用户名: 密码: 验证码:
电沉积Ni-S合金析氢阴极材料及析氢机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解水制氢是现有成熟制氢技术中最具应用前景的一种。但目前使用的Fe电极和Raney-Ni电极由于其较高的析氢过电位导致制氢能耗偏高,因此,要实现大规模开发应用氢能,必须大幅降低析氢阴极的过电位。Ni-S及其多元合金电极因其较低的析氢过电位而成为制氢阴极的研究热点。
     本文通过在不同镍基体上电沉积制备非晶态Ni-S和Ni-S型三元合金电极,并研究其晶体结构和析氢性能,得到如下研究结果:
     1、以镍丝网为基体制备了Ni-S合金电极。确定了最佳的电镀液配方和工艺条件。对其析氢性能的研究表明:镀层中S含量对电极的析氢性能影响较大,S含量范围为15-19 wt%时,Ni-S合金电极具有很低的析氢电位。
     2、选用泡沫镍为基体制备了非晶态Ni-S型合金电极,泡沫镍特殊的多孔网状结构使电极具有更大的真实表面积,析氢活性明显提高,在模拟工业条件下电解24小时后,该电极比Raney-Ni电极的小室电压分别降低0.17V(200mA cm~(-2))或0.26V(400mA cm~(-2)),极大地降低了电解制氢能耗,可产生巨大的经济效益。
     3、在Ni-S合金镀液中加入Co、La、Mo等过渡族金属元素制得了Ni-S型三元合金电极,实验结果表明:添加上述金属离子均能提高泡沫镍基非晶态Ni-S型合金电极的析氢活性,但只有Ni-S-Co和Ni-S(La)两种三元合金电极具良好的析氢活性和电化学稳定性,在电解水制氢工业中具有较高的实际应用价值。
     4、采用梯度电沉积工艺制备出镀层中S含量呈梯度分布的泡沫镍基Ni-S合金电极和S、Co含量呈梯度分布的Ni-S-Co合金电极,这种梯度分布形式有利于降低镀层内应力、增加镀层与基体的结合力,提高电极的寿命和稳定性,是一种应用前景良好的析氢阴极材料。
     5、在Ni-S合金电沉积液中添加稀土氧化物Er_2O_3或Pr_2O_3的研究表明:镀层的晶粒尺寸随添加物浓度的增大而有所减小,这可能是Pr_2O_3或Er_2O_3颗粒在电极表面的吸附阻碍了晶核生长,导致镀层晶粒尺寸减小,表面积增大,Er_2O_3或Pr_2O_3的加入有利于提高电极的析氢活性。
     6、对Ni-S合金电极的镀后处理工艺结果表明:液相热活化处理可极大地提高电极的析氢活性,降低析氢电位;而氩气热处理使合金镀层由非晶态转变为晶态结构,析氢电位反而有所升高。
     7、通过Tafel曲线计算出泡沫镍电极、泡沫镍基Ni-S合金电极和Ni-S-Co合金电极的表观活化能分别为49.5 kJ mol~(-1)、40.3 kJ mol~(-1)和38.6 kJ mol~(-1),首次从能量角度上揭示了各合金电极析氢活性不同的原因。对Ni-S型合金电极析氢反应的研究结果表明:电极在析氢过程中能大量吸附氢原子是电极活性高的根本原因;其析氢反应的催化机理为电化学脱附机理。
In all the mature hydrogen production techniques the water electrolytic production of the hydrogen energy is the most applicable technique.However,the iron and Raney-nickel electrode of the electrolytic technique used nowadays result in high energy consumption due to the high hydrogen evolution reaction(HER) potential.Thus,to develop and use the hydrogen energy in large scale,the HER potential must be decreased.Recently,Ni-S and Ni-S-based alloys have gain important considerations in hydrogen production field due to the low HER potential.
     In this paper,the amorphous Ni-S and Ni-S-based tertiary alloy electrode have been produced on different nickel substrates,and the crystal structures and the hydrogen evolution activity have been studied. Based on the investigations,the following conclusions are drawn:
     1.Ni-S alloy electrode on nickel net substrate has been produced. The best electrodepositing conditions have been experimentally determined.The results of the hydrogen evolution properties indicated that the content of S in the coating has large effect on the hydrogen evolution properties of the electrode.The Ni-S alloy electrode has very low HER potential when the content of S is between 15~19%.
     2.The amorphous Ni-S alloy electrode has been produced on nickel foam substrate.Compared to nickel net substrate,the hydrogen evolution properties of nickel foam substrate have obviously been improved since the nickel foam substrate has special pore structures and large true surface area.In modeling the industrial electrolysis conditions for 24 hours,the cell volt of the nickel foam substrate was decreased by 0.17 V and 0.26 V at current densities of 200 mA·cm~(-2) and 400 mA·cm~(-2),respectively,which substantially decreases the energy consumption in electrolytic production of hydrogen.
     3.Ni-S-based tertiary alloy electrodes have been produced by adding Co,La and Mo ions.The experimental results indicated that all the above mentioned metal ions can improve the hydrogen evolution activity of nickel foam substrate based amorphous Ni-S alloy electrode.However, only Ni-S-Co and Ni-S-La alloy electrodes have both excellent hydrogen evolution properties and electro-chemical stability,and have high real application merit for hydrogen electrolytic production industry.
     4.On the first time,the Ni-S electrode with gradient distribution of S and the Ni-S-Co electrode with gradient distributions of S and Co in the coating have been produced using gradient electrolytic process.This gradient distribution can help decrease the coating internal stress and increase the coherence between the coating and the substrate,and improve the electro-chemical stability and lifetime.Thus,they are good hydrogen evolution cathode materials for future applications.
     5.The rare earth element oxides Er_2O_3 and Pr_2O_3 have been added to the electroplating solution.The experimental results indicated that the grain size of the coating decreases and surface area increases as the concentration of the additives increase,which is probably due to the inhibition of the grain growth by Er_2O_3 and Pr_2O_3 particles on the coating surface.However,the addition of the Er_2O_3 or Pr_2O_3 can help improve the hydrogen evolution activity.
     6.The heat treatment program after electrodeposition has been studied.It has been shown that Ni-S alloy coating can change from amorphous state to crystalline state after heat treatment under argon atmosphere,thus increase the HER potential,while the HER potential during water electro-deposition can be decreased a lot after heat treatment under alkali solution.
     7.The calculated activation energies are 49.5,40.3 and 38.6 kJ mol~(-1) for nickel foam electrode,nickel foam substrate based Ni-S alloy electrode and Ni-S-Co alloy electrode according to Tafel curves, respectively,which gives explanation about the difference in hydrogen evolution activity from energy angle.The results indicated that the high hydrogen evolution activity of Ni-S alloy electrode is due to the large absorption of the hydrogen atoms during hydrogen evolution process.The catalysis principle is electro-chemical desorption principle.
引文
[1]Strategic Plan for DOE Hydrogen Program[C].Washington.DOE,1998:8-10
    [2]Technology Validation Plan for DOE Hydrogen Program[C].Washington.DOE,1998:12
    [3]Outreach and Cooperation Plan for DOE Hydrogen Program[C].Washington.DOE,1998:15-16
    [4]Devillers C.European Integrated Hydrogen Project Conttact[A].JOE 32CT9720188,2000
    [5]陈进富.制氢技术[J].新能源,1999,21(4):10-14
    [6]池凤东.实用氢化学[M].北京:国防工业出版社,1996,p.36
    [7]王毅波.21世纪的理想能源—氢能[J].能源研究与信息,2003,19(2):63-68
    [8]Kreuter W,Hofmann H.Electrolysis:the important energy transformer in a world of sustain able energy[J].Inter.J.Hydrogen Energy,1998,23(8):661-666
    [9]Hijikata T.Research and development of international clean energy network using hydrogen energy(WE-NET)[J].Inter.J.Hydrogen Energy,2002,27(2):115-129
    [10]Giz M J,Bento S C,Gonzalez E R.NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis[J].Inter.J.Hydrogen Energy,2000,25(5):621-627
    [11]韩庆,魏绪钧.镍合金用作电解水析氢阴极现状的研究[J].中国有色金属学报,2001,11(S1):158-162
    [12]胡伟康,张允什,汪筠,等.碱性电解水制氢的活性阴极材料[J].高技术通讯,1995,8:55-60
    [13]Hu C C,Wu Y R.Bipolar Performance of the electroplated iron-nickel deposits for water electrolysis[J].Mater.Chem.Phys.,2003,82:588-596
    [14]Hoor F S,Aravinda C L,Ahmed M F,et al.Fe-P and Fe-P-Pt co-deposits as hydrogen electrodes in alkaline solution.Journal of Power Sources[J].2001,103(1):147-149
    [15]Rosalbino F,et al.Electrocatalytic properties of Fe-R(R=Rare earth metal)crystalline alloys as hydrogen electrodes in alkaline water electrolysis[J].J.Alloys and Comoounds,2005,403(1-2):275-282
    [16]渡边彻编著(于维平,李荻译).非晶态电沉积方法及应用[M].北京:北京 航空航天大学出版社,1992:160-166
    [17]Chen L,Lasia A D.Study of kinetics of hydrogen evolution reaction on nickel-zinc powder electrodes[J].J.Electrochemistry Society,1993,139(11):3214-3219
    [18]Los P,Rami A,Lasia A.Hydrogen evolution reaction on Ni-Al electrodes[J].J.Applied Electrochemistry,1993,23:135-140
    [19]Yoshida N,Yoshitake M,Endoh E,et al.Development of highly durable low hydrogen over voltage cathode in chlor-alkali cells[J].Inter.J.Hydrogen Energy,1995,14:137-144
    [20]刘松琴,张景尧,郑秋容,等.Ni-Mo复合镀层的析氢催化活性研究[J].材料保护,1998,31(6):15-17
    [21]杨静,吴仲达.镍钼合金电极的析氢性能研究[J].稀有金属,1998,22(4):251-253
    [22]刘萍,唐致远,宋全生,等.Ni-Mo合金电极的制备条件对其析氢性能的影响[J].电镀与精饰,2006,28(3):11-14
    [23]杜楠,赵晴,Sanada Y N.电沉积非晶态镍铝合金及其镀层结构的研究[J].材料保护,1994,27(11):8-12
    [24]马洁.在电沉积镍—铝合金上的析氢反应[J].首都师范大学学报,1995,16(1):53-57
    [25]曾跃,姚素薇,郭鹤桐.从氨性柠檬酸溶液中电沉积Ni-Mo的机理研究[J].物理化学学报,1995,11(4):351-355
    [26]Raj I A.Nickel-based,binary-composite electrocatalysts for the cathode sin the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells[J].J.Applied Electrochemistry,1993,28:4375-4384
    [27]胡伟康,张允什,宋德瑛.非晶态Ni-Mo-Fe合金作电解水析氢反应阴极[J].功能材料,1995,26:456-458
    [28]Hu W K,Lee J Y.Electrocatalytic properties of Ti_2Ni/Ni-Mo composite electrodes for hydrogen evolution reaction[J].Inter.J.Hydrogen Energy,1998,23:253-259
    [29]刘淑兰,覃奇贤,成旦红,等.电沉积Ni-La合金上的阴极析氢行为[J].应用化学,1995,12(5):115-116
    [30]林修文,王树喜.镍钒合金电沉积及其析氢电催化性能的研究[J].化学研究与应用,1997,9(1):99-101
    [31]De Giz M J,Ferreira M,Tremiliosi G,Gonzalez E R.Mechanistic study of the hydrogen evolution reaction on Ni-Zn and Ni-S cathodes[J].J.Applied Electrochemistry,1993,23:641-645
    [32]Amashita H H,Yamamura T and Yoshimoto K.The relation between catalytic ability for hydrogen evolution reaction and characteristics of nickel-tin alloys[J].J.Electrochemistry Society,1993,140(8):2238-2243
    [33]Raj I A,Vasu K I.Transition metal-based cathodes for hydrogen evolution in alkaline solution:electrocatalysis on nickel-based ternary electrolytic codeposits [J].J.Applied Electrochemistry,1992,22:471-478
    [34]胡伟康,张允什,宋德瑛.非晶态Ni-Mo-Fe合金作电解水析氢反应阴极[J].功能材料,1995,26:458-459
    [35]Raj I A.On the catalytic activity of Ni-Mo-Fe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen [J].Applied Surface Science,1992,59:245-252
    [36]Fan C,Piron D L,Paradis P.Hydrogen evolution on electrodeposited nickel-cobalt-molybdenum in alkaline water electrolysis[J].Electrochemica Acta,1994,39:2715-2720
    [37]杨静,张存中,吴仲达.非晶态Ni-Mo-Co合金电极的制备与析氢性能[J].应用化学,2000,17(5):475-478
    [38]Simpraga R,Bai L,Conway B E.Real area and electrocatalysis factors in hydrogen evolution kinetics at electrodeposited Ni-Mo and Ni-Mo-Cd composites[J].J.Applied Electrochemistry,1995,25:628-632
    [39]程鹏里,石球芝,杨长春.镍—钼—铊电极的析氢性能[J].郑州大学学报(自科学版),1996,28(4):65-68
    [40]De Giz M J,Bento S C,Gonzalez E R.NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis[J].Inter.J.Hydrogen Energy,2000,25:621-627
    [41]王凤娥.电沉积镍基合金的研究进展[J].稀有金属,1998,22(5):375-379
    [42]Shervedani R K,Lasia A.Study of the hydrogen evolution reaction on Ni-P electrodes[J].J.Electrochemistry Society,1997,144(2):511-519
    [43]Paseka I.Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni-P(x) electrodes[J].Electrochemica Acta,1995,4(11):1633-1638
    [44]Podesta J J,Arvia A J,Piatti R C V,et al.studies of the Ni-P electrodeposited cathode[J].Inter.J.Hydrogen Energy,1995,17:9-15
    [45]Burchardt T.Hydrogen evolution on NiP alloys:the influence of sorbed hydrogen[J].Inter.J.Hydrogen Energy,2001,26:1193-1198
    [46]Burchardt T.The effect of deposition temperature on the catalytic activity of Ni-P alloys toward the hydrogen reaction[J].Inter.J.Hydrogen Energy,2002,27:323-328
    [47]De Giz M.J,Tremiliosi-filho G,Gonzalez E R,et al.Hydrogen evolution reaction on amorphous nickel and cobalt alloys[J].Inter.J.Hydrogen Energy,1995,20(6):423-429
    [48]Shervedani R K,Lasia A.Study of the hydrogen evolution reaction on Ni-Mo-P electrode sin alkaline solutions[J].J.Electrochemistry Society,1998,145(7):2219-2225
    [49]何柳,邓纶浩,苏畅.Ni-B合金及其复合镀层的研究现状及应用[J].电镀与环保,1999,19(3):5-9
    [50]杨昌英,潘家荣,李昕,等.以非晶态Ni-B合金阴极电解还原葡萄糖[J].三峡大学学报(自然科学版),2002,24(4):382-384
    [51]Przemyslaw Los,Andrzej Lasia.Electrocatalytic properities of amorphous nickel boride electrodes for hydrogen evolution reaction in alkaline solution[J].J.Electroanal.Chem.1992,333:115-125
    [52]Shervedani R K,Lasia A.Study of the hydrogen evolution reaction on Nickel-Zinc-Phosphorous electrodes[J].J.Electrochemistry Society,1997,144(8):2652-2659
    [53]Shervedani R K,Lasia A.Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by insitu methods[J].J.Applied Electrochemistry,1999,29:979-986
    [54]肖友军,钟一平.Ni-La-P合金电镀及其析氢电催化性能研究[J].表面技术,2003,32(5):31-33
    [55]王龙彪,吴俊,黄清安,等.电沉积Ni-W-P合金上析氢行为的研究[J].材料保护,2000,33(2):1-2
    [56]费锡明,黄正喜,费华,等.化学沉积Ni-Co-P合金电极在碱性介质中的析氢电催化性能[J].华中师范大学学报(自然科学版),2002,36(4):472-474
    [57]Iwakura C,Furukawa N,Tanaka M.Electrochemical preparation and characterization of Ni/Ni+RuO_2 composite coatings as an active cathode for hydrogen evolution[J].Electrochimica Acta,1992,37(4):757-758
    [58]Tavares A C,Trasatti S.Ni+RuO_2 co-deposited electrodes for hydrogen evolution[J].Electrochimica Acta,2000,45:4195-4202
    [59]Shibli S M A,Dilimon V S,Deepthi T.ZrO_2-reinforced Ni-P plate:An effective catalytic surface for hydrogen evolution[J].Applied Surface Science,2006,253:2189-2195
    [60]Albertini L B,Angelo A C D,Gonzalez E R.A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline media[J].J.Applied Electrochemistry,1992,22:888-892
    [61]Assuncao N A,Giz M J,Tremiliosi-Filho G,Gonzalez E R.A study of the hydrogen evolution reaction on a Ni/NiFeS electrodeposited coating[J].J.Electrochemistry Society,1997,144(8):2794-2800
    [62]刘松琴,张景尧,郑球容,等.Ni-Mo复合镀层的析氢催化活性研究[J].材料保护,1998,31(6):15-17
    [63]向翠丽,费锡明,李俊华.Ni-W-TiO_2复合电极在碱性介质中的析氢电催化性能[J].化学研究与应用,2005,5:664-666
    [64]Yong W T,Kersten H.Trans.Electrochemistry Society,1938,67:225
    [65]Gernes D C,Lorenz G A,Montillon G H.Trans.Electrochemistry Society,1940,77:177
    [66]Hine F,Yasuda M,Matanabe M.Studies of the nickel-sulphur electrodeposited cathode[J].Denki Kagaku,1979,47:401-408
    [67]成田彰,渡边彻,田边美等.金属表面技术学会第70回学术演讲大会要旨集,1980:38.
    [68]山川宏二,椿野晴繁,秋吉浩一等.金属表面技术[M],1987,38:265-272
    [69]De Giz M J,Silva J C P,Ferreira M,et al.Progress on the development of activated cathodes for water electrolysis[J].Inter.J.Hydrogen Energy,1992,17(9):725-729
    [70]Gonsalez E R,Avaca L A,Tremiliosi-Filho G,et al.Hydrogen evolution reaction on Ni-S electrodes in alkaline solutions[J].Inter.J.Hydrogen Energy,1994,19:17-24
    [71]Sabela R,Paseka I.Properties of Ni-S electrodes for hydrogen evolution from alkaline medium[J].J.Applied Electrochemistry,1990,20:500-507
    [72]Gonsalez E R,Avaca L A,Tremiliosi-Filho G,et al.Hydrogen evolution reaction on Ni-S electrodes in alkaline solutions[J].Inter.J.Hydrogen Energy,1994,19:17-21
    [73]Wen T C,Lin S M,Tsai J M.Sulphur content and the hydrogen evolving activity of NiS_x deposits using statistical experimental strategies[J].J.Applied Electrochemistry,1994,24(3):233-238
    [74]Wen T C,Lin S M,Tsai J M.Electrooxidation of benzyl alcohol at high surface area nickel(NiS_x) electrodes in alkaline solution[J].J.Applied Electrochemistry,1994,24(5):449-454
    [75]张弘.碱性介质中含硫镍合金活性阴极的研制及性能探讨[D].东北大学,1995:25
    [76]杜敏,魏绪钧,王国斌.电沉积Ni-S合金的析出过程及非晶态结构的形成[J].材料科学与工艺,1996,4(3):107-110
    [77]杜敏,魏绪钧.电解水析氢的Ni-S非晶态合金电极的研究[J].有色金属,1997.5:38-40
    [78]Paseka I.Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-S_x[J].Electrochem Acta,1993,38(16):2449-2454
    [79]Valand T,Burchardt T,Grontoft T.Structure and catalytic behavior of NiS films with respect to the hydrogen evolution[J].Inter.J.Hydrogen Energy,2002,27:39-44
    [80]Vandenborre H,Vermeiren P H,Leysen R.Hydrogen evolution at Nickel Sulphide cathodes in alkaline medium[J].Electrochem Acta,1984,29(3):297-301
    [81]Kirk D W,Thorpe S J,Suzuki H.Ni-base amorphous alloys as electro catalysts for alkaline water electrolysis[J].Inter.J.Hydrogen Energy,1997,22(5):493-500
    [82]Trygve B.Hydrogen evolution on NiPX alloys:the influence of sorbed hydrogen[J].Inter.J.Hydrogen Energy,2001,26:1193-1198
    [83]汪继红,费锡明,李伟,等.稀土在电沉积镍—钴合金中的作用[J].化学研究与应用,2003,15(4):535-537
    [84]汪继红,费锡明,龙光斗,等.稀土铈对镍—钴合金电极析氢催化性能的影响[J].材料保护,2003,36(6):12-16
    [85]钱文鲲,王为.二元镍基合金镀层析氢性能的研究[J].电镀与精饰,2005,27(3):10-13
    [86]韩庆,陈建设,刘奎仁等.电沉积非晶态Ni-S-Co合金在碱性介质中的析氢反应[J].金属学报,2004,40(3):331-336
    [87]张旭东,赵蕾,张建民,等.化学镀Ni-P-S阴极的析氢性能[J].河南化工,2004,(8):13-15
    [88]郭忠诚,刘鸿康,王志英,等.电沉积Ni-Ce-S非晶态合金[J].电沉积与涂饰,1994,13(4):18-20
    [89]刘善淑,成旦红.电沉积Ni-S-Zr合金电极析氢电催化性能的研究[J].稀有金属,2004,28(4):670-673
    [90]Han Q,Liu K,Chen J,et al.Study of amorphous Ni-S-Co alloy used as hydrogen evolution reaction cathode in alkaline medium[J].Inter.J.Hydrogen Energy,2004,29:243-248
    [91]王殿龙,戴长松,姜兆华.泡沫镍电沉积Co-Ce合金镍电极的性能[J].电池,2003,35(2):121-122
    [92]王殿龙,刘颖,戴长松,等.泡沫镍镀钴提高镍正极性能[J].电池,2004,34(2):104-105
    [93]Norsk Hydro.Electrolyte cell active cathode with low overvoltage.Nederlands Patent,US,No.7801955,1978
    [94]Liu P S,Li T F,Fu C.Relationship between electrical resistivity and porosity for porous metals[J].Materials Science and Engineering A,1999,268:208-215
    [95]Olurin O B,Wilkinson D S,George C.Weatherly,et al.Strength and ductility of as-plated and sintered CVD nickel foams[J].Composites Science and Technology,2003,63:2317-2329
    [96]Metzger W,Westfall R,Hermann A,et al.Nickel foam substrate for nickel metal hydride electrodes and lightweight honeycomb structures[J].Inter.J.Hydrogen Energy,1998,23:1025-1029
    [97]Hu W,Lee J.Electrocatalytic properties of Ti_2Ni/Ni-Mo composite electrodes for hydrogen evolution reaction[J].Inter.J.Hydrogen Energy,1998,23:253-259
    [98]周绍民.金属电沉积原理与方法[M].上海,上海科学技术出版社,1987:310-318
    [99]郭鹤桐,刘淑兰.理论电化学[M].北京,宇航出版社,1984:402-405
    [100]郭鹤桐.值得大力开发的非晶态镀层[J].电镀与精饰,1994,16(1):3
    [101]Han Q,Liu K,Chen J,et al.A study on the electrodeposited Ni-S alloys as hydrogen evolution reaction cathodes[J].Inter.J.Hydrogen Energy,2003,28(11):1207-1212
    [102]黄子勋,吴纯素.电镀理论[M].北京:科学技术出版社,1982:45
    [103]杨凯华,段隆臣,汤凤林.脉冲电沉积工艺参数对镀层性能影响的研究[J].探矿工程,1996,22(3):28-30
    [104]Vandenborre H,Vermeiren P h,Leysen R.Hydrogen evolution at nickel sulphide cathodes in alkaline medium[J].Electrochemica Acta,1984,29: 297-304
    [105]杜敏,高荣杰.非晶体Ni-S合金的晶化行为[J].青岛海洋大学学报,2003,33(6):961-968
    [106]Zhang Bang-wei,HU Wang-yu,Zhu De-qi.Physical B,1993,183(1):205
    [107]Conway B E,Bai L,Sattar M A.The hydrogen evolution reaction on nickel surface stabilized by H-adsorption[J].Inter.J.Hydrogen Energy,1987,12:607-613
    [108]Conway B E.Theory and principles of electrodes processes[M].New York:Ronald Press,1965:77-79.
    [109]N.R.Elezovic,V.D.Jovic,N.V.Krstajic.Kinetics of the hydrogen evolution reaction on Fe-Mo film deposited on mild steel support in alkaline solution[J].Electrochimica Acta,2005,50:5594-5601
    [110]Gonsalez E R,Avaca L A,Carubelli A,et al.The hydrogen evolution reaction on mild steel and Ni-Fe codeposits in alkaline media[J].Inter.J.Hydrogen Energy,1984,9:689
    [111]Conway B E,Bai L.Determination of the adsorpion behavior of "overpotential deposited" hydrogen atom species in the cathodic hydrogen evolution reaction by analysis of potential reaction transients[J].J Chem.Soc.Faraday Trans,1985,81:1841
    [112][苏]安特罗波夫L I.(吴仲达,朱耀斌,吴万伟译)理论电化学;[M].北京:高等教育出版社,1981:436-447
    [113]查全性.电极过程动力学导论(第二版)[M].北京:科学出版社,1987:56
    [114]覃奇贤,李要民.电沉积Ni-Co梯度合金的研究[J].电镀与精饰,1999,21(5):6-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700