用户名: 密码: 验证码:
双向通风窗的性能研究与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节约建筑能耗和提高建筑室内空气品质是可持续建筑发展战略的两个重要课题。双向通风窗通过风机驱动气流在窗体内流动,可以向室内提供稳定通风量以满足室内空气品质的要求,且送风气流可以吸收排风气流的热量以及太阳辐射得热量,具有节能性。本文以双向通风窗为研究对象,围绕其节能性和提高室内空气品质的特性展开了如下工作。
     首先,通过哈尔滨地区实际气象条件下的动态实验,将双向通风窗与低辐射玻璃窗和卷帘窗作对比,分别分析了双向通风窗在密闭不通风和通风两种状态下的能耗。证明了双向通风窗三层玻璃的窗结构,在密闭不通风状态下具有良好的保温特性,同时证明其通风状态下的热回收功能,能够有效降低送风能耗,因此能够进一步提高其节能效果。
     其次,考虑到实验方法受到时、空的限制,而且实验费用高,本文力求通过实验方法找到理论计算模拟的依据,实验证明双向通风窗传热可以被视为二维传热。根据这一实验结论,分析双向通风窗在水平室内、外方向的传热特征以及垂直气流方向的热量传递特性,建立了双向通风窗的二维传热区域模型。由于全年能耗模拟软件EnergyPlus在计算建筑能耗方面技术成熟,而且软件允许用户根据自己的需求修改其源代码,因此本文将所建立的双向通风窗区域热平衡传热模型耦合到EnergyPlus中,利用EnergyPlus为计算平台进行双向通风窗能耗特性的模拟研究。本文应用实验数据证明了所建立数学模型以及其与EnergyPlus结合计算的可行性和准确性。
     再次,由于双向通风窗在通风运行时具有热回收特性,属于通风换热设备,因此不能简单借用普通窗的规范要求设计制造双向通风窗。本文建立了双向通风窗以及与其相同结构的普通窗的窗负荷传热模型,通过分析两种窗的传热差异,选择出包括窗通风量、窗尺寸、窗玻璃材料以及窗框材料等四类共13个窗负荷影响参数。由于参数过多,而且不确定参数对窗负荷影响的大小,为避免模拟算例过多,首先通过正交试验法筛选了对窗负荷影响较大的四个参数,分别为窗的通风量、窗高度、窗朝向以及窗玻璃的太阳能得热系数。然后通过列举法计算得出这四个参数的最优参数值,并将其应用到算例中,针对全国各不同气候区的室外条件进行模拟分析,得出双向通风窗在最优化设计条件下在不同气候区内的窗负荷节能率。
     然后,由于窗负荷不能直接转化为能耗分析讨论,因此将双向通风窗安装在建筑载体中讨论其对建筑能耗的影响,并使其与相同结构的三层普通窗和送风窗作对比,在中国五个气候区以及美国气候区分别研究其地区适应性。上述两种窗型分别代表了窗体结构相同窗自身负荷相同的窗型和同样具有热回收和室内空气品质提高作用功能的传统通风窗窗型。本文选取了两种有代表性的建筑空间,分别为80m2的公寓建筑单元和200m2的别墅建筑,前者代表外围护传热结构面积较小而窗负荷对建筑能耗影响较大的建筑,后者代表外围护传热结构面积较大而窗负荷影响较小的建筑。研究表明,双向通风窗在供暖能耗方面节能效果明显,而在供冷能耗方面节能效果微弱。因此,双向通风窗在供暖季节比较长的严寒、寒冷类地区节能性最好,在温和气候区节能效果中等,在供冷季节比较长的地区节能效果较差,但是本文证明可以通过分时段的双向通风窗通风改善其节能性。
     最后,为了节约建筑能耗,传统住宅建筑主要采用自然渗风的通风模式,但是随着建筑密闭性增强,渗风量越来越小,不足以驱除室内污染物,因此有必要采用机械通风模式以改善室内空气品质。本文以CO2浓度为室内空气品质的代表参数,应用区域模型模拟软件CONTAM分析了自然渗风条件下的室内污染物浓度变化特征,证明了自然渗风不足以提供标准中规定的良好的室内空气品质。同时,还分析了包括卫生间、厨房排风机集中排风、送风窗送风和双向通风窗通风几种机械通风模式对室内空气品质的影响,研究表明,只有送风窗通风和双向通风窗通风可以得到较好的室内空气环境。
     综合以上研究,本文证明双向通风窗通风在节能性和室内空气品质提高两方面都有较大优势,具有最好的综合使用效果。
Building energy conservation and indoor air quality improvement are the two main challenges in the sustainable building development. Ventilated windows have shown great potential in conserving energy in buildings due to their energy exchange ability and in improving indoor air quality by providing fresh air into indoors. This investigation studied the potential of energy conservation and indoor air quality improvement of the dual-airflow window.
     This investigation first conducted experimental measurements to study the dynamic energy performance of the dual-airflow window under the real weather conditions in Harbin. The study compared the dual-airflow window with a low-e (low-emissivity) window and a blinds window for their energy demand under the two kinds of condition: one is without window ventilation, and the other is with a ventilation rate of 40m3/h through the windows. The results demonstrated that the dual-airflow window can save energy under both the conditions. Without ventilation, the energy saving of the dual-airflow window was achieved by its three-layer glazing system. With ventilation, the energy efficiency of the dual-airflow window was improved by its energy recovery ability.
     Although the experimental measurements were most reliable and realistic, they are very expensive and time consuming. Our investigation has further developed a network model that can be used to numerically study the window performance. The model can account for the two-dimensional heat transfer in the window system and the model has been implemented it into EnergyPlus, a building energy simulation program. The two-dimensional assumption of heat transfer and the modified EnergyPlus program were validated by the energy demand measured in a test cell with the window under the actual weather conditions. The results show that the modified EnergyPlus can predict the building energy demand in a building with the dual airflow window at an acceptable accuracy.
     In order to optimize the window design, this investigation used the orthogonal method to evaluate the importance of 13 design parameters related to the dual airflow window. The parameters are outdoor air supply rate, window cavity width, window width, window height, window glass pane thermal conductivity, window glass pane thickness, window glass pane solar heat gain coefficient, window glass pane emissivity, thermal conductivity of window frame, window frame width, window orientation, shading coefficient, and window blinds position. The outdoor air supply rate, window height, solar heat gain coefficient, and window orientation were found to be the most important and were further studied by using the listing method to identify their optimal design values. The investigation was conducted for five climate zones in China.
     With the optimal design, this investigation compared the energy performance of two buildings with the dual-airflow windows with those with the three-layer conventional windows and single-supply-airflow windows in the five climate zones in China and the seven climate zones in the United States, respectively. One building was an apartment with a floor area of 80m2, and another was a house with a floor area of 200m2. The results showed that the dual-airflow performed better for severe cold or cold climate zones, while it had limited energy saving potential in the hot and humid climate zones.
     To save building energy demand, most residential buildings only used infiltration to delute contaminant concentration. However, infiltration is not stable and may not be sufficient to maintain an acceptable indoor air quality. To achieve acceptable indoor air quality requirement, mechanical ventilation is necessary. This study used a multizone airflow network model, CONTAM, to study indoor air quality by using CO2 as an indicator. The simulations used infiltration, ventilation by bathroom/kitchen exhaust fan, ventilation through a supply-airflow window, and ventilation through a dual-airflow window. The infiltration and ventilation through an exhaust fan cannot maintain an acceptable indoor air quality, but the ventilation by a supply-airflow window or by the dual-airflow window is sufficiently good..
     Considerring energy conservation and indoor air quality together, the dual-airflow window should be used.
引文
[1] M. F. Jentsch, A. S. Bahaj and P. A. B. James, Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy and Buildings, 2008, (40): 2148–2168.
    [2]郭静.重庆地区居住建筑外窗的节能设计研究.重庆大学材料学专业硕士学位论文. 2007: 1.
    [3] Environmental Protection Agency (EPA). An introduction to indoor air quality. http://www.epa.gov/iaq/ia-intro.html
    [4]沈晋明.我国目前室内空气品质改善的对策与措施.暖通空调. 2002, 32 (2): 34-37.
    [5]马人民.国外非工业建筑室内空气品质研究动态.暖通空调. 1999, 29 (2): 38-41.
    [6]国家统计局.中国统计年鉴. 2001:235-239.
    [7]涂逢祥.建筑节能—当代建筑科技发展的一个重要方向.建筑技术. 1996, (11):731-733.
    [8]于美静,王洪伟.民用建筑室内空气品质及其评价方法.住宅科技. 2007, 7: 48-52.
    [9]沈晋明.室内空气品质与健康.制冷技术. 2007, 1: 10-14.
    [10]沈晋明.室内空气品质的评价.暖通空调. 1998, 28 (4): 34-38.
    [11]王长庆.住宅室内空气品质.住宅科技. 2000, 9: 18-22.
    [12]M. H. Sherman and N. Matson. Residential ventilation and energy characteristics. LBNL Report 39036, Lawrence Berkeley National Laboratory. 2000. http://epb.lbl.gov/ventilation/resventw.fm5.pdf
    [13]Shun Cheng Lee, Wai-Ming Li, Chio-Hang Ao. Investigation of indoor air qualityat residential homes in Hong Kong-case study. Atmospheric Environment. 2002, 36: 225-237.
    [14]郎四维.建筑节能是可持续发展的重要战略.制冷技术. 2004, (2): 11-13.
    [15]H. Manz and Th. Frank. Thermal simulation of buildings with double-skin facades. Energy and Buildings. 2005, 37: 1114–1121.
    [16]赵西安.幕墙设计中存在的问题.建筑技术. 2004, 35 (9): 648-652.
    [17]郑庆丰.玻璃幕墙生态技术.山西建筑. 2003, 29 (11): 59-62.
    [18]E. Gratia and A. D. Herde. Natural ventilation in a double-skin fa?ade. Energy and Buildings. 2004, 36 (2): 137–146.
    [19]李敏,林豹,田野,于蕾.住宅用通风换气机应用中若干问题的探讨.技术交流. 2006, (2): 51-53.
    [20]Ke Zhong, Yanming Kang. Applicability of air-to-air heat recovery ventilators in China. Applied Thermal Engineering. 2009, 29(5-6): 830-840.
    [21]Park SD, Suh HS and Cho SH. The Analysis of Thermal Performance in an Airflow Window System Model. Proceedings of the ASHRAE/DOE/BTECC/CIBSE Conference. Thermal Performance of the Exterior Envelopes of Buildings IV. Clearwater Beach, 1989: 361-375.
    [22]J. R. Gosselin. A Ventilated Window for Indoor Air Quality Improvement in Residential Buildings. M.Sc. Thesis, School of Mechanical Engineering, Purdue University. 2006: 86-90.
    [23]De Ruiter P and Moderne Klimaatgevel. The chameleon skin (in Dutch). Proceedings of Facade en Klimaat. Delft, 1998: 6.1-6.12.
    [24]M. W. Liddament. A guide to energy efficient ventilation Warwick. Air Infiltration and Ventilation Centre. 1996.
    [25]M. J. Holmes. Optimisation of the Thermal Performance of Mechanically and Naturally Ventilated Glazed Facades. Renewable Energy. 1994, 5: 1091-1098.
    [26]R. Banham. The architecture of the well-tempered environment. London, Architectural Press, 1969.
    [27]H. Ripatti. Airflow window system– making the fenestration the solution rather than the problem in energy use. ASHRAE Transactions. Atlanta, 1984: 156-158.
    [28]M. E. McEvoy, R. G. Southall and P. H. Baker. Test cell evaluation of supply air windows to characterise their optimum performance and its verification by the use of modelling techniques. Energy and Buildings. 2003, 35(10): 1009-1020.
    [29]S. C. Sekhar and H. C. Willem. Impact of airflow profile on indoor air quality—a tropical study. Building and Environment. 2004, 39 (3): 255-266.
    [30]K. Brandle and R. F. Boehm. Airflow windows: performance and applications. ASHRAE/DOE Conference. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings II. Las Vegas, 1982: 102-103.
    [31]J. R. Gosselin and Q. Chen. A dual-airflow window for indoor air quality improvement and energy conservation in buildings. HVAC&R Research. 2008, 14(3): 359-372.
    [32]J. Jones, T. Messadi, and S. Li. Experimental study of the cooling season performance of ventilated double-glass envelope cavities. Proceedings of International Building Physics Conference-Tools for design and engineering of buildings. Eindhoven, 2000: 357-365.
    [33]J. E Seem. Modeling of heat transfer in buildings. Ph.D. Thesis, Solar Energy Laboratory, University of Wisconsin-Madison, 1987.
    [34]L.T. Wong, K.W. Mui, K.L. Shi, P.S. Hui. An energy impact assessment of indoor air quality acceptance for air-conditioned offices. Energy Conversion and Management, 2008, 49: 2815–2819.
    [35]K.W. Mui, L.T. Wong, W.Y. Chan. Energy impact assessment for the reduction of carbon dioxide and formaldehyde exposure risk in air-conditioned offices. Energy and Buildings 2008, 40: 1412–1418.
    [36]P. Baker, D. Saelens, M. Grace and T. Inoue. Advanced Envelopes– Methodology. Evaluation and Design Tools, 2000.
    [37]D. M. M. Arons and L. R. Glicksman. Double Skin, Airflow Facades: will the Popular European Model work in the USA. Proceedings of International Conference on Building Envelope Systems and Technologies (ICBEST). Ottawa, 2001, 1: 203-207.
    [38]M. J. Brandemuehl and W. A. Beckman. Transmission of diffuse radiation trough CPS and flat plate collector glazing. Solar Energy. 1980, 24: 511.
    [39]E. Oesterle, R. D. Lieb, M. Lutz and W. Heusler. Double-Skin Facades- Integrated Planning. Prestel Verlag. 2001: 134-136.
    [40]G. Nelson. Energy Revisited: Briarcliff House. The Architects’Journal. 1986, 183(7): 53-56.
    [41]W. S. White. United States Patent for a Heat Exchanger Window. 1975. Patent Number: 3925945.
    [42]Y. Etzion and E. Erell. Controlling the transmission of radiant energy through windows: a novel ventilated reversible glazing system. Building and Environment. 2003, 35 (5): 433-444.
    [43]Somsak Chaiyapinunt, Bunyarit Phueakphongsuriya, Khemmachart Mongkornsaksit and Nopparat Khomporn. Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission.Energy and Buildings. 2005, 37 (7): 725-738.
    [44]Wan Aizan, Wan Abdul Rahman, Lee Tin Sin and Abdul Razak Rahmat. Injection moulding simulation analysis of natural fiber composite window frame. Journal of Materials Processing Technology. 2008, 197 (1-3): 22-30.
    [45]J. R. Gosselin and Q. Chen. A computational method for calculating heat transfer and airflow through a dual-airflow window. Energy and Buildings. 2008, 40: 452-458.
    [46]J. R. Gosselin and Q. Chen. A ventilated window for indoor air quality improvement in residential buildings. Mater thesis, Purdue University. 2006.
    [47]K. Brandle and R. F. Boehm. Airflow windows: performance and applications. Proceedings of the ASHRAE/DOE conference: Thermal Performance of the Exterior Envelopes of the Building II. Clearwater Beach, 1982: 361-379.
    [48]H. Jarnstrom, K. Saarela, P. Kalliokoski, A.-L. Pasanen. Reference values for indoor air pollutant concentrations in new, residential buildings in Finland, Atmospheric Environment 2006, 40 (37): 7178–7191.
    [49]T. Inoue, Y. Matsuo and T. Ibamoto. Study on the thermal performance of ventilation window. Proceedings of the International Symposium on Thermal Application of Solar Energy. Hakone, 1985: 221-226.
    [50]F. Bonveni, X. Traver, M. Miro and A. Trias. Air flow windows. Proceedings of 2nd European conference on architecture. Paris, 1989: 319-321.
    [51]J. L Wright. Effective U-values and shading coefficients of preheat/supply air glazing systems. Proceedings of Renewable Energy Conference. Solar Energy Society of Canada. Ottawa, 1986: 345-348.
    [52]S. A. Barakat. Thermal performance of a supply-air window. Proceedings of the 12th Annual Passive Solar Conference. Portland, 1987, 12: 152-158.
    [53]M. E. McEvoy and S. G. Southall. Validation of a computational fluid dynamics simulation of a supply air“ventilated”window. CISBE Conference. Dublin, 2000: 123-125.
    [54]M. E. McEvoy, et al. Test cell evaluation of supply air windows to characterize their optimum performance and its verification by the use of modeling techniques. Energy and Buildings. 2003, 35: 1009-1020.
    [55]J. E. Ferguson and J. L. Wright. VISION: A computer program to evaluate the thermal performance of super windows. NRC Canada, 1984: Report No. Passive-10.
    [56]Erell E, et al.‘SOLVENT’: Development of a reversible solar-screen glazing system. Energy and Buildings. 2004, 36(5): 467-480.
    [57]K. H. Haddad and A. H. Elmahdy. Comparison of the thermal performance of an exhaust-air window and a supply-air window. ASHRAE Transactions. 1999, 105(Part 2): SE-99-12-4.
    [58]K. H. Haddad and A. H. Elmahdy. Comparison of the monthly thermal performance of a conventional window and a supply-air window. ASHRAE Transactions: Symposia, 1998: SF-98-13-3.
    [59]A. Barletta and E. Zanchini. On the choice of the reference temperature for fullydeveloped mixed convection in a vertical channel. International Journal of Heat and Mass Transfer. 2001, 42: 3169-3181.
    [60]M. E. McEvoy, R. G. Southall, P. H. Baker, Test cell evaluation of supply air windows to characterise their optimum performance and its verification by the use of modelling techniques. Energy and Buildings, 2003 35 (10): 1009-1020.
    [61]M. E. McEvoy, R. G. Southall, P. H. Baker. Investigations into the functioning of a supply air window in relation to solar energy as determined by experiment and simulation. Solar Energy. 2006, 80 (5): 512-523.
    [62]K. W. Mui. Energy policy for integrating the building environmental performance model of an air conditioned building in a subtropical climate. Energy Conversion Management 2006, 47 (15/16): 2059–2069.
    [63]N. Safer et al. Influence of solar radiation on heat and air flow transfers in double skin fa?ades with venetian blinds. Proceedings from Roomvent. 2004: 45-48.
    [64]J. Srebric and Q. Chen. An example of verification, validation, and reporting of indoor environment CFD analyses. ASHRAE Transactions. 2002, 108(2): 185-194.
    [65]V. Leal et al. Modeling a reversible ventilated window for simulation within ESP-R– the SOLVENT case. ProceedingsLeal V, et al. An analytical model for the airflow in a ventilated window with known surface temperatures. Proceedings from Roomvent. 2004: 67-69.
    [66]P. D. Van and V. M. Van. Development of simplified tools for evaluating energy performance of double facades. Proceedings of the International Building Physics Conference. Tools for Design and Engineering of Buildings. Eindhoven,2000: 347-355.
    [67]J. J. Hirsch & associates. Equest introductrial tutorial version 3.63. 2007, 4: 8-17.
    [68]J. J. Hirsch & associates. Equest modeling procedures quick reference guide version3.63. 2007, 5: 22-34
    [69]J. J. Hirsch & associates. Building energy used and cost analysis program volume 2 dictionary. 2009, 3: 16-31.
    [70]J. J. Hirsch & associates. Building energy used and cost analysis program volume 3 topics. 2006, 7: 5-19.
    [71]R. K. Strand and C. O. Pedersen. Implementation of a radiant heating and cooling model into an integrated building energy analysis program. ASHRAE Transactions. 1997, 103: 949-958.
    [72]A. Werner and A. Roos. Simulations of coatings to avoid external condensation on low U-value windows. Optical Materials. 2008, 30: 968–978.
    [73]R. K. Strand et al. EnergyPlus: A new-generation energy analysis and load calculation engine for building design. Proceedings of the ACSA Technology Conference on EnergyPlus. Cambridge, Massachusetts, 2000: 1-12.
    [74]A. Yezioro, B. Dong and F. Leite. An applied artificial intelligence approach towards assessing building performance simulation tools. Energy and Buildings. 2008, 40 (4): 612-620.
    [75]J. Liu, B. Wang, Y. Xu. Research on the energy saving performance of the enthalpy recovery ventilator in Chinese residential buildings. International Solar Energy Conference. Denver, 2007, 6: 595-602.
    [76]TE Kuhn. Solar control: Comparison of two new systems with the state of the art on the basis of a new general evaluation method for facades with venetian blinds or other solar control systems. Energy and Buildings. 2006, 38: 661–672.
    [77]G. Taguchi and J. Rajesh. New trends in multivariate diagnosis. The Indian Journal of Statistics. 2000, 62: 233-248.
    [78]李本强.百货商场动态负荷特性的研究.哈尔滨工业大学硕士学位论文. 2000.
    [79]关颖男,施大德.试验设计方法入门.北京:冶金工业出版社. 1985.
    [80]郭福兴,戴俭华.概率论与数理统计.上海科学技术出版社. 1991.
    [81]孙荣恒等.数理统计.重庆大学出版社. 1995.
    [82]L.T. Wong, K.W. Mui, P.S. Hui. A statistical model for characterizing common air pollutants in air-conditioned offices. Atmospheric Environment 2006, 40 (23), 4246–4257.
    [83]张昕.商场空调设计冷负荷的计算与分析.哈尔滨建筑大学硕士学位论文. 1996.
    [84]荣国华.建筑供暖的室温调节与节能.暖通空调. 2000, 30(1): 71-72
    [85]付祥钊,张慧玲,黄光德.关于中国建筑节能气候分区的探讨.暖通空调. 2008, 38 (2): 44-47.
    [86]Sami A. Al-Sanea, M. F. Zedan, Saleh A. Al-Ajlan and Atif S. Abdul Hadi. Heat transfer characteristics and optimum insulation thickness for cavity walls. Journal of Thermal Envelope and Building Science. 2003, 26(3): 285-307.
    [87]R. Yao, B. Li and K. Steemers. Energy policy and standard for built environment in China. Renewable Energy. 2005, 30: 1973–1988.
    [88]D. Saelens, S. Roels and H. Hens. Strategies to improve the energy performance of multiple-skin facades. Building and Environment. 2008, 43(4): 638-650.
    [89]R. C. Mathis. Insulation Beyond the Code. Construction Specifier. 2007, 8: 12-19.
    [90]Building Code Assistance Program. www.bcap-energy.org.
    [91]McKinsey Global Institute. Curbing Global Energy Demand Growth: The Energy Productivity Opportunity. Residential sector. 2007, 5: 20-27.
    [92]M. V. Jokl. Evaluation of indoor air quality using the decibel concept based on carbon dioxide and TVOC. Building and Environment. 2000, 35: 677-697.
    [93]Q. Luo. Impacts of ventilation strategies on IAQ. Refrigeration Air Conditioning & Electric. 2007, 2: 14-18.
    [94]张春明,高甫生.渗风中内部隔断系数计算的新方法.哈尔滨建筑大学学报. 1996, 29 (4): 63-68.
    [95]王砚玲,高甫生.建筑类型对渗风能耗的影响分析.建筑热能通风空调. 2002, (5): 4-8.
    [96]T. Leephakpreeda et al. Occupancy-based control of indoor air ventilation: a theoretical and experimental study. ScienceAsia. 2001, 27: 279-284.
    [97]O. A. Seppanen, W. J. Fisk and M. J. Mendell. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air. 1999, 9: 226–252.
    [98]刘建国,刘洋.室内空气中CO2的评价作用与评价标准.环境与健康杂志. 2005, 22 (4): 303-305.
    [99]M. V. Jokl. Introduction of the decibel units to assess indoor air quality. Proceedings of Buildings for Healthy Living. Prague, 1996: 278-316.
    [100] M. V. Jokl. Evaluation of indoor air quality using the decibel concept. J of Environmental Health Research. 1999, 4:289-306.
    [101] M. Zheng and J. Qi. A new kind of energy saving window can be used in severe cold climate zone. Building Energy Saving. 2002, 90 (4): 77-79.
    [102] J. Wei, J. Zhao and Q. Chen, Energy performance of a dual airflow window under different climates. Energy and Buildings. 2010, 42 (1): 111–122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700