用户名: 密码: 验证码:
目标散射精确分析及微带天线RCS控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对天线RCS计算方法和机载天线RCS计算两个研究方向,以目标的电磁散射计算和天线隐身技术为研究对象,分别针对电大尺寸目标散射的精确快速计算和微带天线RCS预估和减缩方法进行了研究。取得的成果归纳如下:
     1.阵列天线RCS计算方法研究。在基本电磁散射计算的基础上,应用了基于矩量法的快速算法—综合函数矩量法(SBF)来计算阵列天线的散射问题。综合函数矩量法解决了传统矩量法由于计算机硬件系统的限制,对于精确求解阵列天线散射存在的内存和速度两方面问题。该方法首先对阵列天线进行模型分块,在模型的每一分块上进行三角面片的网格剖分,并求出每一块上的综合基函数—RWG基函数的线性叠加。综合基函数的获得使计算未知数大幅度减少,从而减少了内存占用和提高运算速度。
     2.自适应积分(AIM)精确分析电大尺寸目标的散射。详细推导了基于矩量法的另一种快速算法—自适应积分(AIM),并介绍了整个算法流程的关键问题。利用该方法加速求解了电大尺寸目标的散射分析速度并降低储存量,从而提高了现有计算机硬件条件对电大尺寸问题的处理规模和能力。在矩阵与矢量相乘时,采用双共轭梯度法(BICG)改进了求解矩阵方程的方式,进一步提高了程序的运算速度。
     3.电大尺寸目标散射的自适应积分并行计算。为了进一步提高求解问题的规模,可对自适应积分算法采用并行计算技术。并行计算的关键点是针对自适应积分的具体并行化过程,包括对阻抗矩阵填充和双共轭梯度迭代求解部分进行并行处理,以达到各进程的高并行效率和负载均衡,使求解规模扩大的同时也提高了计算速度。论文分析了电大尺寸的散射算例,计算结果表明了自适应积分并行计算的优越性。
     4.微带印刷振子天线的散射分析。对于天线隐身技术研究的重点内容,首先引入一种包含馈电结构的微带印刷振子天线散射分析方法。主要目的是用来分离带有馈电结构的微带印刷振子天线的结构模式项散射和天线模式项散射。利用在参考面处设置开路和短路,可以计算在任意负载情况下的结构模式项散射和天线模式项散射。最终分离了任意负载下微带印刷振子天线的散射,明确了散射的根本来源,为微带印刷振子天线的RCS减缩提供理论基础。
     5.微带印刷振子天线及其阵列RCS减缩研究。研究重点在于微带印刷振子天线及其阵列的宽带化和低散射特性。首先分析了基本天线单元的辐射和散射特性,针对基本天线单元的带宽缺陷提出了用PBG结构来改善其带宽性能,实现了单元的宽带化。其次,根据基本单元天线的散射特性,提出了在地板上采用平面PBG结构来对天线单元进行RCS减缩。最后设计的4×2宽带印刷振子阵列天线既拥有良好的辐射性能,又具有低RCS特性,对微带印刷振子天线的RCS减缩研究具有重要的意义。
     6.微带贴片天线RCS减缩方法研究。主要是针对微带贴片天线及其阵列的RCS减缩研究。首先引入微带贴片天线开槽方式对单元进行RCS减缩,并详细讨论其散射减缩的基本原理。其次引入贴片阵列天线散射减缩的新方法——贴片天线单元渐变开槽方式。通过对不同的单元开不同尺寸的槽,在等幅度馈电的情况下实现远区辐射场的低副瓣特性。该方法不仅实现了远区辐射场的低副瓣,而且又兼顾了结构模式项散射场的RCS减缩,从而有效的实现了阵列天线的低RCS特性。最后在理论推导的基础上,设计出1×9贴片阵列天线,实验证明了该方法的正确性和实用性。
Being associated with two research projects, this dissertation is mainly concerned with the electromagnetic computation of targets and stealth techniques for microstrip antennas. Fast and precise scattering computation algorithms for electrically large targets and methods for antenna RCS prediction and reduction are studied. The author’s major contributions are outlined as follows:
     1. Research on array antenna RCS computation. Based on the fundamental theory of electromagnetic computation, the method of synthetical basis function (SBF) is proposed as a fast algorithm of MoM to compute the array antenna scattering. The memory and time limitation of traditional MoM in terms of PC hardware is avoided. Firstly the array antenna is divided into blocks, and each block is subdivided into triangle facets. Secondly the sum of RWG base functions on each block is obtained, which can reduce the number of unknowns thus accelerate the computation speed.
     2. Precise scattering analysis of electrically large targets by use of AIM. As another fast algorithm of MoM, AIM is deduced in detail. The algorithm improves the scattering computation ability by reducing the storage quantity. The solving method of matrix equation is improved by introducing BICG, which increases the computation speed to a further extent.
     3. AIM parallel computation for scattering of electrically large targets. In order to enlarge the scale of problem, the AIM parallel computation technique is utilized. The critical point is the parallel modification of impedance filling process and the solving process using BICG. This dissertation analyzed the scattering of electrically large targets and results show the superiority of AIM parallel computation.
     4. Scattering analysis of microstrip printed dipole antenna. A scattering analysis method of the microstrip printed dipole antenna is introduced. The main aim is to decompose the structural mode scattering and antenna mode scattering of the microstrip printed dipole antenna with feeding structure. The structural mode scattering and antenna mode scattering of antennas loaded arbitrarily can be calculated by setting open and short circuits at the feed point. The scattering of microstrip printed dipole antennas loaded arbitrarily is decomposed, which is the base of RCS reduction of microstrip printed dipole antennas.
     5. RCS reduction analysis of microstrip printed dipole antennas and arrays. Attention is focused on the broadband and low scattering performances. Firstly the radiation and scattering characteristics of element antenna are analyzed. The PBG structure is introduced to improve the bandwidth of the element antenna. Secondly, the ground size reduction method is proposed according to the scattering performance of the element antenna. Finally a4×2broadband printed dipole array antenna designed using this method has both a favorable radiation performance and low RCS.
     6. Research on microstrip patch antenna RCS reduction technique. Attention is mainly focused on the RCS reduction of microstrip patch antenna and array. The principle of scattering reduction is discussed in detail. A novel theory of patch antenna array scattering reduction which is named patch antenna element gradually changed slotting is introduced. Slots of different sizes are carried out for different elements, which can realize the low sidelobe characteristic of far field when the array elements are fed uniformly. This technique not only realizes the low sidelobe characteristic of far field, but also realizes the RCS reduction of structural mode scattering into account. On the basis of theory analysis, a 1×9 patch antenna array is designed and experiments show the correctness and practicability of the technique.
引文
[1]汪茂光,几何绕射理论,西安电子科技大学出版社, 1994年.
    [2] P. H. Pathad, W. D. Burnside, and R. J. Marhefka, A Uniform GTD Analysis of the Diffraction of Electromagnetic Waves by a Smooth Convex Surface, IEEE Trans. Antennas Propagat, 1980, Vol. 28, pp.631-642.
    [3] R. F. Harrington, Field Computaion by Moment Methods, FL, Krieger: Malabar, 1968.
    [4] S. M. Rao, D. R. Wilton and A.W. Glisson, Electromagnetic Scattering by Surfaces of Arbitrary Shap, IEEE Tran. On Antennas and Propagation, 1982, Vol.30, No.3, pp. 409-418.
    [5]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社, 1998.
    [6] E. F. Knott, J. F. Shaeffer and M. T. Turely, Radar Cross Section and it’s Prediction, Measurement and Reduction, Dedham, MA: Artech House, 1985.
    [7] Pozar D. M, RCS Reduction for a Microstrip Antenna Using a Normally Biased Ferrite Substrate, Microwave and Guided Wave Letter, IEEE, May, 1992, pp.196-198.
    [8]刘英,天线雷达散射截面预估与减缩,西安电子科技大学博士学位论文, 2004.
    [9]张鹏飞,隐身技术中的雷达截面预估与控制,西安电子科技大学博士学位论文, 2008.
    [10] S. Ooms and D. DeZutter, A New Iterative Diacoptics-based Multilevel Moments Method for Planar Circuits, IEEE Trans. Microwave Theory Tech., 1998, Vol.46,No.3, pp.280-291.
    [11] E. Suter and J. Mosig, A Subdomain Multilevel Approach for the MoM Analysis of Large Planner Antennas, Microwave and Optical Technology Letters, 2000, Vol.26, No.4, pp.270-277.
    [12] V. V. Prakash and R. Mittra, Characteristic Basis Function Method: A New Technique for Fast Solution of Integral Equations, Microwave and Optical Technology Letters, 2003, Vol.29, No.1, pp. 95-100.
    [13] V. Rokhlin, Rapid Solution of Integral Equation of Classical Potential Theory, Journal of Computational Physics, 1985, Vol.60, No.2, pp. 187-207.
    [14]陆卫兵,复杂电磁问题的快速算法研究和软件实现,东南大学博士学位论文,2005年.
    [15] N. Engheta, W. D. Murphy, V. Rokhlin and M. S. Vassiliou, The Fast Multipole Method (FMM) for Electromagnetic Scattering Problems, IEEE Trans on AP, Jun. 1992, Vol.40, No.6, pp. 634–641.
    [16] C. C. Lu and W. C. Chew, A Multilevel Algorithm for Solving a Boundar Integral Equation of Wave Scattering, Microwave and Optical Technology Letters, Jul. 1994, Vol.7, pp.466-470.
    [17] J. M. Song, C. C. Lu and W. C. Chew, Multilevel Fast Multipole Algorithm for Electromagnetic Scattering by Large Complex Objects, IEEE Trans. on AP, Oct. 1997, Vol.45,No.10, pp.1488–1493.
    [18] E. Bleszynski, M. Bleszynski and T. Jaroszewicz, AIM: Adaptive Integral Method for Solving Large-scale Electromagnetic Scattering and Radiation Problems, Radio Science, Sep.- Oct. 1996, Vol.31, No.5, pp.1225-1251.
    [19] Z. Q. Zhang and Q.H. Liu, A Volume Adaptive Integral Method (VAIM) for 3-D Inhomogeneous Objects, IEEE Antennas and Wireless Propagation Letters, 2002, Vol.1, pp. 102-105.
    [20]郭景丽,全向宽带天线及天线罩电磁特性研究,西安电子科技大学博士学位论文, 2004.
    [21]贺秀莲,微带天线的数学建模理论与数值分析方法研究,西安电子科技大学博士学位论文, 2005.
    [22] Jing-li Guo, Jian-ying Li, and Qi-zhong Liu, Analysis of Arbitrarily Shaped Dielectric Radomes Using Adaptive Integral Method Based on Volume Integral Equation, IEEE AP-S International Symposium, July, 2005.
    [23] J. R. Phillips and J. K. white, Efficient Capacitance Extraction of 3D Structures Using Generalized Pre-correct FFT Method, Proc. IEEE 3rd Topical Meeting on Electrical Performance of Electronic Packaging, Nov. 1994, pp.253-256.
    [24] N. Yuan, T. S. Yeo, X. C. Nie and L. W. Li, A Fast Analysis of Scattering and Radiation of Large Microstrip Antenna Arrays, IEEE Trans. on AP, Sep. 2003, Vol.51, No.9, pp.2218-2226.
    [25] X. C. Nie, L. W. Li and N. Yuan, Precorrected-FFT Algorithm for Solving Combined Field Integral Equations in Electromagnetic Scattering. IEEE APS, 2002, pp. 574-577.
    [26] X. C. Nie, L. W. Li, N. Yuan, T. S. Yeo and Y. B. Gan, Precorrected-FFT Solution of the Volume Integral Equations for Inhomogeneous Dielectric Bodies, IEEE APS, 2003, pp.768-771.
    [27] Volakis J.L, Alexanian.A, and Jin J, Broadband RCS Reduction of Rectangular Patch by Using Distribute Loading, Electron Lett, 1992, pp.2322-2323.
    [28] Pous.R, pozar.D.M, Frequency-selective surface using aperture-coupled microstrip patches, Electronics Letter.Aug, 1989, volume 25, pp.1136-1138.
    [29] Biox.R.R, Losada.V, Medina.F, Determination of the Radar Cross Section of Stacked Circular Microstrip Patches, Antennas and Propagation Society International Symposium, IEEE. July, 2000, Vol.1, pp. 16-21.
    [30]冯林,阮颖铮,天线RCS减缩技术研究的新进展,电子科技大学学报, Aug., 1995, Vol.24, NO. 7.
    [31] Ying Liu, Demin Fu, Shuxi Gong, A Novel Model for Analyzing the RCS of Microstrip Antenna, Journal of Electromagnetic Waves and Application, 2003, Vol.17, No.9, pp.1301-1310.
    [32]刘英,龚书喜,傅德民,分形在天线雷达散射截面减缩中的应用,微波学报, June, 2003, Vol.19, No.2, pp. 28-31.
    [33]刘英,龚书喜,傅德民,分形与阵列天线,电波科学学报, 2001, Vol.16. pp.147-149.
    [34] S. U. Hwu, D. R. Wilton, and S. M. Rao, Electromagnetic Scattering and Radiation by Arbitrary Conducting Wire/Surface Configurations, 1988, IEEE APS, pp. 890-893.
    [35] D. Zheng and K. A. Michalski, Analysis of Arbitrarily Shaped Coax-fed Microstrip Antennas with Thick Substrates, Electronic Letters, 1990, Vol.26, No.12, pp.794-795.
    [36] David. M. Pozar, Analysis of Finite Phased Arrays of Printed Dipoles, IEEE Trans. Antennas Propagat. 1985, Vol.33, pp. 1045–1053.
    [37]哈林登著,王尔杰等译,计算电磁学的矩量法,北京:国防工业出版社, 1981.
    [38]金谋平,多导体散射中的广义谐振研究,西安电子科技大学博士学位论文, 1998.
    [39]斯普里特( S priet,J.A.) ,范斯蒂恩基斯特( V ansteenkiste,G.C.)著;王正中等译,计算机辅助建模和仿真,北京:科学出版社, 1991.
    [40]徐云学,龚书喜,基于Matlab的复杂目标RCS计算系统研究,电波科学学报, 2007, Vol.22, No.2, pp. 266-270.
    [41] J. Perez, M. F. Catedra, RCS of Electrically Large Targets Modeled With NURBS Surface, Electronics Letters, 1992, Vol.28, No.12, pp.1119-1121.
    [42] M. Domingo, F. Rivas, J. Perez, R. P. Torres and M. F. Catedra, Computation of theRCS of Complex Bodies Modeled Using NURBS Surface, IEEE Antennas and Propagation Magazine, 1995, Vol.37, No.6, pp.36-47.
    [43]金建铭,电磁场有限元方法,西安电子科技大学出版社, 1998年.
    [44]高培森, AutoCAD 2005中文版基础教程,北京:机械工业出版社, 2005.
    [45]袁晶,支剑锋,中文AutoCAD2008教程,西安:西安工业出版社, 2008.
    [46]吴大焱, 3DS 4.0实例精讲,西安:西安电子科技大学出版社, 1999.
    [47]韩涌,犀牛之舞Rhinoceros轻松建模,北京:人民邮电出版社, 2001.
    [48] R.E. Hodges and Y. Rahmat-Samii, Theory of Physical Optics Hybrid Method (POHM), Antennas Propagat Soc Int Symp AP-S Dig 3 ,1994, pp.1374–1377.
    [49] H. T. Chen and G.-Q. Zhu, Model the Electromagnetic Scattering from Three-Dimensional PEC Object Buried Under Rough Ground by MoM and Modified PO Hybrid Method, Progress In Electromagnetics Research, 2007, Vol.77, pp.15-27.
    [50] M. Lashab, C.-E. Zebiri, and F. Benabdelaziz, Wavelet-Based Moment Method and Wavelet-Based Moment Method and Physical Optics Use on Large Reflector Antennas, Progress In Electromagnetics Research M, 2008, Vol. 2, pp.189-200.
    [51] R.E. Hodges and Y. Rahmat-Samii, An Iterative Current-Based Hybrid Method for Complex Structures, IEEE Trans Antennas Propagat, 1997,Vol.45, pp.265–276.
    [52] S. Zhongxiang and J.L. Volakis, A Hybrid Physical Optics-Moment Method for Large Nose Radome Antennas, Antennas Propagat Soc Int Symp AP-S Dig 4, 1999, pp.2554–2557.
    [53] J.M.Song and W.C.Chew, Multilevel Fast-multipole Algorithm for Solving Combined Field Integral Equations of Elctromagnetic Scattering, Microwave Opt. Technol. Lett., 1995, Vol.10, No.1, pp. 14-19.
    [54] W.C.Chew, T.J.Cui, and J.Song, A FAFFA-MLFMA Algorithm for Electromagnetic Scattering, IEEE Trans. Antennas Propagat., Nov.2002, Vol.50, pp.1641-1649.
    [55] L.Gurel and O.Ergul, Comparisons of FMM implementations employing different formulations and iterative solvers, Antennas and Propagation Society International Symposium, 2003, Vol.1, pp. 19-22.
    [56] N.Geng and L.Carin, Fast multipole method for targets above or buried in lossly soil, IEEE Antenna Propagation Symposium, 1999, pp.1362–1366.
    [57] Xiao-Chun Nie, Ning Yuan, Le-Wei Li, Yeow-Beng Gan, Tat Soon Yeo, A FastVolume-Surface Integeral Equation Solver for Scattering From Compositive Conducting-Dielectric Objects, IEEE Transactions on Antennas and Propagation, Feb.2005, Vol.53, No.2, pp:818-824.
    [58] O. M. Bucci and G. Franceschetti, On the Degrees of Freedom of Scattered Fields, IEEE Trans. on Antennas and Propagation, 1989, Vol.37, No.7, pp. 918-926.
    [59] LingF, Wang C F, Jin J M, Application of a Daptive Integral Method to Scattering and Radiation Analysis of Arbitrarily Shaped Planar Structures, Journal Electromagnetic Waves Application,1998, Vol.22, No.3, pp. 312-317.
    [60] Sunil S. Bindiganavale, John L. Volakis, Scattering from Planar Structures Containing Small Features Using the Adaptive Integral Method (AIM), IEEE Trans. Antennas Propagat., Vol.46, 1998, pp.1867 -1878.
    [61] Ling. F., C. F. Wang, and J. M. Jin, A Fast Electromagnetic Solver Using Adaptive Integral Method, Chinese J .Electronics, 1999, Vol.8, No.4, pp.340-345.
    [62] Ling.F, C .F. Wang, and J .M .Jin, An Efficient Algorithm for Analyzing Large-scale Microstrip Structures using Adaptive Integral Method Combined with Discrete Complex Image Method, IEEE Trans.Microwave Theory Tech., May 2000, Vol.48, pp.832-839.
    [63] Wang. C. F, L. W. Li, P. S. Kooi, and M. S. Leong, Efficient Capacitance Computation for Three- dimensional Structures Based on Adaptive Integral Method, J .Electromagn.Waves Appl., 2000, Vol.14, pp.1133-1134.
    [64] Wang, C. F., L. W. Li, B. L. Ooi, P. S. Kooi, and M. S. Leong, Fast Capacitance Computation Based on Adaptive Integral Solution of Second-kind Integral Equation, Journal Electromagnetic Waves Application, 2002, Vol.16,No.5 , pp.711-728.
    [65]陈峰,应积分方法,电子科技大学硕士学位论文, 2007.
    [66] T. K. Sarkar, E. Arvas, and S. M. Rao, Application of FFT and the Conjugate Gradient Method for the Solution of Electromagnetic Radiation from Electrically Large and Small Conducting Bodies, IEEE Trans. on AP, Oct. 1986, Vol.34, pp.635-640.
    [67]《数学手册》编写组,数学手册,北京:高等教育出版社, 1979.
    [68]叶贻才, Vandermonde矩阵及其变形矩阵的快速求逆格式,福建师范大学学报, 1999, Vol.13, No.2, pp.15-20.
    [69]都志辉,高性能计算并行程序技术-MPI并行程序设计,北京:清华大学出版社, 2001.
    [70] Barry Wilkinson Michael Allen著,陆鑫达等译,并行程序设计,北京:机械工业出版社, 2002.
    [71] J.M.Song, C.C.Lu, W.W.Chew anal S.W.Lee. Fast Illinois Solver Code (FISC), IEEE Antennas and Propagation Magzine, 1998, Vol.40, No.3, pp. 27-34.
    [72] WILLIAM J. Buchanan, Analysis of EM wave Propgation Using the 3D FDTD Method with Parallel Processing, Napier University, 1996.
    [73] Gui.aut, C. and K. Mahdjoubi, A Parallel FDTD Algorithm Using the MPI Library, IEEE Antennas and Propagation Magazine, 2001, Vol.43, No.2, pp.94-103.
    [74] Pascal Hav.e, Parallel Fast Multipole Method for Maxwell Equations, University Pierreet Marie Curie, Laboratoire Jacques-Louis Lions, 2002.
    [75] Johan edlund, A Parallel Iterative Method of Moments and Physical Optics Hybrid Solver for Arbitrary Surfaces, Uppsala University, Sweden, August 2001.
    [76]张玉,电磁场并行计算研究,西安:西安电子科技大学出版社, 2006.
    [77]张玉,梁昌洪,并行UTD算法及在机载天线分析中的应用,电子学报, 2003, Vol.31, No.3, pp.332~334.
    [78]张玉,苏涛,翟会清,梁昌洪, PC群集系统中并行矩量法研究,电子学报2003, Vol. 31, No.9 pp.1368-1371.
    [79]王萌,高频并行算法的研究与应用,西安电子科技大学博士学位论文, 2005.
    [80]吴炎惊,复杂平台中天线电磁兼容性的数值仿真研究,西安电子科技大学博士学位论文, 2005.
    [81] Pathak P H, Wang N N, An Analysis of the Mutual Coupling Between Antennas on a Smooth Convex Surface, AD-R065591, Oct., 1978.
    [82] Pathak P H, W D Burnside, Marhefka R J, A Uniform GTD Analysis of the Diffraction of Electromagnetic Waves by a Smooth Convex Surface, IEEE Trans. Antennas Propagat., 1980, Vol.28, No.5, pp.631-642.
    [83]张永杰,孙秦,大型稀疏复线性方程组双共轭梯度法,航空计算技术, 2006, Vol.36, No.4, pp.21-29.
    [84] D.Jaisson, Fast Design of a Printed Dipole Antenna with an Integrated Balan, IEE Proc.-Microw.Antennas Propag, August 2006, Vol.153, No.4, pp. 682-690.
    [85] A. A. Eldek, Design of Double Dipole Antenna with Enhanced Usable Bandwidthfor Wideband Phased Array Applications, Progress In Electromagnetics Research, 2006, Vol.59, pp.1-15.
    [86] H.-W. Yuan, S.-X. Gong, X. Wang, and W.-T. Wang, Scattering Analysis of a Printed Dipole Antenna Using PBG Structures, Progress In Electromagnetics Research B, 2008, Vol.1, pp.189-195.
    [87] G. F. Khodae, J. Nourinia, and C. Ghobadi, A Practical Miniaturized U-Slot Patch Antenna with Enhanced Bandwidth, Progress In Electromagnetics Research B, 2008, Vol.3, pp.47-62.
    [88] H.-W. Yuan, S.-X. Gong, P.-F. Zhang, and X. Wang, Wide Scanning Phased Array Antenna Using Printed Dipole Antennas with Parasitic Element, Progress In Electromagnetics Research Letters, 2008, Vol.2, pp.187-193.
    [89] Hansen, R.C., Relationships between Antenna as Scatters and as Radiators, Pro. IEEE, 1989, Vol.77, No.5, pp. 659-662.
    [90] Ying Liu, Shu-xi Gong, De-min Fu, A Novel Model for Analyzing the RCS of Microstrip Antenna, 2003 IEEE International Symposium on Antennas and Propagation and USNC/CNC/URSI North American Radio Science Meeting, Columbus, Ohio, USA, 2003, pp.835-838.
    [91] Collin, R.E., The Receiving Antenna, Antenna Theory, Part1, R.E. Collin and F.J.Zucker, McGraw-Hill, New York, 1969, pp.123-133.
    [92] Xiulian He, Shuxi Gong, Yicai Ji, and Qizhong Liu, Meshed Microstrip Patch Antennas with Low RCS, Microwave and Optical Technology letters, 2005, Vol.46, No.3, pp.117-120.
    [93] Sadasiva, M. Rao. Donald, R. Wilton, and Allen W. Glisson, Electromagnetic Scat- tring by Surfaces of Arbitrary Shape, IEEE Trans. Antennas Propagat., May.1982, Vol.30, No.3, pp.623-630.
    [94] W. C. Wilkinson, A Class of Printed Circuit Antennas, in Proc. IEEE AP-S Antennas Propag. Symp. Dig., Oct. 1974, pp. 270–273.
    [95] Qing-Qiang He, Bing-Zhong Wang, and Jun He, Wideband and Dual-band Design of a Printed Dipole Antenna, IEEE Antennas and wireless propagation letters, 2008, Vol.7, pp.327–330.
    [96] B. G. Duffley, G. A. Morin, M. Mikavica, and Y. M. M. Antar, A Wideband Printed Double-side Dipole array, IEEE Trans. Antennas Propag., Feb.2004, Vol.52, No.2, pp.628–631.
    [97]高军,曹祥玉,张广,文曦,一种波束赋形相控阵天线的分析与设计,西安电子科技大学学报, 2008, No.35, pp.1084-1088.
    [98] Mohammed Ziaul Azad, and Mohammod, Novel Wideband Directional Dipole Antenna on a Mushroom Like EBG Structure, IEEE Trans. Antennas Propag., May.2008, Vol. 56, No.5, pp.723-726.
    [99] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-state Physics and Electronics, Phys. Rev. Lett., 1987, Vol.58, No.20, pp.2059-2062.
    [100] S. John, Strong Localization of Photons in Certain Disorded Dielectric Superlattices, Phys. Rev. Lett., 1987, Vol.58, No.23, pp.2486-2489.
    [101] O. Painter, Two-dimension Photonic Bandgap Defect Mode Laser, Scinece, 1999, Vol. 284, No.5421, pp. 1819-1821.
    [102] Y. Fink, A Dielectric Omnidirectional Reflector, Science, 1998, Vol. 282, No.5394, pp. 1537-1539.
    [103] A. Mekis, High Transmission throuth Sharp Bends in Photonic Crystal Waveguides, Physical Review Letters, 1996, Vol.77, No.18, pp. 3787-3790.
    [104] S. H. Fan, P. R. Villeneuve and J. D. Joannopoulos, Channal Drop Tunneling though Localized States, Physical Review Letter, 1998, Vol.80, No.5, pp.960-963.
    [105]郑秋容,袁乃昌,付云起,紧凑型电磁带隙结构在短路微带天线中的应用,电子与信息学报, 2007, Vol.29, pp.1500-1502.
    [106] H. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, Photonic Band-Gap Materials for High-gain Printed Circuit Antennas, IEEE Trans. Antennas Propag., Jan.1997, Vol.45, No.1, pp.185–187.
    [107] M. Rahman and M. Stuchly, Wide-band Microstrip Patch Antenna with Planar PBG Structure, in Proc. IEEE AP-S Int. Symp. Dig., Jul.2001, Vol.2, pp.486–489.
    [108]汪静丽,陈鹤鸣,二维棋盘格子复式晶格的完全光子带隙研究,物理学报, 2007, Vol.56, pp.921-926.
    [109] W.-T. Wang, S.-X. Gong, X. Wang, H.-W.Yuan, and J. Ling, RCS Reduction of Array Antenna by Using Bandstop FSS Reflector, J. of Electromagn. Waves and Appl., 2009, Vol.23, pp. 1505-1514.
    [110] Wentao T. Wang, P. F. Zhang, S. X. Gong, B. Lu, J. Ling, and Tingting T. Wan, Compact Angularly Stable Frequency Selective Surface Using Hexagonal Fractal Configurations, Microwave and optical Technology Letters, 2009, Vol.51, No.11, pp.2541-2544.
    [111] J.R.Jame, Microstrip Antenna Theory and Design, 1981.
    [112] R. H .Newman, Scattering from a Microstrip Patch, IEEE Transaction on Antennas and Propagation, 1987,Vol. 35, pp.245-251.
    [113] W.He, R.Jin and J.Geng, Low Radar Cross-Section and High Performances of Microstrip Antenna Using Fractal Uniplanar Compact Electromagnetic BandgapGround, IET Microw. Antennas Propag., 2007, Vol.1, No.5, pp.986– 991.
    [114]韩国栋,顾长青,加载十字分形缝隙的小型化微带天线,电波科学学报, 2008, Vol.23, No.2.
    [115]张明旭,龚书喜,刘英,利用接地板开槽减缩微带贴片天线的RCS,电子与信息学报, 2008, Vol.30, No.2.
    [116] J. L. Volakis, A. Alexanian, and J. M. Lin, Broadband RCS Reduction of Rectangular Patch by Using Distributed loading, Electron Lett, 1992, Vol.28, pp.2322-2323.
    [117] Wei He, Ronghong Jin, Junping Geng, Guoming Yang, 2×2 Array with UC-EBG Ground for Low RCS and High gain, Microwave and Optical Technology Letters. 2007, Vol.49, No.6, pp. 1418-1422.
    [118] Adrian S. King, Scattering from a Finite Array of Microstrip Patches, IEEE Transaction on Antennas and Propagation, 1992, Vol.40, pp.770-774.
    [119]钟顺时,微带天线理论与应用,西安电子科技大学出版社, 1991.
    [120] Y.T.Lo, D.Solomon, W.F.Richards, Theory and Experiment on Microstrip Antenna, IEEE Tran. Mar, 1979, Vol.27, pp.137-145.
    [121] David M. pozar, Radiation and Scattering from a Microstrip Patch on a Uniaxial Substrate, IEEE Transaction on Antenna and Propagation, June.1987, Vol.35, No.6, pp.613~621.
    [122] Taylor, T. T., Design of Line Source Antennas for Narrow Beamwidth and Low Sidelobes, IEEE Trans. on Antennas and Propagation, January, 1955, Vol.3, pp. 16-28.
    [123]龚书喜.天线隐身基础理论研究.西安:中日微波会议报告,2006.
    [124] Y.T.Lo, S.W.Lee, Antenna Handbook: Theory, Applications, and design, Van Nostrand Reinhold Company, New York, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700