用户名: 密码: 验证码:
基于电磁带隙结构的隐身技术研究及其在天线阵中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁带隙(EBG)结构是一种新型的人工电磁材料,已经在微波领域得到广泛的研究与应用,用以实现高性能天线及微波器件。但是EBG结构的电磁散射特性的研究没有引起足够的重视,EBG结构用于隐身尤其是天线隐身的研究还很少。本文主要对电磁带隙结构在目标隐身方面的应用进行研究。
     介绍了电磁带隙结构的数值分析方法。我们根据不同的需要选择不同的分析方法。选择有限元法分析EBG结构的能带特性,选择FDTD方法分析EBG结构的同相反射特性。简要介要了两种方法的基本原理,并给出实际计算实例。
     深入研究了EBG结构的电磁特性。重点分析了电阻加载EBG结构的表面波特性。采用RLC电路对加载电阻后的EBG结构的表面阻抗可以进行等效,并采用传输线模型对其带隙特性进行了分析。采用LC等效模型对EBG结构的表面阻抗进行建模,给出反射相位的计算公式。最后研究了EBG结构的表面波带隙及反射相位的关系,并通过实验进行验证。
     研究利用EBG结构改变目标散射特性。理想磁导体(PMC)和理想电导体(PEC)的反射相位相差1800,将PMC和PEC结构组合在一起,利用相位的差异改变平面结构的散射特性。首先分析了简单组合结构的散射特性,采用软件对其单站RCS进行仿真并与测试结果进行了对比,PEC和PMC组合结构能有效降低后向散射,但是对入射波极化方式敏感。在此基础上提出了棋盘结构,分析棋盘结构的散射特性,给出了影响棋盘结构RCS减缩效果的两个因素:相位差及单元尺寸。最后采用不同尺寸的EBG结构实现了宽带棋盘结构。
     深入研究了基于EBG结构的超薄吸波材料。利用EBG结构的同相反射特性,可以实现超薄吸波材料,其设计原理与Salisbury屏吸收原理一致。采用集总参数等效模型对吸波材料进行建模,给出了吸波材料的设计方法。研究发现吸波材料的吸波带宽是由EBG结构的同相反射相位±600的频带决定的,在焊接电阻过程中引入了寄生电容,导致吸波频带向低频偏移了。采用缝隙加载技术可以有效降低高阻表面的反射相位,从而有效降低吸波材料的工作频段。最后研究了基于方形环的吸波材料的吸波特性。
     研究了超薄吸波材料在天线阵中的应用。将吸波材料用于天线阵,可以有效降低天线的结构散射,同时保持了天线的辐射特性。在波导缝隙阵列天线及螺旋天线阵上的应用表明,天线RCS可以得到有效降低,而天线阵的辐射特性仅增益有所降低,为天线隐身提供了一种新的途径。
Electromagnetic bandgap (EBG) is a novel metamaterial which has been used widely in microwave region to realize high performance antenna and microwave components. But the scattering characteristics of EBG is not in emphasis, and the researches on stealth technology of EBG especially antenna stealth is few. This thesis is focused on the application of EBG to the stealth technology.
     The numerical methods to analyze the EBG structure are introduced, different numerical method is chosen according to different needs, the FEM method is chosen to analyze the eigen electromagnetic modes and the FDTD is chosen to analyze the in-phase reflection characteristics. The basic principles of this two numerical methods are introduced and practical examples are given.
     The electromagnetic characteristic of mushroom-like EBG is researched deeply in this chapter. The mechanism of bandgap forming and in-phase reflection forming are given briefly, the research emphesis is the characteristics of mushroom-like EBG structures loaded with lumped resistors. The surface-wave propagation along the resistor loaded EBG surface is discussed using the equivalent parallel RLC circuit and then the bandgap property is analyzed using the periodically loaded transmission line model. The surface impedance of mushroom-like EBG can be modeled using LC equivalent circuit and the formulas are given. The reflection phase of EBG predicted well using equivalent model compared with the measured results. The relationship of surface wave bandgap and in-phase reflection is researched and the conclusion is verified by experiment results.
     The application of mushroom-like EBG on changing the scattering characteristics of planar structure is studied. There is 1800 difference between the reflection phase of perfect electric conductor (PEC) and perfect magnetic conductor (PMC). The scattering characteristics of the composite structure combined with PEC and PMC will change. At first, the scattering characteristics of simple composite structure is analysis, the monostatic RCS is simulated and compared with the measured results, the measured results show that the backscattering is reduced effectively,but it is sensitive with the polarization of incident wave. The chessboard like structure is proposed, the scattering characteristics of it are analyzed, and the factors influnced the RCS reduction of chessboard are phase difference and unit size. The broadband chessboard is proposed which is composed of different parameters EBG structure.
     The ultra-thin absorbing material based on the EBG is studied. The EBG has the in-phase reflection characteristic which can be used to design ultra-thin absorbing material, the design principle is the same with the Salisbury screen. The equivalent circuit model of the absorbing material is developed and the design method is given. The results show that the absorbing band of RAM is decided by the reflection phase of EBG in the range±600. The measured absorbing frequency band of RAM moved toward lower frequency than the simulated results, which attributes to the parasitic capacitance introduced by lumped resistors. The EBG patch loaded with slot will decrease the operating frequency of EBG, this method can decrease the absorbing band of RAM. Finally the RAM based on the square loops is proposed.
     The application of this ultra-thin RAM to antenna array is studied finally. When the RAM is used to antenna, the structural scatter of antenna is reduced effictively and the radiation performance is maintained. The applications of RAM to ridged waveguide slot antenna array and helical antenna array show that the RCS of antenna is reduced and only gain decreased 0.9dB. This provides a new direction for antenna RCS reduction.
引文
[1] E. Yablonovitch, Photonic band-gap structures [J], Journal of the Optical Society of America B, 1993, 10(2): 283-295.
    [2] E.Yablonovitch, T. J. Gmtter, Photonic band structure:the face-centered-cubic case [J], Physical Review Letters, 1989, 63(18):1950-1953.
    [3] Dan Sievenpiper, Lijun Zhang, Romulo F. Jimenez Broas, Nicholas G. Alex?polous, and Eli Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band [J], IEEE Trans. on Microwave Theory and Techniques, 1999, 47(11): 2059-2074.
    [4] D. Sievenpiper, High-impedance electromagnetic surfaces [D], Ph. D. Dissertation, University of California at Los Angles, 1999.
    [5] F. R. Yang, K. P. Ma, Y. X. Qian and T. Itoh, A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit [J], IEEE Trans. on Microwave Theory and Techniques, 1999, 47(8): 1509-1514.
    [6] Yun-qi Fu and Nai-chang Yuan, Characteristics of resonant type microwave photonic bandgap structures using dielectric resonators [J], PIERS’2004, Nanjing, China.
    [7] Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch and T. Itoh, A microstrip patch antenna using novel photonic band-gap structures [J], Microwave Journal, 1999, 42(11): 66-76.
    [8] Keven J. Golla, Broadband application of high-impedance ground planes [J]. MS thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 2001.
    [9] Romulo F. Jimenez Broas, Daniel F. Sievenpiper and Eli Yablonovitch, A high-impedance ground plane applied to a cellphone handset geometry [J], IEEE Trans. on Microwave Theory and Techniques, 2001, 49(7): 1261-1265.
    [10] M. Saville, Investigation of Conformal High-Impedance Ground Planes [D]. MS thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 2000.
    [11] R. F. Jimenez Broas, Experimental characteristics of high impedance electromagnetic surfaces in the microwave frequency regime [D], MS thesis, University of California at Los Angles, 1999.
    [12] F. Yang and Y. Rahmat-Samii, A low profile circularly polarized curl antenna over electromagnetic bandgap surface [J], Microwave and Optical Technology Letters, 2001,31(3): 165-168.
    [13] F. Yang and Y. Rahmat-Samii, Reflection phase characterization of the EBG ground plane for low profile wire antenna applications [J], IEEE trans. on Antenna and Propagation, 2003, 51(10): 2691-2703.
    [14] F. Yang and Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap structures: a low mutual coupling design for array applications [J], IEEE Trans. on Antenna and Propagation, 2003, 51(10): 2936-2946.
    [15] D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros and R. Harold, A tunable impedance surface performing as a reconfigurable beam steering reflector [J], IEEE Trans. on Antennas and Propagation, 2002, 50(3): 384-390.
    [16] S.Tse, B. S. Izquierdo, J. C. Batchelor and R. J. Langley. Reduced sized cells for electromagnetic bandgap structures [J]. Electronics Letters. 2003, 39(24): 1699-1701.
    [17] R. Diaz, V. Sanchea, E. Caswell and A. Miller. Magnetic loading of artificial magnetic conductors for bandwidth enhancement [J]. IEEE AP-S International Symposium, 2003(2): 431-434.
    [18] D. J. Kerm, D. H. Werner and M. J. Wilhelm. Active negative impedance loaded EBG structures for the realization of ultra-wideband artificial magnetic conductors [J]. IEEE AP-S International Symposium, 2003(2): 427-430.
    [19] W. McKinzie and S. Rogers. A multi-band artificial magnetic conductor comprised of multiple FSS layers [J]. IEEE AP-S International Symposium, 2003(2):423-426.
    [20] F. R. Yang, K. P. Ma, Y. X. Qian and T. Itoh, A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit [J], IEEE Trans. on Microwave Theory and Techniques, 1999, 47(8): 1509-1514.
    [21] Roberto Coccioli, Fei-Ran Yang, Kuang-Ping Ma and T. Itoh, Aperture coupled patch antenna on UC-PBG substrate [J], IEEE Trans. on Microwave Theory and Techniques, 1999, 47(11): 2123-2130.
    [22] Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, and T. Itoh, A novle TEM waveguide using uniplanar compact photonic-bandgap structure [J], IEEE MTT-S Digest, 1999: 323-326.
    [23] K. M. Leung and Y. F. Liu, Photo band structures: the plane-wave method [J], Physical Review B, 1990, 41(11): 10188-10190.
    [24] M. Plihal and A. A. Maradudin, Photonic band structure of two-dimensional systems: the triangular lattice [J], Physical Review B, 1991, 44(16): 8565-8571.
    [25] K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media [J], Physical Review Letters, 1990, 65(21):2646-2649.
    [26] Huang Yu David Yang, Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings [J], IEEE Trans. On Microwave Theory and Techniques, vol. 45, Mar. 1997: 428-435.
    [27] Hung Yu David Yang, Rodolfo Diaz, and Nicolaos G.. Alexopoulos, Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks [J], Journal of the Optical Society of America B, vol.14, no.10, Oct. 1997: 2513-2521.
    [28] Harry Contopanagos, L. Zhang and G. Alexopoulos. Thin frequency-selective lattices integrated in novel compact MIC, MMIC and PCA architectures [J], IEEE Trans. on Microwave Theory and Techniques, 1998, 46(11): 1936-1947.
    [29] L. Zhang, Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays [D], Ph. D. Dissertation, University of California at Los Angles, 2000.
    [30] S. Fan, P. R. Villeneuve, J. D. Joasnnopoulos, Large omni-directional band gaps in metallo-dielectric photonic crystals [J], Physical Rieview B, vol.54, no 16, Oct. 1996: 112454-11251.
    [31] M Thevenot, A. Reineix, and B. Jecko, A new FDTD surface impedance formulism to study PBG structures [J], Microwave and Optical Technology Letters, vol.18, no.3, June 1998: 203-206.
    [32] Hung Yu David Yang, Finite difference analysis of 2-D photonic crystals, IEEE Trans. On Microwave Theory and Techniques [J], vol. 44, Dec. 1996: 2688-2695.
    [33] A. Barcs, S. Helfert, and R. Pregla, Modeling of 2D photonic crystals by using the Method of Lines [C], in 4th International Conference on Transparent Optical Networks (ICTON), 2002: 45-48.
    [34] S. F. Helfert, The Method of Lines for the Calculation of Band Structures in Photonic Crystals [C], in 5th International Conference on Transparent Optical Networks (ICTON), 2003: 122-125.
    [35] I. J. Bahl, and P. Bhartia. Microwave solid-state design [D]. John Wiley&Sons, New York, 1988.
    [36] C. R. Simovski, P. de Maagt, S. A. Trityakov, M. Paquay and A. A. Sochava.Angular stabilization of resonant frequency of artificial magnetic conductors for TE-incidence [J]. Electronics Letters. 2004, 40(2): 959-961.
    [37] [91] A. Monorchio, G. Manara ang L. Lanuzza. Sythesis of artificial magnetic conductorsby using multilayered frequency selective surfaces [J]. IEEE Antennas and Wireless Propagation Letters. 2002, 1: 196-199.
    [38] F. Yang, and Y. Rahmat-Samii. Reflection phase characterization of the EBG ground plane for low profile wire antenna applications [J]. IEEE trans. on Antenna and Propag., 2003, 51(10): 2691-2703.
    [39] V. Radisic, Y. Qian and T. Itoh. Broadband power amplifier using dielectric photonic bandgap structure [J]. IEEE Microwave Guided Wave Lett., 1998,8(1):13-14.
    [40] Y. Qian, V. Radisic and T. Itoh. Simulation and experiment of photonic band-gap structures for microstrip circuits [J]. Asia Pacific Microwave Conference. 1997:585-588.
    [41] I. Rumsey, M. Piket-May and P. K. Kelly. Photonic band-gap structures used as filters in microstrip circuits [J]. IEEE Microwave Guided Wave Lett. 1998, 8(10):336-338.
    [42] Vesna Radisic,YongXi Qian,Roberto Coccioli, and Tatsuo Itoh. Novel 2-D Photonic Bandgap Structure for Microstrip Lines [J]. IEEE Microwave and Guided Wave Letters. 1998, 8(2): 69-71.
    [43] F. Falcone, T. Lopetegi, and M. Sorolla. 1-D and 2-D photonic bandgap microstrip structures [J]. Microwave and Optical Technology Lett, 1999, 22(6): 411-412.
    [44] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim. A novel 1-D periodic defected ground structure for planar circuits [J]. IEEE Microwave and Guided Wave Lett, 2000, 10(4): 131-133.
    [45] T. Lopetegi, M. A. G. Laso, M. J. Erro, D. Benito, M. J. Garde, F. Falcone, and M. Sorolla. Novel photonic bandgap microstrip structures using network topology [J]. Microwave and Optical Technology Lett.. 2000, 25(1): 33-36.
    [46] M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla. Novel wideband photonic bandgap microstrip structures [J]. Microwave and Optical Technology Lett.. 2000, 24(5): 357-360.
    [47]闫敦豹,袁乃昌,付云起,张光甫.基于FDTD的1-D和2-D PBG结构的研究[J].红外与毫米波学报. 2002, 21(4): 281-284.
    [48] Q. Xue, K. M. Shum, and Chi Hou Chan. Novel perforated microstrip PBG cell [J]. Microwave and Optical Technology Lett.. 2000, 26(5): 325-327.
    [49]张国华,袁乃昌,付云起. FDTD方法分析光子带隙微带结构[J].微波学报. 2001, 17(4): 14-17.
    [50]庞云波,高葆新.多层结构的光子带隙特性[J].电子学报. 2002, 30(9): 1372-1375.
    [51] Dunbao Yan, Yunqi Fu, Qiang Gao, Guohua Zhang and Naichang Yuan. A novel two-layer compact EBG structure [C]. Asia-Pacific Radio Science Conference, 2004:287-289.
    [52] T. Suzuki and P. K. L. Yu. A new type of waveguide structures with photonic band structures [J]. IEEE MTT-S Digest. 1996: 911-914.
    [53] Y. Qian, F. R. Yang and T. Itoh. Characteristics of microstip lines on a uniplanar compact PBG ground plane [J]. Asia Pacific Microwave Conf. Dig. 1998: 589–598.
    [54] Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian and T. Itoh. A novle TEM waveguide using uniplanar compact photonic-bandgap structure [J]. IEEE Trans. Microwave Theory Tech.. 1999, 47(11): 2092-2098.
    [55] R. Coccilli, F. R. Yang, K. P. Ma and T. Itoh. Aperture-coupled patch antenna on UC-PBG substrate [J]. IEEE Trans. Microwave Theory Tech.. 1999, 47(11): 2123-2130.
    [56] B. L. Ooi. A modified contour integral analysis for Sierpinski fractal carpet antennas with and without electromagnetic band gap ground plane [J]. IEEE Trans. Antennas Propagat. 2004, 52(5): 1286-1293.
    [57] S. Pioch and J. M. Laheurte. Size reduction of microstrip antennas by means of periodic metallic patterns [J]. Electronics Letters. 2003, 39(13): 959-961.
    [58]林宝勤,付云起,袁乃昌,一种新型的微带PBG结构[C],2003年全国微波毫米波会议,2003,成都.
    [59] F. R. Yang, K. P. Ma, Y. X. Qian and T. Itoh, A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure [J], IEEE Trans. on Microwave Theory and Techniques, 1999, 47(11): 2092-2098.
    [60] M. Kim, J. B. Hacker, A. L. Sailer, S. Kim, D. Sievenpiper and J. A. Higgins, A rectangular TEM waveguide with photonic crystal walls for excitation of quasi-optical amplifiers [J], IEEE MTT-Digest, 1999: 543-546.
    [61] F. Yang, and Y. Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap structures: a low mutual coupling design for array applications [J]. IEEE trans. on Antenna and Propag., vol. 51, Oct. 2003: 2936-2946.
    [62] F. Yang, and Y. Rahmat-Samii. A low profile circularly polarized curl antenna over electromagnetic bandgap surface [J]. Microwave and Optical Technology Letters, vol.31, no 3, 2001:165-168.
    [63] F. Yang, and Y. Rahmat-Samii. Reflection phase characterization of the EBG ground plane for low profile wire antenna applications [J]. IEEE trans. on Antenna and Propag., 2003, 51(10): 2691-2703.
    [64] F. Yang, C. S. Kee and Y. Rahmat-Samii. Step-like structure and EBG structures to improve the performance of patch antenna on high dielectric substrate [C]. IEEE AP-SInternational Symposium, 2001(2): 482-485.
    [65] F. Yang and Y. Rahmat-Samii. Curl antennas over electromagnetic band-gap surface: a low profiled design for CP applications [J]. IEEE AP-S International Symposium, 2001(3): 372-375.
    [66] F. Yang and Y. Rahmat-Samii. Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs [J]. International Conference on Microwave and Millimeter Wave Technology, 2002: 528-531.
    [67] W. E. McKinzie III, R. Hurtado and W. Klimczak. Artificial magnetic conductor technology reduces size and weight for precision GPS antennas [C]. Institute on Navigation National Technical Metting. 2002: 448-459.
    [68] W. E. McKinzie III, R. Hurtado, B. K. Klimczak and J. D. Dutton. Mitigation of multipath through the use of an artificial magnetic conductor for precision GPS surveying antennas [C]. IEEE AP-S International Symposium, 2002(4): 640-643.
    [69] W. E. McKinzie III and R. R. Fahr. A low profile polarization diversity antenna built on an artificial magnetic conductor [C]. IEEE AP-S International Symposium, 2002(1): 762-765.
    [70] V. C. Sanchez, W. E. McKinzie III and R. E. Diaz. Broadband antennas over electrically reconfigurable artificial magnetic conductor surfaces [C]. Antenna Applications Symposium. 2001.
    [71] S. Rogers, J. Marsh, W. McKinzie and G. Mendolia. AMC edge treatments enable high isolation between 802.11b and BluetoothTM antennas on laptop computers [C]. IEEE AP-S International Symposium, 2003(2): 38-41.
    [72] W. E. McKinzie III and E. Caswell. An electrically-thin, two-pole, bandpass radome [C]. IEEE AP-S International Symposium, 2003(4): 22-27.
    [73] W. Tang and Z. Shen.Simple design of thin and wideband circuit analogue absorber [J]. Electronics Letters, 2007,43(12):131-133
    [74] Sourav. C, R. Mittra, N. R. Williams. Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics [J], IEEE Trans. on Antennas and Propagation, 2002, 50(3):284-296
    [75] H. Mosallaei, Y. R. Samii. RCS reduction of canonical targets using genetic algorithm synthesized RAM [J], IEEE Trans. on Antennas and Propagation, 2000, 48(10):1594-1606
    [76] (美)琼斯著,洪旗等译.隐身技术——黑色魔力的艺术[M].北京:航空工业出版社,1991
    [77] (英)理查森著,魏志祥等译.现代隐身飞机[M].北京:科学出版社,1991
    [78] (美)克拉特著,阮颍铮译.雷达散射截面——预估,测量和缩减[M].北京:电子工业出版社,1988
    [79]阮颖铮编著.雷达散射截面与隐身技术[M].北京:国防工业出版社,1998
    [80]夏新仁.隐身技术发展现状与趋势[M].中国航天,2002,(1):40-44
    [81]黄培康.隐身威胁与雷达反隐身[M].雷达四抗技术研讨会论文集,1991
    [82]刘志文,柯有安.雷达反隐身的若干问题与技术途径[M].现代雷达,1992, 14(3):1-9
    [83] M. Paquay, J.C Iriarte, I.Ederra, R.Gonzalo and P.Maagt. Thin AMC Structure for Radar Cross-Section Reduction [J], IEEE Trans. on Antennas and Propagation,2007, 55(12):3630-3638
    [84] Fante, R.L., and McComack M.T. Reflection Properties of the Salisbury Screen [J], IEEE Trans. Antennas Propag, 1988, 36(10): 1443-1454
    [85] Du Toit, L.J. The design of Jauman absorbers [J], IEEE Antennas Propag.Mag., 1994, 36(6):17–25
    [86] Munk, B.A., Munk, P., and Pryor, J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence [J], IEEE Trans. Antennas Propag, 2007, 55(1):186–193
    [87] Terracher. F, Berginc. G, Thin electromagnetic absorber using frequency selective surfaces [C], IEEE Antenna and Propagation society international symposium, 2000
    [88] A. Tennant and B Chambers. A single-layer tuneable microwave absorber using an active FSS [J]. IEEE Micro. and wireless components letters, 2004, 14(1):46-47
    [89] W. Tang and Z. Shen.Simple design of thin and wideband circuit analogue absorber [J]. Electronics Letters, 2007,43(12):131-133
    [90] Sourav. C, R. Mittra, N. R. Williams. Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics [J], IEEE Trans. on Antennas and Propagation, 2002, 50(3):284-296
    [91] H. Mosallaei, Y. R. Samii. RCS reduction of canonical targets using genetic algorithm synthesized RAM [J], IEEE Trans. on Antennas and Propagation, 2000, 48(10):1594-1606
    [92] D. J. Kern and D. H. Werner. A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers [J]. Microwave and Optical TechnologyLetters,2003,38(1):61-64
    [93] S. Cui, D. S. Weile and J. L. Volakis. Novel planar electromagnetic absorber designs using genetic algorithms [J], IEEE Trans. on Antennas and Propagation, 2006, 54(6):1811-1817
    [94] Engheta, N. Thin Absorbing Screens Using Metamaterial Surfaces [J]. IEEE Trans. Antenna propag society(AP-S) Int. Symp. And USNC/URSI National Radio Science Meeting, San Antonio, TX, USA, 2002: 16-21.
    [95] S. Simms and V. Fusco, Thin Radar Absorber Using Artificial Magnetic Ground Plane [J], Electronics Letters, 2005,41(24):1311-1333
    [96] D. J. Kern and D. H. Werner. A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers [J]. Microwave and Optical Technology Letters,2003,38(1):61-64
    [97] Q. Gao, Y. Yin, D.-B. Yan and N.-C. Yuan, Application of Metamaterials to Ultra-thin Radar-absorbing Material Design [J], Electronics Letters.2005, 41(18): 3-4
    [98] Y.-Q. Li, Y.-Q. Fu and N.-C. Yuan, Characteristics Estimation for High Impedance Surfaces Based Ultra-thin Radar Absorber[J], Microwave and Optical Technology Letters,2009,51(7):1775-1778
    [99] S. Simms and V. Fusco, Tunable thin radar absorber using artificial magnetic ground plane with variable backplane [J], Electronics Letters.2006, 42(21): 3-4
    [100]金建铭著,王建国译,电磁场有限元方法[M],西安:西安电子科技大学出版社,1998.
    [101] M. L. Barton and Z. J. Cendes, New vector finite elements for three-dimensional magnetic field computation [J], Journal of Applied Physics, 1987, 61(8): 3919-3921.
    [102] G. Antilla and N. G. Alexopoulos, Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach [J], Journal of the Optical Society of America A, 1994, 11(4): 1445-1457.
    [103] J. M. Jin and J. L. Volakis, Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducing plane [J], IEEE Trans. on Antennas and Propagation, 1991, 39(4): 543-550.
    [104]王长清,祝西里著,电磁场计算中的时域有限差分法[M],北京:北京大学出版社,1994
    [105]葛德彪,闫玉波著,电磁场时域有限差分法[M],西安:西安电子科技大学出版社,2002.
    [106]哈林顿著,王尔杰等译,计算电磁场的矩量法[M],北京:国防工业出版社,1981.
    [107] D. H. Choi and W. J. R. Hoefer, The fintie-difference time-domain method and its application to eigenvalue problems [J]. IEEE Trans. on Microwave Theory and Techniques, 1986, 34(12): 1464-1470.
    [108] V. J. Brankovic, D. V. Krupezevic and F. Arndt, Efficient full-wave 3D and 2D waveguide eigenvalue analysis by using the direct FD-TD wave equation formulation [C], IEEE MTT-S, Atlanta, GA, 1993, 2: 897–900.
    [109] P. H. Harms, R. Mittra, W. Ko, Implementatino of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures [J], IEEE Trans. on Antenna and Propagation, 1994, 42(9): 1317-1324.
    [110] J. A. Roden, S. D. Gedney, M. P. Kesler, et al., Time-domain analysis of periodic structures at oblique incidence: orthogonal and nonorthogonal FDTD implementations [J], IEEE Trans. on Microwave Theory and Techniques, 1998, 46(4): 420-426.
    [111] B. M. A. Rahman and J. B. Davies, Finite-element analysis of optical and microwave waveguide problems [J], IEEE Trans. on Microwave Theory and Techniques, 1984, 32(1):20-28.
    [112] T. Becks and I. Wolff, Analysis of 3-D metallization structure by a full-wave spectral-domain technique [J], IEEE Trans. on Microwave Theory and Techniques, 1992, 40(12): 2219-2227.
    [113] C. J. Reddy, M. D. Deshpande, C. R. Cockrell and F. B. Beck, Finite element method for eigenvalue problems in electromagnetics [J], NASA Technical Paper 3485, Dec. 1994.
    [114] C. Mias, J. P. Webb and R. L. Ferrari, Finite element modelling of electromagnetic waves in doubly and triply periodic structures [J], IEE Proceedings Optoelectronics, 1999, 146(2): 111-118.
    [115]王长青,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994
    [116] Wenhua Yu ,R.Mittra .A conformal FDTD algorithm modeling perfectly conducting of objects with curved shaped surfaceds and edges .[J]. IEEE Antennas and Propagation Magazine ,2000,42,(5):28-29
    [117]葛德彪,闫玉波著,电磁场时域有限差分法[M],西安:西安电子科技大学出版社,2002.
    [118]闫敦豹,人工磁导体结构及其应用研究[D],长沙国防科学技术大学博士论文,2006
    [119]张国华,谐振型微波光子晶体电磁特性研究及其在天线中的应用[D],长沙国防科学技术大学博士论文,2005
    [120] Takashi Yanagi , Takeshi Oshima , Hideyuki Oh-hashi. Lumped-element loaded EBG structure with an enhanced bandgap and homogeneity.[J] Proceedings of iWAT2008,Chiba, Japan,:458-461
    [121] S.Shahparnia and O.M. Ramhi, Simple and accurate circuit models for high-impedance surfaces embedded in printed circuit boards [J], in Proc. IEEE Int. Symp. Antennas Propag., Monterey, CA, Jun. 2004, vol.4, pp.3565-3568
    [122] S. A. Tretyakov, Analytical Modeling in Applied Electromagnetics [M], Artech House: Norwood, MA, 2003.
    [123] R. C. Compton, L. B. Whitbourn, and R. C. McPherdan, Strip gratings at a dielectric interface and application of Babinet’s principle [J], Appl. Opt., Vol. 23, No. 18, pp. 3236–3242, Sep. 1984.
    [124] S. A. Tretyakov and C. R. Simovski, Dynamic model of artificial reactive impedance surfaces [J], J. of Electromagn. Waves and Appl., Vol. 17, No. 1, pp. 131–145, 2003
    [125]郑秋容,微波光子晶体带隙特性及其在天线中的应用[D],长沙国防科学技术大学博士论文,2007
    [126] L.Li, Qiang C, Q.W.Yuan, C.H.Liang and K. Sawaya, Surface-wave suppression band gap and plane-wave reflection phase band of mushroomlike photonic band gap structures [J], Journal of applied physics,2008,103
    [127]李龙,广义电磁谐振与EBG电磁局域谐振研究及应用[D],西安电子科技大学博士论文,2005.
    [128] (美)克拉特著,阮颖铮译,雷达散射截面积:预估、测量和减缩[M],电子工业出版社,1988
    [129] M. Paquay, J.C Iriarte, I.Ederra, R.Gonzalo and P.Maagt. Thin AMC Structure for Radar Cross-Section Reduction [J], IEEE Trans. on Antennas and Propagation,2007, 55(12):3630-3638
    [130] S. Dey and R. Mittra, Compact microstrip patch antenna [J]. Microwave Opt. Technol. Lett.. 1996, 13(9): 12–14.
    [131] J. George, M. Deepukumar, C. K. Aanandan, P. Mohanan, and K. G. Nair, New compact microstrip antenna [J]. Electron. Lett.. 1996, 32(3): 508–509.
    [132] K. L.Wong, C. L. Tang, and H. T. Chen. Acompact meandered circular microstrip antenna with a shorting pin [J]. Microwave Opt. Technol. Lett., 1997, 15(6): 147–149.
    [133] C. K. Wu, K. L. Wong, and W. S. Chen. Slot-coupled meandered microstrip antenna for compact dual-frequency operation [J]. Electron. Lett.. 1998, 34(5): 1047–1048.
    [134] J. H. Lu and K. L. Wong. Slot-loaded, meandered rectangular microstrip antenna with compact dual-frequency operation [J]. Electron. Lett.. 1998, 34(5): 1048–1050.
    [135] Ben A. Munk, frequency selective surfaces theory and design [M], NewYork:wiley,2000:49-52
    [136] R. L. Fante and M. T. McCormack. Reflection properties of the Salisbury screen [J]. IEEE trans. on Antenna and Propagation, vol. 36, 1988: 1443-1454.
    [137] Langley R J, Parker E A. Equivalent Circuit Model for Arrays of Square Loops [J], Electronics Letters, 1982, 18(7): 294-296
    [138] Ben A. Munk, frequency selective surfaces theory and design [M], New York:wiley,2000:49-52
    [139] S.M.A.Hamdy, E. A.Parker. Current Distribution on the Elements of a Square Loop Frequency Selective Surface [J], Electronics Letters. 1982,18(14) :624-626
    [140] Yang J, Shen Z X. A Thin and Broadband Absorber Using Double-square Loops [J], IEEE antennas and wireless propag. Lett.2007, 6:388-391
    [141] [美]George W. Stimson著,吴汉平等译,机载雷达导论(第二版) [M],电子工业出版社,北京,2005
    [142]阮颖铮等,雷达截面与隐身技术[M],国防工业出版社,北京,1998:
    [143]林昌禄等,天线工程手册[M],电子工业出版社,北京,2000
    [144] D. Y. KIM, R. S. ELLIOTT. A Design Procedure for Slot Arrays Fed by Single-Ridged Waveguide [J]. IEEE trans. on Antenna and Propagation, vol. 36, Nov. 1988: 1531-1536.
    [145] R. S. ELLIOTT. An Improved design Procedure for Small Array of shunt Slots [J]. IEEE trans. on Antenna and Propagation, vol. 31, Jan. 1983: 48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700