用户名: 密码: 验证码:
新型自主研磨作业机器人系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对实现用小型装备对大型自由曲面进行精整加工的目标,利用移动操作机器人具有较好的操作灵活性和工作空间大的特点,本文对研磨大型自由曲面自主作业机器人机械结构及相关关键技术进行了研究。重点针对研磨大型自由曲面自主作业机器人的曲面重构与定位方法,5-TTRRT机器人运动学动力学建模、运动规划与运动控制、主被动结合的柔顺控制方式等进行了深入论述。
     作者研制了一种5-TTRRT机器人沿大型自由曲面运行时,对待加工区域的曲面重构与定位方法。利用基于单目视觉加结构光的手段实现机器人工作空间内曲面三维重构技术,研制了曲面重构与定位的算法,该算法可以实现研磨机器人在一个待加工区域的三维曲面模型重构,还可以通过提取重构后曲面模型的数据与边界,获得待加工曲面在机器人坐标系中的位姿,为后续的运动规划提供定位基础。
     通过对研磨机器人机械结构和运动特性的分析,利用D-H法建立了一体化运动学模型,并利用拉格朗日力学法建立动力学模型,并针对采用拉格朗日方法建立的5-TTRRT动力学模型,进行了动力学仿真,为后续运动规划及控制奠定了基础。
     根据自由曲面的特征,分析了自由曲面的分片规划与分片研磨方法,阐述了对应的分片算法。分析了5-TTRRT研磨机器人的位姿与运动规划情况,提出了本文研制的机器人进行大型自由曲面研磨精加工的行切法和环切法轨迹规划内容。行切法路径规划使得研磨工具的每次切削运动表现为一个直线运动和一个转动的二维空间组合,环切法路径规划使得研磨工具的每次切削运动表现为一个直线运动、一个转动与一个摆动的三维空间组合。
     根据机器人完整动力学模型,对本文的5-TTRRT机器人轨迹跟踪控制策略,构建了PD+前馈型补偿控制策略,应用滑模变结构设计了一个具有时变边界层的补偿控制律,并进行了仿真研究,结果表明了该控制策略的可行性,可作为后续基于位置阻抗控制的位置控制环部分。
     分析了机器人力控制系统中的主动结构与被动结构,应用力/位置混合控制理论,采用阻抗控制将力控制和位置控制纳于一个框架之内,研究了固定目标阻抗情况下的基于位置的阻抗控制,并进行了仿真研究。随后从模拟人手工研磨的力控制角度,研究了调整目标阻抗参数的方法,设计了基于目标阻抗模糊自适应阻抗控制方法,并针对该方法进行了仿真研究,结果表明,该方法能够较好的实现环境参数已知情况下的力跟踪。
     建立了5-TTRRT机器人的硬件实验系统,进行了研磨作业的实验研究。在研磨工具头不同姿态时,对研磨效果的影响因素进行了分析,并得出研磨姿态控制参数,实验结果证明了5-TTRRT机器人设计的可行性与合理性。
To achieve the polishing aim which a large freeform surface is grinded with a micro device, the peculiarity that mobile manipulator had better operation flexibility and expands mobile robots working space is integrated. These key technology that the mechanism polish a large freeform surface with autonomous task is researched in this paper, it include 3D reconstruction of free-form surfaces and localization method, kinematics and dynamic of the 5-TTRRT mobile robot, motion planning and motion controlling, compliance control.
     First, a kind of 3D reconstruction of free-form surfaces and localization method about to be prepared grinding is studied when the 5-TTRRT mobile robot move on the a large freeform surface. Utilizing monocular vision with line structured light technology, a 3D reconstruction and localization algorithm is put forward, then extracting the boundary of reconstructed of free-form surface, acquiring position and orientation of to be grinding in robot coordinate system.
     Next, an integrated kinematics model is built based on the mechanical structure and motion properties of the 5-TTRRT mobile manipulator. In addition, its dynamic model is deduced by Lagrangian formalism. The study results described above offer important technique foundations for the following motion planning designs and control. Meanwhile, the 5-TTRRT modeling dynamics was set up with Lagrange approach, and research was done on dynamic coupling between directional-motion model. The relationship for rate, acceleration and coupling was achieved via many simulation experiments under different conditions, the dynamics based on the relationship for ADAMS moving along circular curve track were simulated.
     Then, According to the characteristic reconstructed of free-form surface, analyzing subdivision planning method and grind, a subdivision algorithm with the 5-TTRRT mobile manipulator is put forward. The position and orientation and motion planning are analyzed, transverse movement programming method and longitudinal movement programming method is put into use with about 5-TTRRT mobile manipulator. longitudinal movement programming makes polishing tool move in a 2-D space of one line movements and a turn movement in grinding free-form surfaces by robot. transverse movement programming makes grinding tool move in a 3-D space of one line movements, a wave movements and a turn movement.
     The complete dynamics model is set up, the PD+feedforword control structure and tactics is built with position control in the trajectory tracking. The trajectory of 2D circular arc tracking and control were simulated, the simulate result is indicated structure simplicity, likely realized. It is the position controlling in the next impedance control.
     By analyzing the passive distortion structure and the active structure in 5-TTRRT control system, apply the theory of hybrid force/position control, force control is combined with position control in the same structure by impedance control. Analyzing the a impedance control method based on position in regular target impedance, it is simulated. With imitating grinding according to by hand, the adjusting target impedance is studied. A fuzzy self-adjustment impedance based on target impedance is designed, and simulating the method, the result is indicated the force tracking based on known condition parameter can be achieved preferably.
     Finally, hardware experiment system of 5-TTRRT was set up to do a serious of experiments about polishing operation. With position and orientation of polishing tool, the influencing factor about grinding effect is analyzed, better position and orientation parameters is acquired, the result of the experiment had proved the efficiency of mobile manipulator positioning, rationality of motion planning, and the efficiency of hybrid force/position control and route planning algorithm.
引文
[1]王都.模具工业发展中的几个问题[J].航空制造技术—第八届国际模具技术和设备展专辑,2000.3:12-32.
    [2] K.Saito. Finishing and Polishing of Free-Form Surface. Bulletin of Japan Society of Precision Engineering,June 1984,V18(n2):104-109.
    [3]许小村,袁哲俊,郑文斌.汽车拉延模浮动式研磨抛光的优势[J].CMET锻压装备与制造技术,2005,3:101-102.
    [4]三好隆志.金型の磨き加工ー現状と今後の課題,型技術[J].JSPE.1991,6(9):70-76.
    [5] Weule H , Timmerman N. Automation of the Surface finishing in the Manufacturing of Dies and Moulds[J].Annals of the CIRP,1992,39:299-302.
    [6]王先逵,吴丹,刘成颖.精密加工和超精密加工技术综述[J].中国机械工程,1999,10(5) :570-576.
    [7] Mizugaki Y,Sakamoto M,Kamijo K.Development of a metal-mold Polishing Robot System with Contact Pressure Control Using CAD/CAM Data[J].Ann.CIRP.1990,39(1):523-526.
    [8] Yoshimi Takeuchi,Naoki Asakawa,Ge Dong fang.Automation of Polishing Work by an Industrial Robot[J].JSME International Journal Series C,1992,58(1):289-294.
    [9] M.Kunieda,T.Nakagawa,H,Hiramatsu,T.Higuch.Magnetically Pressed Polishing Tool for a Die Finishing Robot[C],Proc.of 24th Int. IMTDR Conf.1983,(8):295-303.
    [10] Fusaomi Nagata , Tetsuo Hase , Zenku Haga , Masaaki Omoto , Keigo Watanabe.CAD/CAM-based Position/force Controller For a Mold Polishing Robot[J].Mechatronics.2007.01.003.
    [11] Márquez J.J , J.M.Pérez , J.R.Vizán.Process modeling for robotic polishing[J] .Journal of Materials Processing Technology,2005(159) :69–82.
    [12]金仁成,李水进,唐小琦,周云飞.研磨机器人系统及其运动控制.机械科学与技术.2000,4(7):568-570.
    [13] Ji Zhao,Jianming Zhan,Rencheng Jin,Minzhong Ta. An Oblique Ultrasonic Polishing Method by Robot for Free-form Surfaces. International Journal of Machine Tools & Manufacture 40(2000)795–808.
    [14]郭彤颖,曲道奎,徐方.机器人研磨抛光工艺研究.新技术新工艺.2006.1:84-85.
    [15]王瑞芳,徐方.机器人研磨抛光工艺研究与实现.新技术新工艺.2008,9:19-22.
    [16]郎志,李成群,贠超.机器人柔性抛光系统研究.机械工程师.2006,6:26-28
    [17]洪云飞,李成群,贠超.用于复杂空间曲面加工的机器人研磨系统.中国机械工程.2006.17(8):150-153.
    [18]任俊,张海鸥,王桂兰.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.CMET锻压装备与制造技术.2006.4:88-91.
    [19]朱涛,谈大龙.微机器人技术在超精密加工中的应用研究.2003.1:3-5.
    [20] Hisayuki.Aoyma, Flexible micro-processing by multiple micro robot in SEM.Proc of International Conference on Robotics &Automation 2001.
    [21] H.Morita,et al.Electrical Discharge Device with Direct Drive Method for Thin Eire Electrode[J].IEEE International Conference on Robotics and Automation,1995.
    [22] Abdelhafid OMARI,etc. , Development of a High Precision Mounting Robot System with Fine Motion Mechanism(3rd Report),JSPE,2001,67(7):1101-1107.
    [23]高鹏,袁哲俊,姚英学,高栋.弹性薄膜—电致伸缩微进给机构研究[J],制造技术与机床.1997,(2):34-36.
    [24]陈贵亮.大型曲面自主研磨作业微小机器人研究[D].长春:吉林大学机械科学与工程学院,2009.
    [25]刘志新.研磨大型自由曲面微小机器人控制系统研究[D].长春:吉林大学机械科学与工程学院, 2009.
    [26]谢哲东.研磨大型自由曲面的微小机器人开发与加工作业研究[D].长春:吉林大学机械科学与工程学院, 2008.
    [27]赵学堂,张永俊.模具光整加工技术新进展.中国机械工程.2002,22(11).
    [28] Kunieda M,Nakagawa T,Higuchi T. Robot-polishing of Curved Surface with Magnetically Pressed Polishing tool.JSPE,1988,54(1):125-131.
    [29] Takeuchi Y,Askawa N,Ge D F. Automation of Polishing Work by an Industrial Robot(system of Polishing robot).JSME Int,J.Ser.,1993,C36(4) :556-561.
    [30] Hon-yuen Tam,Osmond Chi-hang Lui,Alberert C K Mok. Robotics Polishing of Free-form Surfaces Using Scanning Paths.Journal of Material s Processing Technology,1999,95:191-200.
    [31] Mizugaki Y,Sakamoto M,Sata T. Fractal Path Generation for a Metal-mold Polishing Robot System and Its Evaluation by the Operability. Ann CIRP,1992,41(1):531-534.
    [32] Cho U,Eom D G,Lee D Y et al. A Flexible Polishing Robot System for Die and Mould.23rd International Symposium on Industrial Robots,1992:449-456.
    [33]张硕生,余达太.轮式移动机械手的优化构型.北京科技大学学报,2000,22(6):565-568
    [34] B.Oliver,K.Oussama. Elastic Strips:a Framework for Motion Generation in Human Enviroments. The International Journal of Robotics Research,2002,21(12):1-22
    [35] H.Yasuhisa,K.Youhei,Z.D.Wang. Handling of a Single Object by Multiple Mobile Manipulators in Cooperation with Human Based on Virtual3-D Caster Dynamic. JSME International Journal Series C,2005,48(4):613-619
    [36] Guo L.,Rogers K.,Kirkham R.,A climbing robot for walls exploration. Proceedings of IEEE/ASME International conference on robotics and automation,1994,pp:2495-2500
    [37] Chen I-M.,Yeo S.H., Locomotion of a two-dimensional walking-climbing robot using a closed-loop mechanism : From gait generation to navigation. International Journal of Robotics Research.22(1),2003.pp:21-40
    [38]张晓丽.移动机械手系统运动学分析及动力学初探[D].天津:河北工业大学, 2006.
    [39]李瑞峰,孙笛生,阎国荣,刘广利.移动式作业型智能服务机器人的研制.机器人技术与应用.2003,1:27-29
    [40]王妹婷.壁面自动清洗机器人关键技术研究[D].上海:上海大学,2009.
    [41]蒋林.全方位移动操作机器人及其运动规划与导航研究[D].哈尔滨:哈尔滨工业大学,2008.
    [42] CAMPIONG , BASTINGB , ANDREA-NOVEL D. Structural Properties and classification of kinematic and dynamic models of wheeled mobile robots[J].IEEE Transactions on Robotics and Automation,1996,12(1) :47-62.
    [43] JUNG M J,KIM J H Mobility augmentation of conventional wheeled bases for omnidirectional motion[J].IEEE Transactions on Robotics and Automation,2002,18l:81-87.
    [44] CHUNG J H,Yl B J,KJM W K,et al. The dynamic modeling and analysis for an omnidirectional mobile robot with three castor wheels[C]//Proceedings of the 2003IEEE International Conference on Robotics and Automation,SePtember14-19,2003,TaiPei,China Taiwan.NewYork;ICRA,2003:521-527.
    [45] TAN Jingdong,XI Ning. Unified model approach for Planning and control of mobile manipulators[C]//Proceedings of the 2001 IEEE Iniernational Conference on Robotics and Automation,May,2001,Seoul,Korea.New:ICRA,2001:3145-3152.
    [46] HOLMBERG R,KHATIB O. Development and control of a holonomic mobile robot mobile rnanipulation tasks[J]. International Journal of Robotics Research,2000,19(11):1066-1074.
    [47] KHATIB O,YOKOI K, CHANG K,et al. Coordination and decentralized cooperation of multiple mobile manipulators[J].International Journal of Robotic System,1996,13(11):755-764.
    [48] KHATIB O. A unified approach to motion and force control of robot manipulators:the operational space formulation[J].IEEE Journal on Robotics and Automation,1987,(3l):43-53.
    [49] LIU Kai, LEWIS F L. Decentralized continuous robust controller for mobile robots[C]//Proceedings of IEEE International Conference on Robotics and Automation, May13-18,1990,Cincinnati,OH.NewYork:ICRA,1990:1822-1827.
    [50] Y.Ymamaoto,X.P.Yun. Coodrinating Locomotion and Manipulation of a Mobile Manipulator. IEEE Trans. on Automatic Control,1994,39(6):1326-1332
    [51] H. .G.Tanner. ,K.J.KyriakoPoulos. Nohnolonomic Motion Planning for Mobile Manipulators.Proc.of IEEE int.Conf.on Roboties and Automation ,SanFrancisco,CA,USA,2000,2:1233-1238
    [52] M. Akira, F.Seiji, M.Yamamoto. Trajectory Planning of Mobile Manipulator with End-Effetor’s Specified Path. Proc.of IEEE/RSJInt.Conf.on Intelligent Robosts and Systems,Maui,Hawan,USA,2001,4:2264-2269
    [53] Q.Hunag,K.Tanie,S.Sugano. Coordinated Motion Planning for a Mobile Manipulator Considering Stability and Manipulation. International Journal of Robotics Reseacrh,2000,19(8):732-742
    [54] F.Seiji, M.Yamamoto, M.Akira. Trajectory Planning of mobile manipulator with stability considerations. Pore.of IEEE Int.Conf.on Robotics and Automation,TaiPei,Taiwan.2003,3:3403-3408
    [55] Yuxiang Wu,Yueming Hu.Kinematies, Dynamics and Motion Planning of Wheeled Mobile Manipulators. Pro of Int Conf on CSIMTA'04,Cherbourg,France,2004:221-226
    [56] L.Sheng,A.A.Goldenberg. Robust Damping Control of Mobile ManPiulators. IEEE Trans,on Systems,Mnan and Cybemetics,Part B,2002,32(1):126-132
    [57] Y.L.Jae,M.M.Suk.A Simple Active Damping Control for Compliant. Trans.on Neural Networks,2001,12(5):1121-1133
    [58] O.Yusuke,T.Tatsuya,Y.Kan,H.Shigeo. Development of Walking Manipulator with Versatile Locomotion. IEEE International Conference on Robotics and Automation,2003:477-483
    [59] J.D.Tan,N.Xi. Unified Model Approach for Planning and Control of Mobile Manipulators. Proc of IEEE Int Conf on Robotics and Automation,Seoul,Koera,2001,3:3145-3152
    [60]吴玉香,胡跃明.轮式移动操作机器人的鲁棒跟踪控制研究.计算机工程与应用.2006:230-232
    [61] W.J.Dong,Y.S.Xu,Q.Wang. On Tracking Control of Mobile Manipulators. Proc.of IEEE Int.Conf.on Robotics and Automation,SanFrancisco,CA,2000,4:3455-3460
    [62]董文杰,徐文立.移动机械手的鲁棒控制.控制理论与应用[J].2002,19(3):345-348
    [63]董文杰,徐文立.不确定非完整移动机械手的鲁棒控制[J].清华大学学报,2002,42(9):1261-1264
    [64] Wenjie Dong.On Trajectory and Force Tracking Control of Constrained Mobile Manipulators with Parameter Uncertainty.Automatica,2002,38:1475-1484
    [65] S.Kang,K.Komoriya,K.Yokoi,et al. Reduced Inertial Effect in Damping-Based Posture Control of Mobile Manipulator. Proc of IEEE/RSJInt Conf on Intelligent Robots and Systems,Maui,Hawaii,USA,2001,1:488-493
    [66]殷跃红等.智能机器力觉及力控制研究综述[J].航空学报,1999,20(1)l:1-7
    [67] G.W.Zeng, Ahmad Hemami. An Overview of Robot Force Control.Robotic,1997,15(5):473-482
    [68] A.Andrew,Goldenberg and Peilin Song. Principles for Design of Position and Force Controllers for Manipulators. Robotics and Autonomous Systems,1997, (3):263-277
    [69] M.H.Raibert,J.J.Craig. Hybrid Position/Force Control of Manipulators. Transactions of the ASME,Journal of Dynamic Systems,Measurement,andControl.1981,102(6):126-133
    [70] Homayoun Seraji,Richard Colbaugh. Force Tracking Impedance Control. The International Journal of Robotics Research,1997,16(2):97-117
    [71] KJ.Salisbury. Active Stiffness Control of a Manipulator in Cartesian Coordinates. The 19th IEEE Conf. on Decision and Control,Albuquerque.1980:95-100
    [72] D.E.Whitney. Force-Feedback Control of Manipulator Fine Motion. ASME Journal of Dynamic Systems,Measurements and Control.1977
    [73] N.Hogan. Impedance Control of Industrial Robots. Journal of Robotic and Computer Integrated Manufacturing.1984,l(l):97-113
    [74] J.A.Maples , J.J.Becker. Experiments in Force Control of Robotic Manipulators. Proceedings IEEE International Conference on Robotics and Antomation.1986, (3):695-702
    [75] Lucibello , Pasquale. Learning Algorithm for Impendence Hybrid Force Position Control of Robot Arms. IEEE Transactions on Systems, Man and Cybernetics,1998,28(5):241-244
    [76] N.Hogan. Impedance Control: An Approach to Manipulation: Part I-theory. Part II-Implementation. Part III-Applications. J Dyn Sys Meas Cont,1985:1-24
    [77] C.J.Tsaprounis,N.A.Aspragathos. Sliding Mode with Adaptive Estimati-on Force Control of Robot Manipulators Interacting with an Unknown Passive Environment.Robotic,1999,17(4):447-458
    [78] H.Seraji,R.Colbaugh. Force Tracking in Impedance Control. Int.J Robot Research,1997,16(1):97-117
    [79] L.F.Baptista,J.M.Sousa and J.COSTA. Force Control of Robotic Manipulators Using A Fuzzy Predictive Approach. Journal of Intelligent and Robotics System,2001, (30):359-376
    [80] Seul Jung.Robust Neural Force Control Scheme Under Uncertainties in Robot Dynamics and Unknown Environment.IEEE Transactions on Industrial Electronics,2000,47(4):403-412
    [81] C.M.Kwan. Robust Force and Motion Control of Constrained Robots Using Fuzzy Neural Network. Proceedings of The 33rd Conference on Decision and Control,1994,(9):1862-1867
    [82] K.G.Tzierakis,F.N.Koumboulis. Independent Force And Position Control for Cooperating Manipulators. Journal of the Franklin Institute,2003,340:435-460
    [83] Jacek Bekalarek,Radzimir Zawal,Krzysztof Kozlowski. Hybrid Force/Position Control for Two Cooperative Staubli RX60 Industrial Robots. IEEE Second Workshop on Robot Motion and Control,2001:305-310
    [84] Qiao Bing,Lu Rongjian. Impedance Force Control for Position Control Robotic Manipulators under the Constraint of Unknown Environments. Journal of Southeast University,2003,19(4):359-363
    [85] S.P.Chan,B.Yao and W.B.Gao. Robust Impedance Control of Robot Manipulators. Int J Robotice Automation,1991,6(4) :220-227
    [86] A.Hace,K.Jezernik and S.Uran. Robust Impendence Control. IEEE Conference on Control Applications-Proceedings,1998,1(9):583-587
    [87] H.Berghuis. A Robust Adaptive Robot Controller. IEEE Transaction on Robotics and Automation,1993,9(6):825-830
    [88] A.Hace,K.Jezernik and S.Uran. Robust Impendence Control. IEEE Con-ference on Control Applications-Proceedings,1998,1(9):583-587
    [89] H.G.Sage,E.Ostertag. Robust Control of Robot Manipulators A Survey. Int.Control,1999, 72(16):1498-1552
    [90] G.Tao. Robust Adaptive Control of Robot Manipulators. Robotics and Automation, 2000, 28(4):803-807
    [91] J.S.Reed,P.Ioannou. Instability Analysis and Robust Adaptive Control of Robotic Manipulators. IEEE Transactions on Robotics and Automation,1989,5(3):381-386
    [92] B.Yao,M.Tomizuka. Robust Adaptive Motion and Force Control of Robot Manipulators in Unknown Stiffness Environment.Proc.32nd IEEE Conf. Decision Contr,1993, (3):142-147
    [93] Wenjie Dong.On Trajectory And Force Tracking Control of Constrained Mobile Manipulators with Parameter Uncertainty.Automatic,2002,38:1475-1484
    [94] Michael R.Fielding , Reg Dunlop , Christopher J.Damaren.Hamlet : Force/Position Controlled Hexapod Walker-Design and Systems. IEEE International Conference on Control Applications, Mexico City,2001:984-989
    [95] Luigi Villani,Ciro Natale,Bruno Siciliano. An Experimental Study of Adaptive Force/Position Control Algorithms for an Industrial Robot. IEEE Transactions on Control Systems Technology,2000,8(5):777-786
    [96] P.J.Antsaklis. A brief introduction to the theory and applications of hybrid systems. IEEE Special Issue on Hybrid Systems:Theory and Applications.2000,88(7):879-887
    [97] J.Roy and L.L.Whitcomb. Adaptive Force Control of Position/Velocity Controlled Robots : Theory and Experiment.IEEE Trans On Robotics & Automation,2002,18(2):121-137
    [98] M.Tokita,F.Lan and T.K.Mituoka. Force Control of a Robotic Manipula-tor by Application of a Neural Network. Advanced Robotics,1991,5(1):15-24
    [99] Ciro Natale,Bruno Siciliano,Luigi Villani. Robust Hybrid Force/Position Control with Experiments on an Industrial Robot. International Conference on Advanced Intelligent Mechatronics,USA,1999:956-960
    [100] D.Nganga-Kouya , M.Saad , L.Lamarche. Backstepping Adaptive Hybrid Force/Position Control for Robotic Manipulators. Proceedings of the American Control Conference Anchorage.2002:4595-4600
    [101] Natsuo Tanaka , Masayuki Fujita. Adaptive H∞Approach Based on Energy-Shaping for Robotic Force/Position Regulation and Motion Control. Proceedings of the American ControlConference.1999:2445-2449
    [102] C.H.Pyung,D.S.Kim and L.W.Jeong. Intelligent Force/Position Control of Robot Manipulator Using Time Delay Control. IEEE/RSJ/GI International Conference on Intelligent Robots and Systems,1994, (3):1632-1638
    [103] Connolly , Thom and H.Pfeiffer Friedrich. Neural Network Hybrid Position/force Control. IEEE International Conference on Intelligent Robots and Systems,1993,(9):240-244
    [104] Y.S.Xu,P.P.Richard and Shum Heung-Yeung. Fuzzy Control of Robot and Compliant Wrist System.IEEE Industry Application Society Annual Meeting,1991,(2):1431-1437
    [105] Tokita.Masatoshi,Mituoka.Toyokazu. Force Control of A Robotic Manipulator by Application of A Neural Network. Advanced Robotics,1991,5(1):15-24
    [106] F.Toshio,K.Takashi and T.Masatoshi. Position/Force Hybrid Control ofRobotic Manipulator by Neural Network(Int. Report: Application of Neural Servo Controller to Stabbling Control).Nippon KikaiGakkaiRonbunshu,C Hen/Transactions of The Japan Society of Mechanical Engineers: Part C,1990,56(527):1854-1860
    [107] Jung , Seul and T.C.Hsia. Robust Neural Force Control Scheme under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics,2000, 47(2):403-412
    [108] R.J.Wai,Hsieh and K.Yun.Robust Fuzzy Neural Network Control for n-link Robot Manipulator. Journal of The Chinese Institute of Electrical Engineering,Transactions of The Chinese Institute of Engineers,2003,10(2):21-32
    [109] L.Cai,A.A.Goldenberg. Robust Control of Position and Forces for A Robot Manipulator in Non-contact and Contact Tasks. Proceedings of American Control Conference,1989: 1905-1911
    [110]温淑焕.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究[D].秦皇岛:燕山大学电气工程学院,2005.
    [111] Jasmin Velagic , Azra Adzemovic , Jasmina Ibrahimagic. Switching Force/Position Fuzzy Control of Robotic manipulator. IEEE International Conference on Advanced Intelligent Mechatronics,2003:484-489
    [112] Y.Touati,K.Djouani and Y.Amirat. Adaptive Fuzzy Logic Controller for Robots Manipulators. IEEE The 10th Artificial Neural Networks in Engineering Conference ANNIE, 2001,11:247-254
    [113]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2001:10-50
    [114] SeulJ,SunBY,Hsia T C.Experimental studies of neuralnetwork impcdance forcc control for robot maniPulators.IEEE International Conference on Roboties and Automation.Piscataway,NJ,USA:IEEE,2001:3453-3458
    [115] Ferguene F,Toumi R.Dynamic extenal force feedbaek loop control of a robot manipulator using a neural compensator-application to the trajectory.following in an unknown environtment[J].International Journal of Applied Mathenlaties and Computer Science,2009,19(l):113-126.
    [116]范文通.受时变约束机械臂自适应模糊力/位置控制方法研究[D].吉林大学,2008.
    [117] Bum K,Short M,BickerR.Adaptive and nonlinear fuzzy force control techniques applied to robots operating in uncertain environments[J].Journal of Robotic Systems,2003,20(7):391-400.
    [118] Mallapragada V,Erol D,Sarkar N.A new method of force control for unknown environLments[J].International Journal of Advanced Robotic Systems,2007,4(3):313-322.
    [119] Hong-Rui W,Li Y,Li-Xin W.Fuzzy-neuro position force control for robotic manipulators with uncertainties[J].Soft Computing 2007,11(4):311-315.
    [120] Cojbasic Z M , Nikoli V D.HYBRJD INDUSTRIAL ROBOT COMPLIANT MOTION CONTROL[J].Automatic Control and Robotics,2008,1(7):99-110.
    [121] Amit Goradia, Ning Xi, Jindong Tan. Hybrid Force/Position Control in Moving Hand Coordinate Frame. Seventh International Conference Central Automation,2002:1126-1131
    [122] Q.P.Ha,Q.H.Nguyen,D.C.Rye. Impedance Control of a Hydraulically-Actuated Robotic Excavator. Automation in Construction,2000,9(5):421-435
    [123] B.Yao,F.Bu,and G.Chiu. Adaptive Robust Control of Single-Rod Hydraulic Actuators: Theory and Experiments. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91
    [124] Giorgio Bartolini,Elisabetta Punta. Decoupling Force and Position Control in Constrained Motion with Friction. Proceeding of the 42ndIEEE Conference on Decision and Control Maui,USA,2003:4593-4598
    [125] G.Bartolini,A.Ferrara,E.Punta. Multi-input Second-Order Sliding-Mode Hybrid Control of Constrained Manipulators. Dynamics and Control,2000(10):277-296
    [126] G.Bartolini,E.Punta. Chattering Elimination with Second-Order Sliding Modes Robust to Coulomb Friction. ASME Journal of Dynamic Systems. Measurement and Control,2000,122:679-686
    [127] C.K.Tan,M.Rajeswari. Simulation of Multi-Axis Compliant Motions Using Robotic Force Control. Proceeding of Conference on Decision and Control,2000:503-508
    [128] BorensteinJ , EverettR , FengL Mobile robot Positioning-sensors and techniques. Journal of Robotic System,1997,14(4):231-249.
    [129]王卫华.移动机器人定位技术研究[D].武汉:华中科技大学,2005.
    [130] C.F.Olson. Probabilistic Self-Localization for Mobile Robot. IEEE Transaction on Robot and Automation,2000,16:55-66
    [131] Salichs M A,Moreno L. Navigation of mobile robots: open questions. Robotica,2000,18:227~234
    [132]张国雄.三坐标测量机的发展趋势[J].中国机械工程,2000,11(1): 222-226.
    [133]刘征,赵小松,张国雄等.自由曲面多目视觉检测技术[J].天津大学学报,2003,36(2):148-151.
    [134]刘志刚,方勇,陈康宁等.线结构光三维视觉曲面测量的自适应采样与建模方法[J].西安交通大学学报,1999,33(10):48-51.
    [135] Vandame Benoit.New algorithms and technologies for the un-supervised reduction of optical/IR images.Proceedings of SPIE-The International Society for Optical Engineering,2002,48(47):123-134
    [136]杜静,何玉林.基于特征的曲面模型重建方法[J].重庆大学学报, 2002, 25( 7) : 148-151.
    [137] He Junji, Zhang Guangjun. Study on method for proce s sing image of strip in structured2light 3D vision mea suring technique. Journal of Beijing University of Aeronautics and Astronautics. July 2003 Vol. 29 No17
    [138] Zheng Hong. Genetic Algorithm Application in Image Processing and Analysis [M].Beijing: Mapping Publishing Company, 2003.
    [139]唐荣锡.现代图形技术[M].济南:山东科学技术出版社,2001.68-114.
    [140]熊有伦,机器人学,北京:机械工业出版社,1998
    [141]蔡自兴,机器人学,北京:清华大学出版社,2000
    [142]唐余勇,任秉银.复杂曲面的区域分类与数控加工[J] .河北科技大学学报,2002,23(2):7-11.
    [143]梅向明,黄敬之.微分儿何,第3版[M] .北京:高等教育出版社,2003:105-109.
    [144]林洁琼.自由曲面分片研抛与轨迹规划的研究[D].长春:吉林大学机械科学与工程学院,2005.
    [145]李剑.基于激光测量的自由曲面数字制造基础技术研究[D].杭州:浙江大学,2001.
    [146]詹建明.机器人研磨自由曲面时的作业环境与柔顺控制研究[D].长春:吉林大学,2002.
    [147]高为炳.变结构控制的理论及设计方法.北京:科学技术出版社,1998.
    [148]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [149] K.David Young,Vadim I.Utkin.A Control Engineer’s Guide to Sliding ModeControl.IEEE Trans.Syst.Techn.,1999:7(3),328-342.
    [150]陈启军,王月娟,陈辉堂.基于PD控制的机器人轨迹跟踪性能研究与比较[J].控制与决策,2003,18(1):53-57.
    [151]陈丽.基于PD+前馈结构的不确定性机器人鲁棒控制策略研究[D].秦皇岛:燕山大学电气工程学院,2005.
    [152]王宪伦.不确定环境下机器人柔顺控制及可视化仿真研究[D].济南:山东大学,2006.
    [153] Surdilovic D. Contact Stability Issues in Position Based Impedance Control: Theory and Experiments. Proceedings of the 1996 IEEE International Conference on robotics and Automation,1996:1675-1680.
    [154] SurdilovicD. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. Proceedings of IEEE International Conference on Robotics and Automation,2001:2128-2133.
    [155] D.Surdilovic. Contact transition stability in the impedance control,Proceedings-IEEE International Conference on Robotics and Antomation.1997, (1):847-852.
    [156] D.Surdilovie. Synthesis of impedance control law at higher control levels: Algorithms and experiments. Proceedings-IEEE International Conference on Robotics and Automation,1998,(l):213-218.
    [157]王磊,柳洪义,王菲.在未知环境下基于模糊预测的力/位混合控制方法.东北大学学报(自然科学版),2005,26(12):1182-1184.
    [158] Z.L.Xu, GFang. Fuzzy Impedance Control for Robots in Complex Patial Edge Following Proceedings of the 7th International Conference on Control, Automation, Robotics and VisionICARCV2002(2):845-850.
    [159] N.Yubazaki, T.Ashida, K.Hirota. Dynamic fuzzy Control Method and its Application of Inducation Motor.IEEE International Conference on Fuzzy Systems. 1995,3:286-292.
    [160] D.Moreton,R.Durnford. Three-dimensional tool compensation for a three-axis turning center[J]. Int. J. Adv. Manuf. Technol,1999(15):649-654.
    [161] Markus Schinhaerl,Gordon Slnith,Riehard Stamp. Mathematical modeling of influence functions in computer-controlled polishing: PartⅠ[J]. Applied Mathematical Modelling,32(2008):2888-2906.
    [162] Markus Schinhaerl,Rolf Raseher,Richard Stamp. Filter algorithm for influence functions in the computer controlled Polishing of high-quality optical lenses[J].International Journal of Machine Tools & Manufacture,47(2007):107-111
    [163]朱永伟,何建桥.固结磨料抛光垫作用卜的材料去除速率模型[J].金刚石与磨料磨具工程,2006(3).
    [164]唐宇,戴一帆,彭小强.磁流变抛光工艺参数优化研究[J].中国机械工程,2006,17(52):324-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700