures and Pressures ofMetals and Other Elemental Dust Clouds[J]. Journal of Loss Prevention inthe Process Industries.2007,20(4):337-348
    79K. L. Cashdollar, E. S. Weiss, T. G. Montgomery. Post-ExplosionObservations of Experimental Mine and Laboratory Coal Dust Explosions[J].Journal of Loss Prevention in the Process Industries.2007,20(4):607-615
    80K. L. Cashdollar, K. Chatrathi. Minimum Explosible Dust ConcentrationsMeasured in20-L and1-M3Chambers[J]. Combustion Science andTechnology.1992,87:157-171
    81王广海,李国新,焦清介.光谱辐射测量金属薄膜桥电爆炸[J].含能材料.2009,17(5):616-618
    82翟洋,沈华,朱日宏.多光谱辐射瞬态高温测温计的研制[J].光谱学与光谱分析.2010,30(11):3161-3065
    83于常青,闫军,李家泽.炸药爆轰温度的光纤光谱测量方法[J].兵工学报.2001,22(1):70-73
    84王博,白永林,张蕊利. CIS在瞬时多光谱爆温测量中的应用研究[J].光子学报.2010,39(1):127-130
    85郑锦坤,白永林.炸药爆轰瞬时温度的实时测量[J].光谱学与光谱分析.2011,31(11):3060-3063
    86M. A. Roberston, S. Borman, R. L. Stevenson. Estimantion TheoreticApproach to Dynamic Range Enhancement Using Multiple Exposures[J].Journal of Electronic Imaging.2003,12(2):219-228
    87A. Goshtasby. Fusion of Multi-Exposure Images[J]. Image and VisionComputing.2005,23(5):611-618
    88P. Coppa, G. Ruffino, A. Spena. Pyrometer Wavelength Function: ItsDetermination and Error Analysis[J]. High Temp-High Pressures.1988,20:479-490
    89刘缠牢,谭立勋,李春燕.基于BP神经网络的红外测温系统温度标定方法[J].激光与红外.2006,36(8):655-657
    90孙志远,李孟华,乔彦峰. BP神经网络在比色法测温系统标定中的应用[J].激光与红外.2007,37(12):1274-1276
    91王荣波,李泽仁.滤光片对瞬态光学高温计通道线性的影响[J].高压物理学报.2009,23(2):150-154
    92靳贵平,庞其昌,任克惠.瞬时多光谱爆温测量系统的标定[J].光学技术.2003,29(1):105-106
    93刘顺,姚军,白振强.改进的蚂蚁算法在试井曲线拟合中的应用[J].油气地质与采收率.2008,15(1):87-88
    94A. Colornia, M. Dorigom, V. Maniezzov. An Investigation of SomeProperties of an Ant Algorithm. Proceedings of the Parallel Problem SolvingFrom Nature Conference[C]. Elsevier Publishing.1992:509-520
    95曾剑芬,马争鸣.提升格式:多项式拟合的预测方法[J].电路与系统学报.2001,6(3):62-63
    96W. Sweldens. The Lifting Scheme: A Construction of Second GenerationWavelets[J]. SIAM Journal on Mathematical Analysis.1998,29(2):511-546
    97马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报.2000,40(3):76-78
    98何瑾,徐文辉,戴景民.窄带辐射高温计新的标定方法[J].仪器仪表学报.1999,20(3):268-270
    99戴景民,褚载祥.基于波长函数的辐射温度计一点标定法及其精度的理论估计与实验验证[J].计量学报.1999,20(1):53-58
    100X. Sun, W. Xu, Z. Chu. The Theoretical Analysis of Multi-WavelengthPyrometer: Check and Autosearch for Emissivity General Expression[J].Journal of Harbin Institute of Technology.1998,5(3):36-40
    101符泰然,程晓舫,范学良.三波长测温中波长选取原则的理论分析[J].光谱学与光谱分析.2005,25(2):166-170
    102符泰然,程晓舫,钟茂华.基于波段带宽的谱段测温法的测温范围分析[J].光谱学与光谱分析.2008,28(9):1994-1997
    103程守洙,江之永.普通物理学(3)[M].高等教育出版社.2001:221-240
    104刘丽华,王军,新力.光纤温度传感器的应用及发展[J].仪器仪表学报.2003,24(5):547-550
    105傅惠民,张少波.导数外推和预测理论[J].机械强度.2003,25(1):58-63
    106王福昌,曹慧荣,朱红霞.经典最小二乘与全最小二乘法及其参数估计[J].统计与决策.2009,1:16-17
    107陶菊春.趋势外推预测模型的识别与选择研究[J].西北师范大学学报.2006,41(6):14-16
    108戴景民.多光谱辐射测温理论与应用[M].高等教育出版社.2002:74-76
    109占建明,汶德胜,王宏.基于光电二极管的前置放大电路噪声分析[J].集成电路设计与应用.2011,36(4):304-308
    110于航,建天成,王宏瑾.光电检测电路噪声分析及误差补偿方法研究[J].现代电子技术.2011,34(2):196-198
    111董俊宏,王瑛剑,李小珉.集成运放放大电路的噪声分析[J].电气电子教学学报.2006,28(2):41-43
    112X. G. Sun, W. Zhao, G. B. Yuan. Methods of Data Processing in Multi-Wavelength Thermometry[J]. Journal of Harbin Institute of Technology(New Series).2006,13(4):421-426
    113丁振良.误差理论与数据处理[M].哈尔滨工业大学出版社.2002:93-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700