用户名: 密码: 验证码:
脂质体介导的VEGF-C siRNA治疗肺癌体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肺癌是我国高发的呼吸系统恶性肿瘤,通常与体内某些基因突变导致细胞周期改变和凋亡抑制有关。近年来的很多实验研究证明了VEGF-C在肿瘤的发生发展中起重要作用。本研究探讨通过体外合成靶向VEGF-C mRNA的小分子干扰RNA(short interfering RNA,siRNA)经脂质体介导转染人肺癌A-549细胞株,观察对VEGF-C mRNA和VEGF-C蛋白表达的影响及对细胞生长和凋亡的作用。
     方法:设计合成VEGF-C编码基因序列特异小分子干扰RNA通过脂质体介导转染肺癌A-549细胞来沉默VEGF-C的表达。用荧光显微镜及倒置显微镜观察转染效率及转染后细胞形态学的变化;通过MTT实验方法,检测实验浓度的单纯siRNA及脂质体对A-549细胞的抑制作用,观察靶向的VEGF-C siRNA经脂质体介导体外感染肺腺癌A-549细胞生长抑制作用,并绘制细胞生长曲线。用半定量逆转录聚合酶链反应(reverse transcriptase polymerase chain reaction,RT-PCR)和蛋白免疫印迹法(western blotting)测定VEGF-C mRNA和蛋白的表达。用流式细胞术检测VEGF-C siRNA对A-549细胞凋亡的影响。应用透射电镜观察外源性VEGF-C siRNA转染A-549细胞后细胞超微结构的变化。
     结果:脂质体介导siRNA能有效转染肺腺癌A-549细胞。实验浓度的单纯siRNA及脂质体对A-549细胞无明显毒性。脂质体介导VEGF-C siRNA转染肺癌细胞48h后,实验组细胞贴壁浸润生长能力下降,部分细胞脱落皱缩,细胞形态变圆,体积缩小,折光性增强,空白对照组及实验对照组细胞正常生长。VEGF-C编码基因序列特异siRNA能有效抑制肺腺癌A-549细胞中VEGF-C mRNA和蛋白的表达,与空白对照组及实验对照组比较差异均有统计学意义(P<0.05)。下调VEGF-C表达可以在体外显著抑制A-549细胞的生长及增殖,一定浓度范围内抑制率有浓度依赖性,下调VEGF-C能诱导A-549细胞凋亡增加,转染48h后实验组生长抑制率(38.87%)、细胞凋亡率(19.31±2.21)%显著高于对照组(P<0.05),且在透射电镜下发现转染siRNA后出现典型凋亡细胞,核染色质边集,分布不均匀。
     结论:RNA干扰技术能有效抑制VEGF-C mRNA和VEGF-C蛋白的表达,降低肺腺癌A-549细胞增殖能力,诱导其凋亡增加,为靶向VEGF-C siRNA治疗肺癌提供理论支持,RNA干扰作为一种治疗肺癌的手段值得进一步研究及推广。
Objectives: Lung cancer is one of respiratory system malignancies and occurs at a higher incidence in China. Lung cancer usually connects with changes in cell cycle and apoptosis mechanisms caused by some gene mutation. Recently many experiments have shown that VEGF-C plays a very important role in tumor occurring and progress. Our object is to evaluate the application of RNA interference in the study of VEGF-C gene in Lung cancer cell line A-549. Observe the effects of VEGF-C silencing on Lung cancer cell line A-549 growth suppression, apoptosis and expression of VEGF-C and VEGF-C mRNA.
     Methods:Designed the specific small interference RNA (siRNA) of the gene sequence of VEGF-C and transfected into A-549 lung cancer cells using liposomes LipofectamineTM2000. The efficiency of infection of A-549 cells transfected with VEGF-C siRNA in vitro was observed by the fluorescence microscope. The change of cell morphology was observed by invert microscope. The toxicity and inhibition effect of VEGF-C siRNA for A-549 cells proliferation was determined by MTT assay. The curve of growth. was drawn . mRNA and protein levels of VEGF-C were detected by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. Flow cytometry was used to study apoptosis after transfected VEGF-C siRNA. The ultrastructure changes of A549 cells transfected with VEGF-C siRNA was observed by the electron microscopy.
     Results: The specific siRNA of the gene sequence of VEGF-C can transfect A-549 cells efficiently. The density of siRNA and liposomes for experiments have no toxicity for A-549 cells. The invert light microscopy demonstrated that A-549 cells transfected with VEGF-C siRNA appeared inhibitory effects including float growth, volum lessen and high photonasty. The VEGF-C siRNA can suppress the VEGF-C mRNA and protein expression efficiently and stably. The results also revealed that down regulation of VEGF-C resulted in significantly inhibition growth and proliferation of A-549 cells in vitro. At 48h, after the transfection the rates of growth inhibitory(38.87%) and apoptotic cells[(19.31±2.21)% ]were significantly higher in specific VEGF-C siRNA group than those in the control. The electron microscopy demonstrated that A-549 cells transfected with VEGF-C siRNA appeared typical morphological characteristics of apoptosis including the compaction and margination of the chromosomes, nuclear fragments and formation of apoptotic bodies.
     Conclusion: These results provided solid testimony that VEGF-C gene was vulnerable to RNA interference and, selective inhibition of VEGF-C had anti-proliferation effect on A-549 cells. Inhibition of the expression of VEGF-C can increase apoptosis of A-549 cells. RNA interference could be a powerful tool in further investigations of VEGF-C and a novel therapeutic strategy for lung cancer patients.
引文
[1] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin,2010,60(5):277-300.
    [2] Pirozynski M.100 years of lung cancer. Respir Med,2006,100(12): 2073-2084.
    [3]王吉耀.内科学.第1版.北京:人民卫生出版社,2005:112-113.
    [4] Walker S. Updates in non-small cell lung cancer.Clin J Oncol Nurs,2008, 12(4):587-596.
    [5] Bepler G. Lung cancer: provoking new concepts, generating novelideas, and rekindling enthusiasm.Cancer Control,2003,10(4):275-276.
    [6] JoukovV,Pajusola K,Kaipainen A, et al. A novel vascular endothelial growth factor,VEGF-C,is a ligand for the Flt4(VEGFR-3) and KDR(VEGFR-2) receptor tyrosinekinases. EMBO J,1996,15(2):290-298.
    [7] George ML, Tutton MG, Janssen F, et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia,2001,3(5)420-427.
    [8] Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumor metastasis. EMBO J, 2001,20(4):672-682.
    [9] Su JL, Chen PS, Chien MH, et al.Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer cell, 2008, 13(6):557-560.
    [10] Karpaned T,Egeblad M,Karkkainen MJ,et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res,2004,61(5):1786-1790.
    [11] Lee J,Gray A,Yuan J,et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA,1996,93(5):1988-1992.
    [12] Arigami T, Natsugoe S, Uenosono Y, et al. Vascular endothelial growth factor-C and D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J Surg Oncol,2009,99(3):148-153.
    [13] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    [14] Tuschl T,Zamore PD,Lehmann R,et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev,1999,13(3):3191-3197.
    [15] Fraser A. RNA interference: human genes hit the big screen. Nature, 2004, 428(6981):375-378.
    [1] Sun P, Gao J, Liu YL, et al. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances Epirubicin sensitivity of breast cancer cells. Mol Cell Biochem ,2008,308(1-2):161-168.
    [2] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin,2010,60(5):277-300.
    [3] Pirozynski M.100 years of lung cancer. Respir Med,2006,100(12): 2073-2084.
    [4]王吉耀.内科学.第1版.北京:人民卫生出版社,2005:112-113.
    [5] Walker S. Updates in non-small cell lung cancer. Clin J Oncol Nurs,2008, 12(4):587-596.
    [6] Bepler G. Lung cancer: provoking new concepts, generating novelideas, and rekindling enthusiasm. Cancer Control,2003,10(4):275-276.
    [7] Ferrara N. Vascular endothelial growth factor:basic science and clinical progress. Endocr Rev,2004,25(4):581-611.
    [8] Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev,2004,56(4):549-580.
    [9] Roskoski R Jr. VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophy Res Commun,2008,375(3):287-291.
    [10] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801):249-57.
    [11] Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res, 2004, 64(10):3365-70.
    [12] Bachelder RE, Crago A, Chung J, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res,2001,61(15):5736-40.
    [13] Zhang L, Yang N, Garcia JR, et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am JPathol,2002,161(6):2295-309.
    [14] Fan XH, Han BH, Dong QG, et al. Vascular endothelial growth factor inhibits dendritic cells from patients with non-small cell lung carcinoma. Zhonghua Jie He He Hu Xi Za Zhi,2003,26(9):539-43.
    [15] Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med, 2003,348(3):203-213.
    [16] Rak J,Mitsuhashi Y,Bayko L,et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis.Cancer Res,1995,55(20):4575-4580.
    [17] Ellis LM, Staley CA, Liu W,et al. Down-regulation of vascular endothelial Factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem, 1998, 273(2):1052-1057.
    [18] Bouvet M,Ellis LM,Nishizaki M,et al. Adenovirus-mediated wild-type P53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 1998,58(11):2288-2292.
    [19] Takahashi Y, Bucana CD,Cleary KR,et al. p53,vessel count,and vascular endothelial growth factor expression in human colon cancer. Int J Cancer, 1998, 79(1):34-38.
    [20] Enholm B,Paavonen K,Ristimaki A,et al. Comparison of VEGF, VEGF-B, VEGF- C and Ang-1 mRNA regulation by serum,growth factor,oncoproteins and hypoxia. Oncogene,1997,14(20):2475-2483.
    [21] Okajima E, Thorgeirsson UP. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf,and v-myc transformed cells. Biochem Biophys Res Commun,2000,270(1):108-111.
    [22] Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type P53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res,1995,55(24):6161-6165.
    [23] Mukhopadhyay D,Tsiokas L,Zhou XM,et al. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature,1995, 375(6532):577-581.
    [24] Su J, Chen X, Kanekura T. A CD147-targeting siRNA inhibits the proliferation,invasiveness,and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett, 2009, 273(1):140-147.
    [25] JoukovV,Pajusola K,Kaipainen A, et al. A novel vascular endothelial growth factor,VEGF-C,is a ligand for the Flt4(VEGFR-3) and KDR(VEGFR-2) receptor tyrosine kinases. EMBO J,1996,15(2):290-298.
    [26] George ML, Tutton MG, Janssen F, et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia,2001,3(5)420-427.
    [27] Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C- mediated lymphangiogenesis promotes tumor metastasis. EMBO J, 2001,20(4): 672-682.
    [28] Su JL, Chen PS, Chien MH, et al.Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer cell, 2008, 13(6):557-560.
    [29] Karpaned T,Egeblad M,Karkkainen MJ,et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res,2004,61(5):1786-1790.
    [30] Lee J,Gray A,Yuan J,et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA,1996;93(5):1988-1992.
    [31] Arigami T, Natsugoe S, Uenosono Y, et al. Vascular endothelial growth factor-C and D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J Surg Oncol,2009,99(3):148-153.
    [32] Witzenbichler B, Asahara T, Murohara T, et al. Vascular endothelial growth factor-C(VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol,1998,153(2):381-394.
    [33] Hamada K,Oike Y,Takakura N,et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood,2000,96(12):3793-3800.
    [34] Joukov V, Kumar V, Sorsa T, et al. A recombinant mutant vascular endothelial growthfactor-C has lost vascular endothelial growth factor receptor-2 binding,activation and vascular permeability activities. J Biol Chem,1998,273(12):6599-6602.
    [35] Dumont DJ,Jussila L,Taipale J,et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science,1998,282(5390):946-949.
    [36] Furudoi A,Tanaka S,Haruma K,et al. Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma. Oncology,2002,62(2):157-166.
    [37] Tanaka T, Ishiguro H, Kuwabara Y, et al. Vascular endothelial growth factor C (VEGF-C) in esophageal cancer correlates with lymph node metastasis and poor patient prognosis. J Exp Clin Cancer Res,2010, 29(1):83.
    [38] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669): 806-811.
    [39] Tuschl T,Zamore PD,Lehmann R,et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev,1999,13(3):3191-3197.
    [40] Fraser A. RNA interference: human genes hit the big screen. Nature, 2004,428(6981):375-378.
    [41] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA.Nature, 2004, 431(7006): 343-349.
    [42] Ketting RF, Fischer SE, Bernstein E. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C elegans. Genes Dev,2001,15(20):2654-2659.
    [43] Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA,2002,8(7):855-860.
    [44] Elbashir SM,Harborth J,Lendeckel W,et al. Duplexes of 21-nueleotides RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836): 494-498.
    [45] Ngo H,Tschudi C,Gull K,et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA, 1998,95(4): 14687-14692.
    [46] Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA- triggered gene silencing. Cell,2001, 107(4): 465-476.
    [47] Vaucheret H, Béclin C, Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci,2001,114(Pt17):3083-3091.
    [48] Lipardi C,Wei Q,Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001;107(3):297-307.
    [49] Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev,2003;13(1):1-7.
    [50] Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J,2001;20(23):6877-6888.
    [51] Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and siRNAs in cell cultrue and in vivo. Biochem Biophys Res Commun, 2002; 296(4):1000-1004.
    [52] Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther,2003;10(2):125-133.
    [53] Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci,2001,114(Pt24): 4557-4565.
    [54] Stein P,Svoboda P,Stumpo DJ,et al. Analysis of the role of RecQ helicases in RNAi in mammals. Biochem Biophys Res Commun,2002,291 (5): 1119-1122.
    [55] Morel JB,Godon C,Mourrain P,et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post transcriptional gene silencing and virus resistance. Plant Cell,2002,14(3):629-639.
    [56] Irie N,Sakai N,Ueyama T,et al. Subtype-and species-specific knockdown of PKC using short interfering RNA. Biochem Biophys Res Commun, 2002,298 (5):738-743.
    [57] Tavernarakis N, Wang SL,Dorovkov M,et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet, 2000,24(2): 180-183.
    [58] Grishok A,Pasquinelli AE,Conte D,et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell,2001,106(1):23-34.
    [59] Kim Y, Tewari M, Pajerowski JD, et al. Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release,2009,134(2):132-140.
    [60] Hirsch M,Ziroli V,Helm M, et al. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation(DAC). J Control Release,2009,135(1):80-88.
    [61] Reischl D,Zimmer A.Drug delivery of siRNA therapeutics: potentials and limits of nanosystems.Nanomedicine,2009,5(1):8-20.
    [62] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    [63] Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res,2004,32(3):936-948.
    [64] Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun,2004,316(4):1050-1058.
    [65] Otani K, Yamahara K, Ohnishi S , et al. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release,2009,133(2):146-153.
    [66] Njuyen J,Steele TW,Merkel O,et al. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release,2008,132 (3): 243-251.
    [67] Fattal E,Bochot A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm,2008,364(2): 237-248.
    [68] Watts JK,Deleavey GF,Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today,2008,13(19-20):842-855.
    [69] Christian DA,Cai S,Bowem DM,et al. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm,2009,71(3):463-474.
    [70] Stratford S,Stecs S,Jadhav V,et al. Examination of real-time polymerase chain reaction methods for the detection and quantification of modified siRNA. Anal Biochem,2008,379(1):96-104.
    [71] Benke EM, Ji Y, Patel V, et al. VEGF-C contributes to head and neck squamous cell carcinoma growth and motility. Oral Oncology, 2010,46(4) : e19–e24.
    [72] Kim SH,Jeong JH,Lee SH,et al. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release,2006,116(2):123-129.
    [73] Raskopf E,Vogt A,Sauerbruch T,et al. siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. J Hepatol,2008,49(6):977-984.
    [74] Yamaoka-Tojo M,Ushio-Fukai M,Hilenski L, et al. IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species--dependent endothelial migration and proliferation. Circ Res,2004,95(3):276-283.
    [75] Schoeffner DJ, Matheny SL, Akahane T, et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest,2005,85(5):608-623.
    [76] Price DJ, Miralem T, Jiang S, et al. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ,2001,12(3):129-135.
    [77] Lim JH, Lee ES, You HJ, et al. Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene,2004,23(58):9427-9431.
    [78] Dias S, Hattori K, Heissig B, et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA,2001,98(19): 10857- 10862.
    [79] Pidgeon GP, Barr MP, Harmey JH, et al. Vascular endothelial growth factor(VEGF) upregulates Bcl-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer,2001,85(2):273-278.
    [80] Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev,2000,64(4):821-846.
    [81] Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Canser Res,1999,59(7Suppl):1693s-1700s.
    [82] Karl E, Warner K, Zeitlin B, et al.Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. Cancer Res, 2005, 65(12):5063–5069.
    [83] Adams JM,Cory S. The Bcl-2 protein family: arbiters of cell survival. Science,1998,281(5381):1322-1326.
    [84] Dias S,Choy M,Alitalo K,et al. Vascular endothelial growth factor(VEGF)-C signaling through FLT-4(VEGFR-3) mediates leukemic cell proliferation, survival,and resistance to chemotherapy.Blood,2002, 99(6): 2179-2184.
    [85] Oltvai ZN,Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog bax,that accelerates programmed cell death. Cell,1993,74(4):609-619.
    [86] Roskoski R Jr. Vascular endothelial growth factor(VEGF)signaling in tumor progression.Crit Rev Oncol Hematol,2007,62(3):179-213.
    [87] Mehdi M,Maneul MR,Elizabeth J,et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol,2001,158(5):1757-1765.
    [88] O’Connor DS,Schechner JS,Adida C,et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol,2000,156(2):393-398.
    [1] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin,2010,60(5):277-300.
    [2] Pirozynski M.100 years of lung cancer. Respir Med,2006,100(12): 2073-2084.
    [3]王吉耀.内科学.第1版.北京:人民卫生出版社,2005:112-113.
    [4] Walker S. Updates in non-small cell lung cancer.Clin J Oncol Nurs,2008, 12(4):587-596.
    [5] Bepler G. Lung cancer: provoking new concepts, generating novelideas, and rekindling enthusiasm.Cancer Control,2003,10(4):275-276.
    [6] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669): 806-811.
    [7] Tuschl T,Zamore PD,Lehmann R,et al. Targeted mRNA degradation by double-stranded RNA in vitro.Genes Dev,1999,13(3):3191-3197.
    [8] Meister G , Tuschl T . Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431(7006):343-349.
    [9] Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C elegans.Genes Dev,2001,15(20):2654-2659.
    [10] Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm.RNA,2002,8(7):855-860.
    [11] Elbashir SM,Harborth J,Lendeckel W,et al. Duplexes of 21-nueleotides RNAs mediate RNA interference in cultured mammalian cells.Nature , 2001 ,411(6836):494-498.
    [12] Ngo H,Tschudi C,Gull K,et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA, 1998,95(4): 14687-14692.
    [13] Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell,2001, 107(4): 465-476.
    [14] Vaucheret H, Béclin C, Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci,2001,114(Pt17):3083-3091.
    [15] Lipardi C,Wei Q,Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001,107(3):297-307.
    [16] Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes incultured mammalian cells using small interfering RNAs. J Cell Sci,2001,114(Pt24): 4557-4565.
    [17] Stein P,Svoboda P,Stumpo DJ,et al. Analysis of the role of RecQ helicases in RNAi in mammals. Biochem Biophys Res Commun,2002,291 (5): 1119-1122.
    [18] Morel JB,Godon C,Mourrain P,et al. Fertile hypomorphic ARGONAUTE(ago1) mutants impaired in post transcriptional gene silencing and virus resistance. Plant Cell,2002,14(3):629-639.
    [19] Irie N,Sakai N,Ueyama T,et al. Subtype-and species-specific knockdown of PKC using short interfering RNA. Biochem Biophys Res Commun, 2002,298 (5):738-743.
    [20] Tavernarakis N, Wang SL,Dorovkov M,et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet, 2000,24(2): 180-183.
    [21] Grishok A,Pasquinelli AE,Conte D,et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing.Cell,2001,106(1):23-34.
    [22] Kim Y, Tewari M, Pajerowski JD, et al. Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release,2009,134(2):132-140.
    [23] Hirsch M,Ziroli V,Helm M, et al. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation(DAC). J Control Release,2009,135(1):80-88.
    [24] Reischl D,Zimmer A.Drug delivery of siRNA therapeutics: potentials and limits of nanosystems.Nanomedicine,2009,5(1):8-20.
    [25] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    [26] Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res,2004,32(3):936-948.
    [27] Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun,2004,316(4):1050-1058.
    [28] Otani K, Yamahara K, Ohnishi S , et al. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release,2009,133(2):146-153.
    [29] Hirsch FR,Varella-Garcia M,Cappuzzo F,et a1.Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-smal1-cell lung cancer patients treated with gefitinib.Ann Oncol,2007,18(4):752-760.
    [30]申萍,张方,吴学玲,等. RNA干扰her2/neu基因表达抑制肺癌A549细胞增殖的研究.医学研究生学报,2009,22(3):236-239.
    [31] Jin Z,Gao F,Flagg T,et al.Tobacco-specific nitrosamine 4-( methylnitrosamino) -1-( 3-pyridy1) -1-butanone promotes functional cooperation of Bcl-2 and c-Myc through phosphorylation in regulating cell survival and proliferation.J Biol Chem,2004,279( 38) : 40209-40219.
    [32] Ma LL, Sun WJ, Wang Zh, et al. Effects of silencing of mutant p53 gene in human lung adenocarcinoma cell line Anip973. Exp Clin Cancer Res, 2006, 25(4): 585-592.
    [33] Kayisli UA,Selam B,Guzeloglu-kayisli O,et a1.Huaman chorionic gonadotropin contributes to maternal immuno-tolerance and endometrial apoptosis by regulating Fas-Fas ligand system.Immunol,2003,171:2305-2313.
    [34]王润秀,谢富华,汤显湖,等.shRNA抑制人肺癌细胞A549 SURVIVIN基因表达.基础医学与临床,2008,28(6):614-617.
    [35] Krysan K,Dalwadi H,Sharma S,et al.Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer.Cancer Res,2004,64( 18) : 6359-6362.
    [36] Reed JC.Bcl-2 and the regulation of programmed cell death. J Cell Biol, 1994, 124(1-2):1-6.
    [37]卢宏志,崔欣,王军,等.沉默Bcl-2基因对A549细胞的影响.国际呼吸杂志,2009,29(16):978-982.
    [38] Rochestre MA, Riedemann J,Hellawell GO,et a1.Silencing of the IGF-I R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutanthuman prostate cancer.Cancer Gene Therapy,2005,12:90-100.
    [39] Dong AQ, Kong MJ, Ma ZY, et al. shRNA-mediated insulin-like growth factor I receptor gene silencing inhibits cell proliferation,induces cell apoptosis, and suppresses tumor growth in non-small cell lung cancer:in vitro and in vivo experiments. Zhonghua Yi Xue Za Zhi, 2007, 87(21): 1506-1509.
    [40]鞠立霞,周彩存.整合素β1表达下调对非小细胞肺癌细胞迁移和黏附能力的影响.肿瘤,2010,30(3):188-193.
    [41]游佳,赵新宇,陈县城,等.靶向EGFR的RNA干扰诱导非小细胞肺癌细胞A549凋亡的研究.中华肿瘤防治杂志,2008,15(16):1205-1209.
    [42]张敏,张新,白春学,等. RNA干扰技术抑制非小细胞肺癌表皮生长因子受体的表达.中华内科杂志,2004,43(5):345-348.
    [43] Manabu Kurayoshi,Naohide Oue,Hideki Yamamoto,et a1.Expression of Wnt-5a is correlated with aggressiveness of Gastric Cancer by stimulating cell migration and invasion.Cancer Res,2006,66(21):10439-10448.
    [44] Masckauchan TN,Agalliu D,Vorontchikhina M,et a1.Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMIP-1 and Tie-2.Molecular Bio Cell,2006,17(12):5163-5172.
    [45]黄英,刘国祥,熊玮,等. RNAi抑制H157细胞Wnt5a表达.肿瘤防治研究,2008,35(5):325-327.
    [46] Bessette DC,Qiu D,Pallen CJ.PRL PTPs:mediators and markers of cancer progression.Cancer Metastasis Rev,2008,27(2):231-252.
    [47] Stephens B,Han H,Hostetter G,et a1.Small interfering RNA mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells.Mol Cancer Ther,2008,7 (1):202-210.
    [48] Wang Y,Li ZF,He J,et a1.Expression of the human phosphatases of regenerating liver(PRLs)in colonic adenocarcinoma and its correlation with lymph node metastasis.Int J Colorectal Dis,2007,22(10):1179-1l84.
    [49] Fan Y,Zhang YL,Zhang W ,et a1.Inhibiting effects of RNA interference PRL-3on the invasion of human hepatocellular cancer cells.Zhonghua Gan Zang Bing Za Zhi,2008,16(3):227-229.
    [50]钟锡明,范钰,张瑞佳,等. RNAi沉默PRL-1基因对肺癌细胞侵袭能力的影响.江苏大学学报(医学版),2008,18(6):480-483.
    [51] Ma YP,Yang Y, Zhang S, et al. Efficient inhibition of lung cancer in murine model by plasmid-encoding VEGF short hairpin RNA in combination with low-dose DDP. J Exp Clin Cancer Res,2010,29:56.
    [52] Sibanda BL,Chirgadze DY,Blundell TL.Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats.Nature,2010,463(7277):118-121.
    [53] Holcomb VB,Rodier F,Choi Y,et a1.Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response.Cancer Res,2008,68(22):9497-9502.
    [54] Koike M,Koike A.Accumulation of Ku80 proteins at DNA doublestrand breaks in living cells.Exp Cell Res,2008,314(5):1061-1070.
    [55]任振义,金儿,叶健,等.用Ku80 siRNA抑制Ku80基因表达以提高肺癌细胞放射敏感性的实验研究.中国呼吸与危重监护杂志,2010,9(3):291-294.
    [56] Lim MN, Lau NS, Chang KM, et al. Modulating multidrug resistance gene in leukaemia cells by short interfering RNA. Singapore Med J,2007,48(10): 932-938.
    [57] Pichler A, Zelcer N, Prior JL, et a1.In vivo RNA interference-mediated ablation of MDR1 p-glycoprotein.Clin Cancer Res,2005,1 1(12):4487-4494.
    [58] Lee MW,Kim DS,Min NY,et al.Akt1 inhibition by RNA interference sensitizes human non-small cell lung cancer cells to cisplatin.Int J Cancer,2008,122( 10):2380-2384.
    [59] Yonesaka K,Tamura K,Kurata T,et al. Small interfering RNA targeting survivin sensitizes lung cancer cell with mutant p53 to adriamycin. Int J Cancer,2006,118( 4) :812-820.
    [60]夏莹,胡成平,张梅春,等.靶向ERCCl RNA干扰对人肺腺癌细胞顺铂耐药的逆转.中国肿瘤生物治疗杂志,2007,14(6):531-535.
    [61] Wu SS,Xu W, Liu S, et al. Down-regulation of ALKBH2 increases cisplatin sensitivity in H1299 lung cancer cells. Acta Pharmacol Sin,2011,32(3):393-398.
    [62] Ren W ,Duan Y,ji Y,et a1.Down-regulation of STAT3 induces apoptosis of human glioma cell : a potential method to treat brain cancer . Neurol Res ,2008,30(3):297-301.
    [63]孙绍娟,王鸿程,许学亮,等.RNA干扰技术沉默STAT3对人肺腺癌细胞生长抑制作用的研究.肿瘤防治研究,2007,34(8):565-567.
    [64]张洁,罗麟洁,徐丽娜,等. STAT3 siRNA对肺腺癌A549细胞STAT3及其下游基因表达的影响.泸州医学院学报,2010,33(3):242-246.
    [65] Laurenee J,Murat T.NF-κB signaling pros and cons of altering NF-κB as a therapeutic approach.Ann N Y Acad Sci,2006,1072:114-122.
    [66] Tang X,Liu D,Shishodia S,et a1.Nuclear factor-kappaB(NF-κB)is frequently expressed in lung cancer and preneop lastic lesions.Cancer,2006,107 (11):2 637-2 646.
    [67]王昌明,王绩英,曾锦荣,等.应用RNA干扰技术沉默NF-κB基因对肺癌A549细胞的影响.广西医科大学学报,2010,27(1):62-64.
    [68] Muntean AG,Hess JL.Epigenetic dysregulation in cancer.Am J Pathol,2009,175(4):1353-1361.
    [69] Miremadi A,Oestergaard M Z,Pharoah P D,et a1.Cancer gentics of epigenetic genes.Hum Mol Genet,2007,16(1):R28-R49.
    [70] Sulewska A,Nildinska W,Kozlowski M,et a1.DNA methylation in states of cell physiologyand pathology.Folia Histochem Cytnbiol,2007,45(3):149-158.
    [71] Meng CF,Zhu XJ,Dai DQ,et a1.Effects of 5-Aza-2’–deoxycyti-dine and trichostatin A on P16,hMLHI and MGMT genes and DNA methylation in human gastric cancer cells.Zhonghua Wei Chang Wai Ke Za Zhi,2009,12(5):494-497.
    [72]董必文,段凤英.5-aza-dC、TSA联合MeCP2的RNA干扰质粒对人肺腺癌细胞株A549生物学行为的影响.实验与检验医学,2010,28(2):110-113.
    [73] Pino I, Pro R, Toledo G, et al. Altered patterns of expression of members of theheterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer, 2003,41:131-143.
    [74]唐凤鸣,李为民,王冬梅,等.hnRNP K siRNA真核表达载体的构建及其在A549肺癌细胞中沉默效应的研究.中国呼吸及危重监护杂志,2008,7(5):350-353.
    [75] Looi LM , Ng MH , Cheah PL . Telomerase activation in neoplastic cell immortalization and tumor progression.Malays J Pathol,2007,29(1):33-35.
    [76]郑庆丰,王建军,应敏刚,等.纳米羟基磷灰石介导靶向hTERT的RNA干扰可有效抑制人肺癌A549细胞增殖.中华胸心血管外科,2010,26(1):41-44.
    [77] Zhou Q,Jin Y,Zhang XJ,et al. Effect of RNA interference on Polo-like kinase-1 in A549 cells. Chinese Joumal of Pathophysiology,2007,23(11):2185-2190.
    [78] Spankuch-Schmitt B,Bereiter-Hahn J,Kaufmann M,et al.Effect of RNA silencing of polo-like kinase-1( PLK1) on apoptosis and spindle formation in human cancer cells.J Natl Cancer Inst,2002,94( 24) : 1863-1877.
    [79]向明章,蒋耀光,王慧春,等. RNA干扰肺癌细胞H460 FasL表达对T细胞凋亡的影响.中国肺癌杂志,2007,10(1):5-8.
    [80] Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol,2005,23(6):709-717.
    [81] Sreenath VS, Jeffrey S. ErbBs in lung cancer. Experimental Cell Research, 2009,315(14):557-571.
    [82] Judge A,Maclachlan I.Overcoming the innate immune response to small interfering RNA.Hum Gene Ther,2008,19(2):111-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700