用户名: 密码: 验证码:
复层铝合金铸坯连续铸造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前双金属复合材料的制备技术包括轧制复合、铸造复合、爆炸复合、扩散复合、挤压复合以及喷射沉积等。其中,连续铸造是一种理想的生产方法。采用连续铸造方法生产双金属复合材料使得两种不同成分的合金在液态下直接接触,避免了两种合金的接触界面产生氧化、夹杂、油污等而影响界面结合强度的问题,因而能够获得良好的冶金结合。
     本文的研究目的是以3003/4004铝合金复层铸坯为对象,研究新型的复层铝合金连续铸造技术。揭示复层铝合金连续铸造过程的基本规律以及复层铝合金组织、成分和性能的特点。本文主要研究内容包括:
     研究复层铝合金铸坯电磁连续铸造新技术。联合采用ANSYS和FLUENT软件模拟了水平直流电磁场对铸坯凝固过程的影响。数值模拟结果表明,施加0.15T的磁场后,金属液流向铸坯窄面和挡板下沿处的冲击速度和距离显著减小,抑制了金属液对铸坯液穴的冲击作用。金属液高温区由铸坯窄面向靠近铸坯中心处转移,且高温区远离挡板,分布更加均匀,挡板附近半固态区变宽,有利于两种铝合金的复合。当磁感应强度为0.25T时,达到最好的制动效果。当3003合金浇注温度为680℃,磁感应强度为0.2T,拉坯速度为100mm·min-1时,挡板恰好处于液穴的半固态区内,有利于两种铝合金的复合。当拉坯速度提高到140mm·min-1或浇注温度提高到720℃时,液穴深度增加,与挡板之间产生间隙,两种合金液可以自由流动而发生混流。
     在数值模拟的基础上优化设计出了适合复层铝合金铸坯生产的直流磁场发生装置、结晶器、挡板及其附属装置。实验中,当磁感应强度为0.25T,拉坯速度为130mm2min-1,浇注温度为680℃,结晶器冷却水流量为2.5m3·h-1时,实验获得的复层铸坯界面清晰、平直,没有氧化、夹杂和孔洞等缺陷,实现了牢固的冶金结合。证明水平直流电磁场抑制了两种合金的混流。成分分析结果表明,Si、Mg和Mn等合金元素含量在垂直复合界面的方向上呈梯度变化,Si和Mg元素向3003合金中扩散的距离比Mn元素向4004合金中扩散距离远。
     研究了复层铝合金铸坯直接冷却连续铸造新技术,研制了冷凝板、金属液流量控制和分配装置、牵引底模等一系列相关装置。用FLUENT软件模拟了工艺参数对复层铸坯凝固过程的影响。模拟结果表明,冷凝板冷却强度、拉坯速度和冷凝板冷却段高度对半固态支撑层离开冷凝板时的有效厚度及其分布均匀性具有较大影响。而3003合金浇注温度对铸坯凝固过程影响不大。在实验中,冷凝板冷却水流量分别采用180、200、225和250L·h-1;拉坯速度分别采用70和80mm·min-1,3003合金浇注温度为710℃,4004合金浇注温度为670℃时均获得界面清晰平直、结合牢固的复层铸坯。成分分析结果表明,不同铸造条件下的复层铸坯中,Si和Mg元素均通过界面向3003合金内部扩散,其扩散层厚度小于20μm。而Mn元素向4004合金的扩散距离则小于10μm。另外还分析了4004合金的浇注温度、底模的牵引力、浇口的数量和分布以及结晶器冷却水流量工艺参数对复层铸坯界面结合的影响。
     建立了半固态支撑层一维稳态传热模型,得出了工艺参数(冷凝板冷却水流量qw、拉坯速度vc、3003合金浇注温度Tc和冷凝板冷却段高度Hd)与冷凝板冷却水进出水温度差ATw及半固态支撑层离开冷凝板时的有效厚度Ee之间的函数关系。该传热数学模型的计算结果与实验结果基本吻合。复层铸坯界面结合分为半固态支撑层形成和冶金结合两个阶段。半固态支撑层形成阶段是在冷凝板上完成的。在冶金结合阶段,4004合金以完全共格或部分共格的形式将半固态支撑层表面作为非均匀形核基底,在其上形核、生长。生长的过程中随着凝固前沿液相中成分过冷区的出现和扩大,4004合金的结晶形态按照平面晶→胞状晶→树枝晶的顺序依次变化。其中,大部分树枝晶都沿着垂直于结合界面的方向生长。
     均质化退火结果表明,退火后4004合金一侧的布氏硬度和抗拉强度显著降低。当退火温度为490℃时,退火时间从7h延长到14h;或退火时间为7h时,退火温度从490℃提高到510℃,界面两侧Si和Mn元素含量的分布变化很小。而更多的Mg元素扩散到了3003合金一侧。采用热轧和冷轧相结合的方法,先将厚度为29mm的复层铸坯热轧至厚度为5mm,轧制温度为510℃,再进一步将其冷轧至厚度为1mm,微观组织观察和成分分析表明复层铸坯具有良好的可轧制性,轧板界面处保持了良好的冶金结合。
Clad metal is conventionally manufactured by roll bonding, cast bonding, explosive welding, diffusion bonding, extrusion cladding and spray deposition technique. Among them, continuous casting is an ideal method for producing clad metal because it realizes liquid state contact between two metals directly and avoids the problem of low bonding strength attribute to oxide, inclusion and greasy dirt.
     The main purpose of this dissertation is to develop novel continuous casting processes for preparing the 3003/4004 aluminum alloy bimetal slab and reveal their basic rules, the structure, composition and properties of the bimetal slab are also studied. The main contents of this dissertation include:
     A new electromagnetic continuous casting process for preparing clad slab was studied. The software ANSYS and FLUENT are combined to study the effect of magnetic flux density of level direct current electromagnetic field on the flow of the alloy melts. The results indicate while the magnetic flux density (B) is 0.15T, the impact velocity and distance of the flow to the narrow face and underside of the dividing plate decreased remarkably. So the flow impact to the liquid pool was depressed. At the same time, the high temperature zone of the melt moved away from the narrow face and the dividing plate, and distributed more uniform. The wider semi-solid area next to the dividing plate helped to the bonding of 3003 and 4004 aluminum alloys. While the B is 0.25T, the best braking effect was reached. While the casting temperature of 3003 alloy was 680℃, the B was 0.25T and the casting speed was 100 mm·min-1, then the dividing plate would just be positioned in the semi-solid area, that would be helpful to the bonding of 3003 and 4004 aluminum alloys. However, the casting speed was increased to 140mm·min-1 or the casting temperature was increased to 720℃, the gap between the dividing and liquid pool would increase and lead to mixing of these two aluminum alloys.
     On the basis of numerical simulation results, the direct current electromagnetic field generator, mold, dividing plate and other additional equipments which suited to produce clad aluminum alloy slab were designed. In the experiments, while the casting temperature of 3003 alloy was 680℃, the B was 0.25T, the casting speed was 130 mm·min-1, and the cooling water flow rate of mold was 2.5m3·h-1, the clad slab which had metallurgical excellent bonding and without any discontinuities along the interface was obtained. It was proved that the mixing of 3003 and 4004 alloys were depressed effectively during the continuous casting of clad slab under direct electromagnetic field. The experiment results also supported the validity of the simulation results. The results of composition analysis showed that Si, Mg and Mn element contents gradiently distributed transverse to the clad interface direction. The diffusion distance of Si and Mg element were greater than that of the Mn elements.
     A new direct chilled continuous casting process for preparing clad slab was presented. A series of related devices including the water-cooled dividing plate, the flow rate control and distribution device and the draw block were developed. The influence of process parameters on the solidification of clad slab was numerically studied with the engineering software FLUENT. The simulation results showed that the cooling intensity of the dividing plate, casting speed and height of the cooling part of the dividing plate had more influence on the effective thickness, which is the thickness of 3003 alloy solidification shell formed on the water-cooled dividing plate, and the distribution uniformity of the solidification shell. In the experiments, well clad slab could be obtained while the cooling water flow rate of dividing plate chose 180,200,225 and 250 L·h-1, respectively, the casting speed chose 70 and 80 mm·min-1, the casting temperature of 3003 and 4004 alloys were 710 and 670℃, respectively. The prepared clad slabs had metallurgical excellent bonding and straight bonding interface without any discontinuities. The results of composition analysis under different casting conditions showed that Si, Mg and Mn element contents gradiently distributed transverse to the clad interface direction. The diffusion distance of Si and Mg elements were less than 20μm and that of the Mn element was less than 10μm. In addition, the influence of other process parameters including casting temperature of 4004 alloy, the insert depth of dividing plate into the mold, the draw force of block, the numbers and distribution of sprues as well as the cooling water flow rate of the mold on the interface bonding of the clad slab were also analyzed.
     A one-dimensional steady heat transfer model about solidification of 3003 alloy on the dividing plate was built. The quantitative relationship of influence of casting parameters, including cooling water flow rate of dividing plate, the casting speed, casting temperature of 3003 alloy and the height of the cooling part of the dividing plate, on the water temperature difference in and out of the dividing plate as well as the effective thickness of 3003 solidification shell were obtained. The computation results showed good agreement with the experimental results. The bonding of the clad interface was composed of two phases, called formation phase of core layer and metallurgical bonding phase. The formation phase of core layer was completed on the cooling part of the dividing plate. At the metallurgical bonding phase,4004 alloy attached on surface of the core layer, which had coherent interface with 4004 alloy, to nucleate and to grow. As the emergence and enlargement of constitutional super cooling zone on solidification front, the morphologies of the crystals of 4004 alloy changed according to following order:planar, cellular and dendritic. Among them, most growing directions of the dendrites were perpendicular to the interface.
     The results of homogenization treatment showed that the Brinell hardness and tensile strength of the 4004 alloy side of the clad slab was remarkably decreased. The distribution of Si and Mn element contents changed little while the heat treatment temperature was 490℃, the treatment time varied from 7h to 14h or the heat treatment time was 7h, the treatment temperature varied from 490℃to 510℃. However, more Mg element diffused into the 3003 alloy side. The clad slab with thickness of 29 mm was rolled to 3mm by hot rolling at 510℃and then continued to roll till 1mm in thickness by cold rolling. The microstructure observation and composition analysis indicated that the clad slab had excellent rellability, and well metallurgical bonding was maintained at the bonding interface.
引文
[1]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [2]Suresh S,Mortensen A,李守新,等译.功能梯度材料基础——制备及热机械行为[M].北京:国防工业出版社,2000.
    [3]Kim J K, Yu T X. Forming and failure behaviour of coated, laminated and sandwiched sheet metals:a review [J]. J Mater Process Technol,1997,63:33-42.
    [4]Yoshida F, Hino R. Forming limit of stainless steel-clad aluminium sheets under plane stress condition [J]. J Mater Process Technol,1997,63:66-71.
    [5]孙德勤.层状铜铝双金属复合棒坯连铸工艺的研究[D].北京:北京科技大学,2004.
    [6]李永松,沈怡琳.不锈钢复合板制作新工艺及市场前景的研究[J].广西机械,2001(4):34-36.
    [7]王立新,李国平.爆破不锈钢复合板界面组织和性能分析及应用[J].钢铁,2005(11):71-74.
    [8]崔建忠.铝/不锈钢复合板——绿色炊具材料[J].五金科技,2003,31(1):33-36.
    [9]吴全兴.钛钢复合板用于海洋建筑物防蚀技术的开发[J].钛工业进展,2000(1):27-28.
    [10]范淑琴,赵升吨,林军.镁钛夹层板制备新工艺的研究现状及进展[C].第四届锻压装备与制造技术论坛九届一次学术交流研讨会,山西太原,2009:82-88.
    [11]任世宏,李巍,王迎君.钛复合板容器设备的制造[J].电焊机,2003,33(12):39-43.
    [12]高宝利,李平仓,华先锋,等.钛一钢复合板在滨海电站凝汽器中的应用[J].钛工业进展,2005,22(4):36-38.
    [13]彭志辉.热传输用铝基合金轧制复合的技术特点及其发展趋势[J].上海有色金属,2009,31(1):35-40.
    [14]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry [J]. Mater Sci Eng A,2000,280:37-49.
    [15]Peng X K, Heness G, Yeung W Y. Effect of rolling temperature on interface and bond strength development of roll bonded copper-aluminum metal laminates [J]. J. Mater Sci,1999,34:277-281.
    [16]Manesh H D, Taheri A K. An investigation of deformation behavior and bonding strength of bimetal strip during rolling [J]. Mech Mater,2005,37:531-542.
    [17]Eizadjou M, Manesh H D, Janghorban K. Investigation of roll bonding between aluminum alloy strips [J]. Mater Des 2008; 29:909-913.
    [18]Ramazan K, Mustafa A. An investigation on the explosive cladding of 316L stainless steel-din-355GH steel [J]. J Mater Proc Techn,2004,152:91-95.
    [19]Ahmet D, Behcet G, Fehim F. Examination of cooper/stainless steel joints formed by explosive welding [J]. Materials and Design,2005,26:497-507.
    [20]Akbari-Mousavi SAA, Barrett L, Al-Hassani STS. Explosive welding of metal plates [J]. J Mater Process Technol,2008,202:224-239.
    [21]Liu L, Sommer F, Fu H. Effect of solidification conditions on MC carbides in anickle-base superalloyin 738LC [J]. Scripta Materialia,1994(5):587-591.
    [22]Arnold B K, Hei jkoop T, Lloyd P G. Wear of cast-bonded componests in a coal pulverizer mill [J]. Wear,1997,203-204:663-670.
    [23]Bowen X, Changchun C, Hong W, et al. Fabrication of high chromium cast iron and medium carbon steel bimetal by liquid-solid casting in electromagnetic induction field [J]. Materials and Design,2011,32(5):2978-2982.
    [24]王旭东,张迎晖,徐高磊.轧制法制备金属层状复合材料的研究与应用[J].铝加工,2008(3):22-25.
    [25]黄伯云,李成功,石力开,等.中国材料工程大典[M].北京:化学工业出版社,2006.
    [26]许中波等.反向凝固复合不锈钢带厚度数值计算[J].钢铁研究学报,1999,11(1):12-15.
    [27]崔建忠.液-固相轧制复合法生产铝不锈钢复合带[J].材料导报,2001,15(2):14-17.
    [28]张鹏,曾大本,崔建忠,等.钢-Al-28Pb复合板的半固态加工[J].清华大学学报(自然科学版),2002,42(S1):64-67.
    [29]Haga S S. A twin-roll caster to cast clad strip[J]. Journal of Materials Processing Technology,2003,138:366-371.
    [30]Haga T, Nishiyama T, Suzuki S. Strip casting of A5182 alloy using a melt drag twin-roll caster [J]. Journal of Materials Processing Technology,2003,133:103-107.
    [31]Pleschiutschigg F P, Vonhageo I, Gammal T E. Inversion casting of steel strip [J]. Steel Times,1995(6):228-229.
    [32]倪红卫,陈浩.反向凝固复合不锈钢带界面结合和凝固组织特征[J].武汉理工大学学报(交通科学与工程版),2002,26(1):35-38.
    [33]朱志远.反向凝固工艺生产复合不锈钢带试验[D].北京:北京科技大学,1998.
    [34]冯研慧,张欣欣,王新华,等.反向凝固条件下二元合金一维相变传热的研究[J].金属学报,2000,36(4):383-386.
    [35]田建胜.爆炸焊接技术的研究与应用进展[J].材料导报,2007,21(11):99-103.
    [36]Behcet G. Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method [J]. Materials and Design,2008(29):275-278.
    [37]Nizamettin K,Behcet G, Fehim F. Joining of titanium/stainless steel by explosive welding and effect of interface[J]. Journal of Materials Processing Technology,2005(169):127-133.
    [38]周永欣,赵西成,吕振林,等.铸渗法制备金属基表面复合材料的研究进展及应用[J].西安建筑科技大学学报(自然科学版),2006,38(5):668-673.
    [39]徐志明,黄美东,徐洋,等.铸渗法制造双金属耐磨复合材料[J].金属热处理,1998(12):2-4.
    [40]胡冰,那顺桑,陶进长,等.离心铸造双金属结合层的研究[J].热处理,2008,23(6):51-54.
    [41]吕学财,王英.离心铸造双金属复合辊筒技术[J].铸造技术,2005,26(9):795-797.
    [42]Marukovich E I, Dozmarov V V, Voytenko I G. Research of zone of contact of bimetals by a method of high-frequency hypersonic sondage [J]. Foundry Prod Metall,1998, 1:24-26.
    [43]Marukovich E I, Anisovich A G, Dozmarov V V, et al. Structure of contact layer of the bimetals obtained by connection of components in liquid state [J]. Foundry,1999, 9:12-15.
    [44]Marukovich E I, Branovitsky A M, Na Y, et al. Study on the possibility of continuous-casting of bimetallic components in condition of direct connection of metals in a liquid state [J]. Mater Des,2006,27:1016-26.
    [45]Yuanyuan L, Jin F, Weiping C, et al. Preparation of 2024/3003 gradient materials by continuous casting using double-stream-pouring technique[J]. J Cent South Univ Technol,2002,9(1):229-234.
    [47]杨大可,袁鹤清,陈乃琪,等.轧辊复合层连续铸造法[J].机械工人.热加工,1995,3:5-6.
    [48]吴春京,沈定钊,杨大可,等.轧辊复合层连续铸造法计算机数值模拟[J].钢铁研究学报,1995,4:19-24.
    [49]杨国明,贾天聪,吴春京,等.电渣工艺复合轧辊计算机模拟[J].铸造,1998,8:21-23.
    [50]符寒光.耐磨铸造高速钢轧辊的研究[J].中国钼业,2000,24(6):30-34.
    [51]王贵明.用连续浇注外层方法生产高碳高速钢复合轧辊的性能及其应用[J].冶金设备,1995(6):30-33.
    [52]谢建新,吴春京,李静媛.多层复合材料一次铸造成形设备与工艺:中国,CN1229703A[P].1999,9,29.
    [53]谢建新,孙德勤,吴春京,等.双金属复合材料双结晶器连铸工艺研究[J].材料工程,2000,4:38-40.
    [54]吴春京,谢建新,赵立华,等.双结晶器连铸铜—锌铝合金双金属复合材料[J].特种铸造及有色合金,2002,3:24-26.
    [55]孙德勤,吴春京,谢建新.金属复合线材成形工艺的研究开发概况[J].材料导报,2003,5:65-68.
    [56]谢建新,吴春京,周成,等.一种包复材料一次铸造连续成形设备与工艺:中国,01109076.6[P].2002.10.09.
    [57]吴春京,于治民,谢建新,等.充芯连铸法制备铜包铝双金属复合材料的研究[J].铸造,2004,53(5):432-434.
    [58]薛志勇,秦延庆,吴春京.铜包铝复合棒充芯连铸设备的开发[J].北京科技大学学报,2005,27(6):706-709.
    [59]薛志勇,吴渊,谢建新,等.铜包铝棒复合材料连铸充芯工艺[J].铸造,2005,54(4):394-397.
    [60]孙德勤,吴春京,谢建新.双结晶器连铸工艺制备层状双金属复合材料的界面结合原理分析[J].热加工工艺,2005,2:4-6.
    [61]薛志勇,吴春京,谢建新.充芯连铸铜包铝棒坯工艺参数对表面质量的影响[J].特种铸造及有色合金,2006,26(2):121-124.
    [62]张卫文,邹敢峰,邓长宁,等.以连续铸造方法制备梯度材料的实验研究[J].金属学报,1998,34(6):609-614.
    [63]张卫文,李元元,龙雁,等.半连续铸造法制备AlCu/A1梯度材料[J].中国有色金属学报,2002,12(S1):188-191.
    [64]费劲,张文卫,陈维平,等.半连续铸造制备2024/3003梯度材料的研究[J].特种铸造及有色合金,2003,1:24-27.
    [65]费劲,李元元,张文卫,等.双流浇注连续铸造铝合金梯度材料的工艺参数[J].特种铸造及有色合金,2003,3:1-3,
    [66]高吉祥.双流浇注连续铸造充型过程的数值模拟[M].广东:华南理工大学,2004.
    [67]王荣发,丁红珍,高吉祥,等.双流浇注连续铸造过程浓度分布数值模拟[J].中国铸造装备与技术,2004,6:22-25.
    [68]张文卫,许峰,费劲,等.梯度复合铝合金的缝隙腐蚀研究[J].材料保护,2006,39(5):1-3.
    [69]许峰,张文卫,罗宗强,等.连续铸造制备Mg-Al/Al梯度复合材料的试验研究[J].特种铸造及有色合金,2007,27(8):624-626.
    [70]Wagstaff R B, Lloyd D J, Bischoff T F. Direct chill casting of CLAD ingot [J]. Mater Sci Forum,2006,219-521:1809-1814.
    [71]Benedyk J C. Novelis Fusion Process:breakthrough in the simultaneous DC casting of multiple aluminum alloy layers for rolling ingot [J]. Light Met Age,2006,48-50.
    [72]王祝堂.诺威力复合锭铸造法的原理和工艺及应用[J].轻合金加工技术,2007,35(1):1-6.
    [73]Koshima S. Steel Flow in a High Speed Continuous Slab Using an Electromagnetic Brake [J]. Iron and Steel Engineer,1984,11 (5):41-47.
    [74]Nagai J, Suzuki K I, Kojima S, et al. Steel Flow Control in a High-speed Continuous Slab Caster Using an Electromagnetic Brake[J].Iron and Steel Engineer,1984,61(5): 41-47.
    [75]Dirk W. van der Plas. Metallurgical Investigations of the EMBR on Slab Caster No. 22 at Hoogovens Ijmuiden[C]. International Symposium on Electromagnetic Processing of Materials'94. Nogoya, Japan,1994:378-383.
    [76]Akira I, Hirokazu T, Shuji T, et al. Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Fields Imposed on Whole Width[C]. International Symposium on Electromagnetic Processing of Materials. Nagoya, Japan,1994:378-383.
    [77]Takeuchi E, Harada, H, Tanaka H, et al. Suppression of mixing in the pool of continuous casting strand by DC magnetic field[C]. Magnetohydrodynamics in Process Metallurgy. Japan,1991:261-266.
    [78]Takeuchi E, Tanaka H, Kajioka H. Hydromagnetic separation of metal pool in the continuous casting strand[C]. Proceedings of the International Symposium on Electromagnetic Processing of Materials. Nagoya, Japan,1994:364-371.
    [79]Masafumi M, Toshiya M, Hinohiko T, et al. Electromagnetically Controlled Upward Pouring of the Continuous Casting Mold[C]. International Symposium on Electromagnetic Processing of Materials. Nagoya, Japan,1994.402-407.
    [80]Anders F. Lehman, etc. Fluid Flow Control in Continuous Casting Using Various Configurations of Static Magnetic Fields[C]. International Symposium on Electromagnetic Processing of Materials'94. Nogoya, Japan,1994:372-377.
    [81]Kouji T, Yoshinori T, Masayuki K. Mathematical Model for Fluid Flow in A Continuous Casting Mold with Electromagnetic Brake[C]. The 3rd International Symposium on Electromagnetic processing of Materials. Nagoys, Japan,2000:91-96.
    [82]Yamamura H, TOH T, Harada H. Optimum Magnetic Flux Density in Quality Control of Casts with Level DC Magnetic Field in Continuous Casting Mold[J]. ISIJ International,2001, 41 (10):1229-1235.
    [83]Ha M Y, Lee H G, Seung H, et al. Numerical simulation of three-dimensional flow, heat transfer, and solidification of steel in continuous casting mold with electromagnetic brake[J]. Journal of Materials Processing Technology,2003,133:322-339.
    [84]李宝宽,赫冀成,贾光霖等.薄板坯连铸结晶器内流场电磁制动的模拟研究[J].金属学报,1997,33(11):1207-1214.
    [85]黄军涛,赫冀成.方坯结晶器电磁制动夹杂物运动轨迹的数值模拟[J].东北大学学报(自然科学版),2000,21(1):97-99.
    [86]张浩斌,雷作胜,金小礼等.静磁场下气泡在板坯连铸结晶器内运动行为的物理模拟[J].北京科技大学学报,2010,32(10):1264-1270.
    [87]刘光穆,石绍清,邓康等.电磁制动对CSP结晶器内夹杂物行为的影响[J].钢铁,2007,42(7):22-25.
    [88]刘光穆.EMRr对CSP结晶器内冶金过程和铸坯质量的影响[D].上海:上海大学,2005.
    [89]Takeuchi, Zene M. Novel Continuous Casting Progress for Clad Steel Slabs with level DC magnetic field[J], Iron making and steel making,1997,24(3):257-263.
    [90]赵勇慧.连铸过程中金属液流动的电磁控制[D].大连:大连理工大学,2002.
    [91]李玉亭.双金属复层材料的电磁连续铸造技术研究[D].大连:大连理工大学,2003.
    [92]吴彩虹.直流电磁场下铝硅-铝镁复层材料的制备[D].大连:大连理工大学,2005.
    [93]郑红霞,李宝宽,昌泽舟.全幅二段电磁制动连铸复合钢坯的模拟研究[J].金属学报,2001,37(8):877-881.
    [94]黄英才.电磁学教程[M].贵州:贵州科学技术出版社,2004.
    [95]吴其芬,李桦.磁流体力学[M].北京:国防科技大学出版社,2007.
    [96]姜为珩.传热学[M].北京:高等教育出版社,1989.
    [97]Drezet J M, Rappaz M, Grun G U, et al. Determination of thermophysical properties and boundary conditions of direct chill-cast aluminium alloys using inverse methods[J]. Metall. Mater. Trans A,2000,31A:1627-1634.
    [98]Weckman D C, Niessen P. A Numerical Simulation of the D. C. Continous Casting Process Including Nucleate Boling Heat Transfer [J]. Metallugical Transactions B,1982, 13B:593-602.
    [99]Sengupta J, Cockroft S L, Maijer D M, et al. On the Development of a Three-Dimensional Transient Thermal Model to Predict Ingot Cooling Behavior during the Start-Up Phase of the Direct Chill-Casting Process for an AA5182 Aluminum Alloy Ingot [J]. Metallurgical and Materials Transactions B,2004,35B:523-540.
    [100]王同敏,姚山,张兴国等.等轴球晶凝固多相体系内热溶质对流补缩流及晶粒运动的数值模拟I[J].金属学报,2006,42:584-590.
    [101]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004.
    [102]李国强,于志方.3003铝合金连续挤压管扩径开裂原因及消除措施[J].轻金属,1994(2):62-63.
    [103]前长山.3003铝基感光鼓的浇铸工艺研究[J].铝加工,2000,23(3):6-7.
    [104]王琦,郭瑞,高作文.防盗盖用3003-H16铝合金板带生产工艺研究[J].轻合金加工技术,2002,30(1):21-24.
    [105]高亢之.电解电容器负(阴)极用铝箔的制造技术[J].轻合金加工技术,2001,29(4):1-7.
    [106]周明,崔晋滨.4004铝合金方铸坯气孔缺陷预防[J].黑龙江冶金,2010,30(3):12-13.
    [107]曾荣昌,兰自栋,陈君,等.镁合金表面化学转化膜的研究进展[J].中国有色金属学报,2009,19(3):397-404.
    [108]北冈山治,藤仓潮三,神尾章彦.A1-Si系合金[J].轻合金加工技术,1991(4):46-49.
    [109]武恭,姚良均,李震夏,等.铝及铝合金材料手册[M].北京:科学出版社,1997.
    [110]李春胜,黄德彬.金属材料手册[M].北京:化学工业出版社,2004.
    [111]孙荣滨.4004铝合金扁铸坯气孔缺陷问题的解决[J].金属世界,2009(2):28-31.
    [112]肖亚庆.铝加工技术实用手册[M].北京:冶金工业出版社,2005.
    [113]金相图谱编写组.变形铝合金金相图谱[M].北京:冶金工业出版社,1975.
    [114]王祝堂,田荣璋.铝合金及其加工手册(第二版)[M].长沙:中南大学出版社,2000.
    [115]杨辉其.新编金属硬度试验[M].北京:中国计量出版社,2005.
    [116]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982.
    [117]马幼平,徐云华.金属凝固原理及技术[M].北京:冶金工业出版社,2008.
    [1118]张鹏,崔建忠,杜云慧,等.钢-铝固液相复合中浸镀助焊剂的应用研究[J].金属学报,1997,33(8):869-873.
    [119]余珍,刘立东,刘顺华,等.Cu/Al双金属复合材料的界面研究[J].铸造技术,2008,29(9):1267-1270.
    [120]刘耀辉,刘海峰,于思荣.液固结合双金属复合材料界面研究[J].机械工程学报,2000,36(7):81-85.
    [121]佟建国,高晓丹,曲海涛,等.25Cr5MoA钢/Q235钢固-液复合轴界面Cr元素扩散行为[J].北京科技大学学报,2009,31(4):451-458.
    [122]李宝绵,许光明,李兴刚,等.铜-钢反向凝固复合带的实验研究[J].东北大学学报(自然科学版),2002,2(9):880-882.
    [123]倪红卫,杜建明,唐利民,等.反向凝固法制备复合不锈钢带时复合层凝固生长规律[J].武汉科技大学学报(自然科学版),2002,25(3):221-223.
    [124]Luck M, Hamburg J, Spokane L. Milestones in the development of ingot casting technology [J]. Aluminum,1996,72(11):772-776.
    [125]Havard J T, Asbjom M, Torgeir R. A mathematical model for surface segretion in aluminum direct chill casting [J]. Metallurgical and Materials Transaction B, 1999,30(1):135-142.
    [126]刘福杰.铝合金DC铸锭表面冷隔浅析[J].铝加工,1996,19(6):4-9.
    [127]安阁英.铸件形成理论[M].北京:机械工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700