用户名: 密码: 验证码:
纳米羟基磷灰石介导靶向端粒酶逆转录酶RNA干扰的肺癌基因治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验一端粒酶逆转录酶siRNA表达质粒的构建、转化、抽提及鉴定
     目的:制备可供基因转染的端粒酶逆转录酶siRNA表达质粒。
     方法:设计靶向hTERT基因干扰序列GCATTCCTGCTCAAGCTGA,合成两条互补的单链DNA,排列次序如下:BamHⅠ酶切位点、正义序列、loop环、反义序列、RNA聚合酶Ⅲ终止子,SalⅠ酶切位点以及HindⅢ酶切位点。合成的寡核苷酸退火;采用BamHⅠ以及HindⅢ双酶切pGenesil-1表达载体,切胶回收线性化载体;退火产物与线性化pGenesil-1质粒表达载体相连接;构建hTERT-siRNA重组质粒。采用CaCl_2法制备感受态菌,将重组质粒转化感受态菌,抽提的重组质粒进行Sa1Ⅰ以及PstⅠ单酶切并行凝胶电泳分析,通过测序鉴定以确定插入的干扰片段的准确性,确认针对hTERT基因的siRNA表达质粒构建成功。用碱裂解法大量抽提,检测质粒的纯度和浓度。
     结果:BamHⅠ以及HindⅢ双酶切pGenesil-1表达载体,电泳可见约4800bp的线性化的质粒条带。重组质粒可被Sa1Ⅰ酶切出一条约400bp的DNA条带,无法被PstⅠ酶切;阴性对照质粒无法被Sa1Ⅰ酶切,能够被PstⅠ酶切出一条约400bp的DNA条带。测序表明目的序列准确地插到预计的位点。五次质粒大量抽提pGenesil-hTERT的A260/A280均在1.8~2.0间,浓度为1.30μg/μl~1.77μg/μl。
     结论:设计合成的RNA干扰序列准确地克隆到pGenesil-1表达质粒中,靶向hTERT基因的siRNA表达质粒构建成功。该载体可为深入研究端粒酶在肿瘤细胞中的作用机制提供新的手段。大量抽提的pGenesil-hTERT纯度和浓度均能满足基因转染的要求。
     实验二纳米羟基磷灰石表面修饰及与DNA的结合
     目的:应用多聚赖氨酸表面修饰纳米羟基磷灰石,研究纳米羟基磷灰石表面修饰及与DNA结合的可行性。
     方法:采用超声辅助均相沉淀法制备纳米羟基磷灰石。透射电镜观察纳米粒结构。分别在不同pH环境下进行纳米羟基磷灰石(nHAP)的多聚赖氨酸(PLL)修饰。检测nHAP及nHAP-PLL的Zeta电位。采用离心后测上清液DNA浓度及核酸酶消化实验考察PLL修饰后的nHAP结合、保护DNA的能力。
     结果:透射电镜下nHAP粒径比较均匀,约(15~20)nm×(60~80)nm左右,分散程度良好。nHAP经Na_2CO_3预处理后在pH 7.4及pH 7.6下可获得较理想的的PLL修饰效果。nHAP的Zeta电位为(—42.4±7.5)mV,nHAP-PLL的Zeta电位为(8.5±1.5)mV,两组比较差异有统计学意义(P<0.01)。DNA结合及抗核酸酶保护实验显示nHAP-PLL和DNA质量比达20∶1时,nHAP-PLL可有效结合并保护相应DNA。
     结论:超声辅助均相沉淀法制备的羟基磷灰石为纳米级颗粒,粒径较小且均匀、分散程度良好。纳米羟基磷灰石经Na_2CO3预处理后可以有效地进行多聚赖氨酸修饰。经多聚赖氨酸表面修饰的纳米羟基磷灰石可以有效结合并保护DNA。
     实验三纳米羟基磷灰石介导人肺癌A549细胞体外基因转染
     目的:探讨经多聚赖氨酸修饰的纳米羟基磷灰石介导人肺癌A549细胞基因转染的可行性。
     方法:根据实验二的方法配制nHAP-PLL-DNA复合物。实验分为nHAP-PLL组、脂质体组及对照组,分别配制转染复合物并转染A549细胞。荧光显微镜观察EGFP的表达;流式细胞仪检测pGenesil-1的转染率。
     结果:nHAP-PLL组和脂质体组均见EGFP表达阳性的A549细胞,对照组未见EGFP表达阳性的A549细胞;nHAP-PLL组pGenesil-1转染A549细胞的转染率为(31.8±1.9)%,与脂质体组的转染率(33.4±3.7)%差异无统计学意义(P>0.01),对照组未见转染阳性的A549细胞。
     结论:纳米羟基磷灰石经多聚赖氨酸表面修饰后可介导人肺癌A549细胞体外基因转染,有望成为一种新型的基因转染载体。
     实验四纳米羟基磷灰石介导靶向端粒酶逆转录酶RNA干扰对人肺癌A549细胞的影响
     目的:探讨纳米羟基磷灰石介导靶向端粒酶逆转录酶RNA干扰对人肺癌A549细胞的影响
     方法:根据实验二的方法配制nHAP-PLL-DNA复合物。实验分为nHAP-PLL组、脂质体组、nHAP组及对照组,分别配制转染复合物并转染A549细胞。四唑盐(MTT)法测定细胞生长活力;应用RT-PCR及Western Blot检测各实验组A549细胞hTERTmRNA及蛋白表达,TRAP-ELISA检测端粒酶活性;流式细胞仪检测细胞凋亡率。结果:nHAP-PLL组、脂质体组与nHAP组A549细胞的增殖受到抑制。nHAP-PLL组、脂质体组与nHAP组细胞增殖较对照组差别有统计学意义(P<0.05);nHAP-PLL组抑制细胞增殖较脂质体组及nHAP组明显,差别均有统计学意义(P<0.05)。各组的hTERT mRNA、蛋白表达及端粒酶活性的变化趋势与A549细胞的增殖情况检测结果一致。流式细胞仪检测nHAP-PLL组、脂质体组、nHAP组及对照组细胞凋亡率分别是(28.1±1.4)%,(19.2±1.3)%,(10.9±1.2)%与(0.3±0.2)%。nHAP-PLL组、脂质体组及nHAP组均能诱导A549不同程度细胞凋亡,凋亡率与对照组差别有统计学意义(P<0.05);nHAP-PLL组细胞凋亡较脂质体组及nHAP组明显,差别均有统计学意义(P<0.05)。
     结论:纳米羟基磷灰石可诱导人肺癌A549细胞凋亡。人肺癌A549细胞端粒酶逆转录酶高表达,端粒酶逆转录酶可成为抑制A549的理想靶点。纳米羟基磷灰石本身具有抑制A549细胞的作用,又能有效地保护DNA并介导A549细胞靶向端粒酶逆转录酶的RNA干扰,使之在肺癌基因治疗领域具有重要的应用价值。
ExperimentⅠTransformation, extraction and identification of siRNA expressionplasmid targeting human telomerase reverse transcriptase
     Objective: To prepare the siRNA expression plasmid targeting human telomerase reversetranscriptase for gene transfection.
     Methods: An interference target sequence GCATTCCTGCTCAAGCTGA was designed,which aimed at hTERT gene, and then two strands of oligonucleotides were synthesizedwhich including the sequence above.The sequence of the oligonucleotides contained theparts as follow: the BamHⅠsite, positive-sense sequence, loop sequence, antisensesequence, the terminator of RNA polymeraseⅢ, the Sa1Ⅰsite and the HindⅢsite.Thetwo strands of oligonucleotides formed a double-strand DNA after annealing.ThepGenesil-1 plasmid was digested with BamHⅠand HindⅢ, and then purified and retrievedthe 4800bp linear plasmid by agarose electrophoresis separation.The double-strand DNAwas inserted downstream from the U6 promoter of the linear plasmid.The siRNAexpression vector pGenesil-hTERT was constructed.The susceptible E.coli DH5a whichwas prepared by CaCl_2 method.Then, the recombinant plasmid was transfected into thesusceptible E.coli DH5a, and the positive colonies were chosen.The extracted recombinantwas digested by Sa1Ⅰand PstⅠrespectively, and analyzing the result by agarose gelelectrophoresis and DNA sequencing.With alkaline lysis method, plasmids were extractedon a large scale and measured for purity and quantity with spectrophotometer.
     Results: A linear plasmid vector strip about 4800bp could been seen through agarose gelelectrophoresis analysis after the pGenesil-1 plasmid had been digested with BamHⅠandHindⅢ.The two plasmids were digested by Sa1Ⅰand PstⅠrespectively.Electrophoresis showed that the recombinant plasmid could be digested by Sa1Ⅰand yield a nearly 400bpfragment but could not be digested by PstⅠ.The negative Control recombinant plasmidcould not be digested by Sa1Ⅰbut could be digested by PstⅠand yield a nearly 400bpfragment.The sequencing identification proved that the designed sequence had insertedinto the predicted site precisely.The OD260/280 ratios of all the extracted plasmids rangedfrom 1.8 to 2.0 and the concentration from 1.30μg/μl to 1.77μg/μl.
     Conclusions: The synthesized shRNA interference sequence cloned to pGenesil-1expression plasmid precisely, and the siRNA expression plasmid that aimed at hTERT wasconstructed successfully.The pGenesil-hTERT can provide new method to the research ofeffect of telomerase in tumor cell.Purity and quantity of pGenesil-hTERT extracted withalkaline lysis method meet the requirement of gene transfection.
     ExperimentⅡSurface modification and binding with DNA of hydroxyapatitenanoparticles
     Objective: To synthesize hydroxyapatite nanoparticles (nHAP) modified withpoly-L-lysine (PLL), and investigate the feasibility of surface modification of nHAP andthe capability of nHAP in combining and protecting DNA.
     Methods: The nHAP were synthesized by the ultrasound-assisted homogeneousprecipitation method.The structure of the nanoparticles was observed under transmissionelectron microscope.The resulting nHAP were modified with PLL in various PH solution.Zeta potential of nHAP and nHAP modified with poly-L-lysine (nHAP-PLL) was detectedrespectively.The nHAP-PLL were tested for the capacity of combining DNA by measuringDNA concentration in supernatant after centrifugation.The capacity of protecting DNA of nHAP-PLL was tested by the experiment of DNA degradation.
     Results: The synthesized hydroxyapatite particles presented well dispersed particles withevenly distributed sizes of (15~20)nm×(60~80)nm under transmission electronmicroscope.Pretreated by Na_2CO_3, nHAP were effectively modified with PLL in PH7.4and PH7.6 solution.The Zeta potential of nHAP was (-42.4±7.5)mV.The Zeta potentialof nHAP-PLL was (8.5±1.5)mV.The Zeta potential of nHAP-PLL was significantlyhigher than that of nHAP (P<0.01).DNA binding test showed that nHAP-PLL couldcompletely combine DNA when the weight/weight ratio of nHAP-PLL and DNA was morethan 20:1.The nHAP-PLL/DNA mixtures with weight/weight ratio upwards of 20:1 couldeffectively protect DNA against being digested by DNaseⅠ.
     Conclusions: Through ultrasound-assisted homogeneous precipitation method, nHAP canbe synthesized with well dispersed particles and evenly distributed sizes.The Na_2CO_3pretreated nHAP can be well surface-modified with Poly-L-lysine and effectively combineand protect DNA.
     ExperimentⅢHydroxyapatite nanoparticles mediated gene transfection to A549human lung cancer cells in vitro
     Objective: To investigate the capability of nHAP-PLL as a carrier for gene transfection toA549 human lung cancer cells in vitro.
     Methods: The nanoplexes of nHAP-PLL-DNA were made according to methods ofexperiment tow.The transfection of pGenesil-hTERT into A549 was divided into threegroups as follows: nHAP-PLL group mediated by hydroxyapatite nanoparticles modifiedwith poly-L-lysine (nHAP-PLL), liposome group mediated by Lipofectamine and control group.After 48 hours transfection, the expression of EGFP was observed with fluorescentmicroscope.Flow cytometry was used to detect the transfection rate of each group.
     Results: under fluorescent microscope, the expression of EGFP was detected in A549 cellsof nHAP-PLL group and liposome group while no expression of EGFP was seen in A549cells of control group at 48 hours after transfection.Flow cytometry analyses showed that,the transfection rate of A549 cells was (31.8±1.9)% of nHAP-PLL group and (33.4±3.7)% of liposome group.Compared with the control group, there was significantdifference respectively (P<0.01), but there was no significant difference of transfection ratebetween the nHAP-PLL group and liposome group (P>0.01).
     Conclusion: The nHAP modified with poly-L-lysine can mediate the transfection ofplasmid into A549 human lung cancer cells in vitro and may be used as a potential genecarrier.
     ExperimentⅣHydroxyapatite nanoparticles mediated human telomerase reversetranscriptase RNA interference of A549 human lung cancer cells in vitro
     Objective: To investigate the effect of nHAP mediated human telomerase reversetranscriptase RNA interference of A549 human lung cancer cells in vitro
     Methods: The nanoplexes of nHAP-PLL-DNA were made according to methods ofexperiment tow.The transfection of pGenesil-hTERT into A549 was divided into fourgroups as follows: nHAP-PLL group mediated by hydroxyapatite nanoparticles modifiedwith poly-L-lysine (nHAP-PLL), liposome group mediated by Lipofectamine, nHAP groupmediated by hydroxyapatite nanoparticles and control group.The growth ability of cellswas assayed with methyl thiazolyl tetrazolium method.The level of hTERT mRNA was examined by RT-PCR.The expression level of hTERT protein was analyzed by Westernblotting.Telomerase activity was detected by TRAP-ELISA.Flow cytometry was used todetect the apoptosis ratio of A549.
     Results: The proliferation of A549 cells of nHAP-PLL group, liposome group and nHAPgroup were obviously inhibited as compared with the control group (P<0.05).Theinhibition rate of nHAP-PLL group was more than the other groups.There was a significantdifference of inhibition rate between the nHAP-PLL group compared with the liposomegroup and nHAP group (P<0.05).The level of hTERT mRNA, hTERT protein andtelomerase activity had similar varietal tendencies with the results of proliferation of eachgroup.Flow cytometry showed the apoptosis ratio of nHAP-PLL group, liposome group,nHAP group and control group was (28.1±1.4)%, (19.2±1.3)%, (10.9±1.2)% and(0.3±0.2)% respectively.There was a significant difference of apoptosis ratio between thenHAP-PLL group, liposome group and nHAP group compared with the control group(P<0.05).In contrast to the nHAP-PLL group, the liposome group and nHAP groupdemonstrated a significantly lower apoptosis rate (P<0.05).
     Conclusion: Hydroxyapatite nanoparticles can induce apoptosis of A549 human lungcancer cells in vitro.A549 cells overexpress human telomerase reverse transcriptase,hTERT may be a target for inhibiting proliferation of A549.Hydroxyapatite nanoparticleshave some characters as follow: inhibiting proliferation of A549, combining and protectingDNA and mediating hTERT RNA interference of A549.Therefore, hydroxyapatitenanoparticles may be a useful material in the field of lung cancer gene therapy.
引文
[1] Anderson WF, Blaese RM, Culver K. The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, July 6, 1990. Hum Gene Ther, 1990, 1(3);331-362
    [2] Ogris M, Wagner E. Tumor-targeted gene transfer with DNA polyplexes. Somat Cell Mol Genet, 2002, 27(1-6):85-95
    [3] Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 2000, 18(1):33-37
    [4] Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther, 2004, 4(4):357-372
    [5] Marshall E. Gene therapy death prompts review of adenovirus vector. Science, 1999, 286(5448):2244-2245
    [6] Rubanyi GM. The future of human gene therapy. Mol Aspects Med, 2001, 22(3):113-142
    [7] Masotti A, Mossa G, Cametti C, et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces, 2009, 68 (2):136-144
    [8] Zhang Q, Li Y, ShiY, et al. HVJ envelope vector, a versatile delivery system: its development, application, and perspectives. Biochem Biophys Res Commun, 2008, 373(3):345-349
    [9] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science, 1995, 270(5235):404-410
    [10] 克莱邦德 KJ.纳米材料化学.第1版.陈建峰,邵磊,刘晓林,等译.北京:化学工业出版社,2004.1-12
    [11] Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release, 1998, 53 (1-3):137-143
    [12] Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, :characterization and transfection efficiency. J Control Release, 2001, 70(3):399-421
    [13] Nafee N, Taetz S, Schneider M, et al. Chitosan-coated PLGA nanoparticies for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine, 2007, 3(3):173-183
    [14] Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A, 2005, 102(2):279-284
    [15]李世普.生物医用材料导论.第1版.武汉:武汉工业大学出版社,2000.88-123
    [16]LiuZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003, 9(9):1968-1971
    [17]Aves EP, Estevez GF, Sader MS, et al. Hydroxyapatite coating by sol-gel on Ti-6Al-4V alloy as drug carrier. J Mater Sci Mater Med, 2009, 20 (2):543-547
    [18]Gemeinhart RA, Luo D, Saltzman WM. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog, 2005, 21(2):532-537
    [19]Ahmed A, Tollefsbol T. Telomeres, telomerase, and telomerase inhibition: clinical implications for cancer. J Am Geriatr Soc, 2003, 51(1):116-122
    [20]Shay JW, Keith WN. Targeting telomerase for cancer therapeutics. Br J Cancer, 2008, 98(4):677-683
    [21]Pasrija T, Srinivasan R, Behera D, et al. Telomerase activity in sputum and telomerase and its components in biopsies of advanced lung cancer. Eur J Cancer, 2007, 43(9):1476-1482
    [22]Chen KY, Lee LN, Yu CJ, et al. Elevation of telomerase activity positively correlates to poor prognosis of patients with non-small cell lung cancer. Cancer Lett, 2006, 240(1):148-156
    [1] Mclntyre GJ, Fanning GC. Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol, 2006, 6:1
    [2] 萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,等.分子克隆实验指南.第2版.金冬雁,黎孟枫 主译.北京,科学出版社,1992.55-56
    [3] Spankuch B, Strebhardt K. RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy. Curr Pharm Des, 2005, 11(26):3405-3419
    [4] Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110(5):563-574
    [5] Shi Y. Mammalian RNAi for the masses. Trends Genet, 2003, 19(1):9-12
    [6] Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets, 2007, 8(3):469-482
    [7] Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A, 2002, 99(9):6047-6052
    [8] Wadhwa R, Kaul SC, Miyagishi M, et al. Vectors for RNA interference. Curt Opin Mol Ther, 2004, 6(4):367-372
    [9] Phipps KM, Martinez A, Lu J. Small interfering RNA molecules as potential anti-human rhinovirus agents: in vitro potency, specificity, and mechanism. Antiviral Res, 2004, 61(1):49-55
    [10] Gilmore IR, Fox SP, Hollins AJ, et al. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target, 2004, 12(6):315-340
    [11] McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002, 3(10):737-747
    [12] Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol, 2002, 20(5):505-508
    [13] Chaperon DN. A method for the construction of in frame substitutions in operons: deletion of the essential Escherichia coli holB gene coding for a subunit of the DNA polymerase Ⅲholoenzyme. J Microbiol Methods, 2006, 65(1):127-134
    [1] 顾汉卿,徐国风.生物医学材料学.第1版.天津:天津科技翻译出版公司,1993.420-428
    [2] 李世普.生物医用材料导论.第1版.武汉:武汉工业大学出版社,2000.88-123
    [3] Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003, 9(9):1968-1971.
    [4] Fu Q, Zhou N, Huang W, et al. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement. J Mater Sci Mater Med, 2004, 15(12):1333-1338
    [5] 兰青,尹美珍,李世普.纳米羟基磷灰石对肝癌细胞端粒酶基因表达的影响.武汉理工大学学报,2007,29(5):46-48
    [6] Ayes EP, Estevez GF, Sader MS, et al. Hydroxyapatite coating by sol-gel on Ti-6Al-4V alloy as drug carrier. J Mater Sci Mater Med, 2009, 20(2):543-547
    [7] Liu TY, Chen SY, Liu DM, et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery, J Control Release, 2005, 107(1):112-121
    [8] Gemeinhart RA, Luo D, Saltzman WM. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog, 2005, 21(2):532-537
    [9] Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A, 2005, 102(2):279-284
    [10] Zhu SG, Xiang JJ, Li XL, et al.Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol Appl Biochem, 2004, 39 (Pt 2):179-187
    [11] Krisanapiboon A, Buranapanitkit B, Oungbho K. Biocompatability of hydroxyapatite composite as a local drug delivery system. J Orthop Surg, 2006, 14(3):315-318
    [12] 任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报,2002,21(1):38-43
    [13] 吕奎龙,孟祥才,李星逸,等.纳米羟基磷灰石制备的研究进展.佳木斯大学学报(自然科学版),2002,20(4):384-388
    [14] Takeuchi A, Ohtsuki C, Miyazaki T, et al. Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin. J R Soc Interface, 2005, 2(4):373-378
    [15] Vijayalakshmi U;Prabakaran K;Rajeswari S. Preparation and characterization of sol-gel hydroxyapatite and its electrochemical evaluation for biomedical applications. J Biomed Mater Res A, 2008, 87(3):739-749
    [16] Greish YE, Bender JD, Lakshmi S, et al. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials, 2005, 26 (1):1-9
    [17] Almirall A, Larrecq G, Delgado JA et al. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials, 2004, 25(17):3671-3680
    [18] Park YM, Shin BA, Oh IJ. Poly(L-lactic acid)/polyethylenimine nanoparticles as plasmid DNA carriers. Arch Pharm Res, 2008, 31(1):96-102
    [19] Uota M, Arakawa H, Kitamura N, et al. Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir, 2005, 21(10):4724-4728
    [20] Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release, 1998, 53 (1-3):137-143
    [21] Ramsay E, Gumbleton M. Polylysine and polyornithine gene transfer complexes: a study of complex stability and cellular uptake as a basis for their differential in-vitro transfection efficiency. J Drug Target, 2002, 10(1):1-9
    [22] Ghosh PS, Kim CK, Han G, et al. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2008, 2(11):2213-2218
    [23] Liu G, Molas M, Grossmann GA, et al. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem, 2001, 276(37):34379-34387
    [24] Jabbarzadeh E, Nair LS, Khan YM, et al. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption. J Biomater Sci Polym Ed, 2007,18(9):1141-1152
    [25] Olbrich C, Bakowsky U, Lehr CM, et al. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release, 2001, 77(3):345-355
    [26] Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 2000, 18(1):33-37
    [27] Shankaran DR, Miura N. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters. Recent Pat Nanotechnol, 2007, 1(3):210-223
    [28] Luo D, Han E, Belcheva N, et al. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release, 2004, 95(2):333-341
    [29] de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther, 2008,15(9):668-676
    [30] Zhang C, Newsome JT, Mewani R, et al. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol, 2009, 480:65-83
    [1] Brandtner EM;Kodajova P;Hlavaty J, et al. Reconstituting retroviral (ReCon) vectors facilitating delivery of cytotoxic genes in cancer gene therapy approaches. J Gene Med, 2008, 10(2):113-122
    [2] Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 2000, 18(1):33-37
    [3] Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther, 2004, 4(4):357-372
    [4] Masotti A, Mossa G, Cametti C, et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces, 2009, 68(2):136-144
    [5] 克莱邦德KJ.纳米材料化学.第1版.陈建峰,邵磊,刘晓林,等译.北京:化学工业出版社,2004.1-12
    [6] Zhang C, Newsome JT, Mewani R, et al. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol, 2009, 480:65-83
    [7] de. la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther, 2008, 15(9):668-676
    [8] Roy I, Ohulchanskyy TY, Bharali D J, et al.Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A, 2005, 102(2):279-284
    [9] Gemeinhart RA, Luo D, Saltzman WM. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog, 2005, 21(2).:532-537
    [10] Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc NatlAcad Sci U S A, 2005,102(2):279-284
    [11] Luo D, Han E, Belcheva N, et al. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release, 2004, 95(2):333-341
    [12] 孙恩杰,杨冬.非病毒型基因载体研究进展.中国生物工程杂志,2004,24(4):21-25
    [13] Yoshimura K, Rosenfeld MA, Nakamura H, et al. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid-mediated gene transfer. Nucleic Acids Res, 1992, 20(12):3233-3240
    [14] Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther, 1999, 6(4):595-605
    [15] Tang MX, Li W, Szoka FC Jr. Toroid formation in charge neutralized flexible or semi-flexible biopolymers: potential pathway for assembly of DNA carriers. J Gene Med, 2005, 7(3):334-342
    [16] Liu G, Molas M, Grossmann GA, et al. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem, 2001, 276(37):34379-34387
    [17] Koltover I, Wagner K, Safinya CR. DNA condensation in two dimensions. Proc Natl Acad Sci U S A, 2000, 97(26):14046-14051
    [18] Plank C, Mechtler K, Szoka FC Jr, et al. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther, 1996, 7(12):1437-1446
    [19] Ward CM, Read ML, Seymour LW. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood, 2001, 97(8):2221-2229
    [20] Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther, 1997, 4(8):823-832
    [21] Ren J, Zhao P, Ren T, et al. Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med, 2008,19(3):1075-1082
    [22] Hong Z, Zhang P, He C, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials, 2005, 26(32):6296-6304
    [23] Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 2007, 28(22):3338-3348
    [1] Takakura M, Kyo S, Kanaya T, et al. Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res, 1998, 58(7):1558-1561
    [2] Yokoyama Y, Wan X, Takahashi Y, et al. Alternatively spliced variant deleting exons 7 and 8 of the human telomerase reverse transcriptase gene is dominantly expressed in the uterus. Mol Hum Reprod, 2001, 7(9):853-857
    [3] Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis, 2003, 9:210-216
    [4] Sidahmed AM, Wilkie BN. Control of cytokine gene expression using small RNA interference: blockade of interleukin-10 and interferon-gamma gene expression in pig cells. Vet Immunol Immunopathol, 2007,117(1-2):86-94
    [5] Sioud M, Sorensen DR. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun, 2003, 312 (4):1220-1225
    [6] Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol, 2003, 327 (4):761-766
    [7] Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193):2011-2015
    [8] Looi LM, Ng MH, Cheah PL. Telomerase activation in neoplastic cell immortalization and tumour progression. Malays J Pathol, 2007, 29(1):33-35
    [9] Hiyama K, Hiyama E, Ishioka S, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst, 1995, 87(12):895- 902
    [10] Taga S, Osaki T, Ohgami A, et al. Prognostic impact of telomerase activity in non-small cell lung cancers. Ann Surg, 1999, 230(5):715-720
    [11] Kurth I, Cristofari G, Lingner J. An affinity oligonucleotide displacement strategy to purify ribonucleoprotein complexes applied to human telomerase. Methods Mol Biol, 2008, 488:9-22
    [12] Iwado E, Daido S, Kondo Y, et al. Combined effect of 2-5A-linked antisense against telomerase RNA and conventional therapies on human malignant glioma cells in vitro and in vivo. Int J Oncol, 2007, 31(5):1087-1095
    [13] Han M, Chen JL, Hu Y, et al. In vitro and in vivo tumor suppressive activity induced by human telomerase transcriptase-targeting antisense oligonucleotides mediated by cationic liposomes. J Biosci Bioeng, 2008,106(3):243-247
    [14] Zaffaroni N, Villa R, Pennati M, et al. Approaches for the inhibition of human telomerase based on the use of peptide nucleic acids and hammerhead ribozymes. Mini Rev Med Chem, 2003, 3(1):51-60
    [15] Li S, Nosrati M, Kashani-Sabet M. Knockdown of telomerase RNA using hammerhead ribozymes and RNA interference. Methods Mol Biol, 2007, 405:113-131
    [16] Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm, 2004, 57(1):1-8
    [17] Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol, 2000, 18(1):33-37
    [18] Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther, 2004, 4(4):357-372
    [19] Marshall E. Gene therapy death prompts review of adenovirus vector. Science, 1999, 286(5448):2244-2245
    [20] Alesci S, Ramsey WJ, Bornstein SR, et al. Adenoviral vectors can impair adrenocortical steroidogenesis: clinical implications for natural infections and gene therapy. Proc Natl Acad Sci U S A, 2002, 99(11):7484-7489
    [21]Masotti A, Mossa G, Cametti C, et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces, 2009, 68(2):136-144
    [22]克莱邦德 KJ.纳米材料化学.第1版.陈建峰,邵磊,刘晓林,等译.北京:化学工业出版社,2004.1-12
    [23]Nafee N, Taetz S, Schneider M, et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine, 2007, 3(3):173-183
    [24]de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther, 2008, 15(9):668-676
    [25]Zhang C, Newsome JT, Mewani R, et al. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol, 2009, 480:65-83
    [26]李世普.生物医用材料导论.第1版.武汉:武汉工业大学出版社,2000.88-123
    [27]Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003, 9(9):1968-1971
    [28]Fu Q, Zhou N, Huang W, et al. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement. J Mater Sci Mater Med, 2004, 15(12):1333-1338
    [29]兰青,尹美珍,李世普.纳米羟基磷灰石对肝癌细胞端粒酶基因表达的影响.武汉理工大学学报,2007,29(5):46-48
    [30]Liu TY, Chen SY, Liu DM, et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery, J Control Release, 2005, 107(1):112-121
    [31]Aves EP, Estevez GF, Sader MS, et al. Hydroxyapatite.coating by sol-gel on Ti-6Al-4V alloy as drug carrier. J Mater Sci Mater Med, 2009, 20(2):543-547
    [32] Yang P, Quan Z, Li C, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29(32):4341-4347
    [1] Krisanapiboon A, Buranapanitkit B, Oungbho K. Biocompatability of hydroxyapatite composite as a local drug delivery system. J Orthop Surg, 2006, 14(3):315-318
    [2] Tonegawa T, Ikoma T, Chen G, et al. Synthesis and characterization of metal ions containing hydroxyapatite microparticles with high specific surface area. J Nanosci Nanotechnol, 2007, 7(3):839-843
    [3] 白春礼.纳米科技现在与未来.第1版.成都:四川教育出版社,2001:16-17
    [4] Jordan A. Nanotechnology and consequences for surgical oncology. Kongressbd Dtsch Ges Chir Kongr, 2002, 119:821-828
    [5] Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis.Proc Natl Acad Sci U S A, 2008, 105(27):9343-9348
    [6] Sullivan DC, Ferrari M. Nanotechnology and tumor imaging: seizing an opportunity. Mol Imaging, 2004, 3(4):364-369
    [7] Jin S, Ye K. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog, 2007, 23(1):32-41
    [8] Silvestri GA, Rivera MP. Targeted therapy for the treatment of advanced non-small cell lung cancer: a review of the epidermal growth factor receptor antagonists. Chest, 2005, 128(6):3975-3984
    [9] Doi Y, Aoba T, Okazaki M, et al. Analysis of paramagnetic centers in X-ray-irradiated enamel, bone, and carbonate-containing hydroxyapatite by electron Spin resonance spectroscopy. Calcif Tissue Int, 1979, 28(2):107-112
    [10] Jarcho M, Bolen CH, Thomas MB, et al. Hydroxyapatite synthesis and characterization in dense polycrystalline form. J Mater Sci, 1976, 11:2027-2053
    [11] #12
    [12]Zhang S, Gonsalves KE. Preparation and Characterization of thermally stable nanohydroxyapatite. J Mater Sci Mater Med, 1997, 8(1):25-28
    [13]郑岳华,侯小妹,杨兆雄.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报,1995,14(3):20-24
    [14]李世普.生物医用材料导论.第1版.武汉:武汉工业大学出版社,2000.88-123
    [15]Murry MGS, Wang J, Ponton CS. An improvement in processing of hydroxyapatite ceramics. Journal of Materials Science. 1995, 30(12):3061-3075
    [16]Chen X, Deng C, Tang S, et al. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric Cancer SGC-7901 cells. Biol Pharm Bull, 2007, 30(1):128-132
    [17]任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报,2002,21(1):38-43
    [18]吕奎龙,孟祥才,李星逸,等.纳米羟基磷灰石制备的研究进展.佳木斯大学学报(自然科学版),2002,20(4):384-388
    [19]Yeon KC, Wang J, Ng SC. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials, 2001, 22(20):2705-2712
    [20]Morgan H, Wilson RM, Elliott JC, et al. Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials, 2000, 21(6):617-627
    [21]施尔畏,夏长泰,王步国,等.水热法的应用与发展.无机材料学报,1996,11(2):193-206
    [22]Fan Zhang, Zhuo-Hua Zhou, Shi-Ping Yang, et al. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Materials Letters, 2005(59):1422-1425
    [23]王友法,闫玉华,梁飞,等.水热条件下针状羟基磷灰石单晶体的均相合成.硅酸盐通报,2001,20(2):30-33
    [24]Anna Slosarczyk, Ewa Stobierska, Zofia Paszkiewicz, et al. Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios. J Am Ceram Soc, 1996, 79(10):2539-2544
    [25]Liu DM. Fabrication of hydroxyapatite ceramic with controlled porosity. J Mater sci Mater Med, 1997, 8(4):227-232
    [26]王学江,江建新,李玉宝,等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000,11:92-94
    [27]江昕,韩颖超,李世普,等.快速均匀沉淀法制备纳米级HAP粉末.硅酸盐通报,2002,21(1):44-46
    [28]Bezzi G, Celotti G, Landi, E, et al. A novel sol-gel technique for hydroxyapatite precipitation. Materials Chemistry and Physics, 2003, 78(3):816-824
    [29]Wang D, Chen C, He T, et al. Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method. J Mater Sci Mater Med, 2008, 19(6):2281-2286
    [30]Koumoulidis GC, Katsoulidis AP, Ladavos AK, et al. Preparation of hydroxyapatite via microemulsion route. J Colloid Interface Sci, 2003, 259(2):254-260
    [31]任卫,李世普,王友法,等.超细羟基磷灰石颗粒的反相微乳液合成.硅酸盐通报,2002,21(6):27-31
    [32]Capuccini C, Torricelli P, Sima F, et al. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater, 2008, 4(6):1885-1893
    [33]Lilley KJ, Gbureck U, Knowles JC, et al. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med, 2005, 16(5):455-460
    [34]Sugiyama S, Matsumoto H, Ichii T, et al. Enhancement of Lead-Barium Exchangeability of Barium Hydroxyapatite. J Colloid Interface Sci, 2001, 238(1):183-187
    [35]Wei M, Evans JH, Bostrom T, et al. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med, 2003, 14(4):311-320
    [36]Najdoski MZ, Majhi P, Grozdanov IS. A simple chemical method for preparation of hydroxyapatite coatings on. Ti6Al4V substrate. J Mater Sci Mater Med, 2001, 12(6):479-483
    [37]Lin FH, Liao CJ, Chen KS, et al. Preparation of high-temperature stabilized beta-tricalcium phosphate by heating deficient hydroxyapatite with Na_4P_2O_7 x 10H_2O addition. Biomaterials, 1998, 19(11-12):1101-1107
    [38]张立德.超微粉体制备与应用技术.第1版.北京:中国石油出版社,2001.125-127
    [39]Xu Q, Tanaka Y, Czemuszka JT. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials, 2007, 28(16):2687-2694
    [40]Fujii S, Okada M, Furuzono T. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials. J Colloid Interface Sci, 2007, 315(1):287-296
    [41]沈卫,顾燕芳,刘昌胜,等.羟基磷灰石的表面特性.硅酸盐通报,1996,15(1):45-52
    [42]Huang J, Best SM, Bonfield W, et al. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med, 2004, 15(4):441-445
    [43]李吉东,左奕,邹琴,等.纳米羟基磷灰石/聚酰胺复合材料屏障膜的体外生物相容性.复合材料学报,2009,26(2):131-137
    [44]林晓艳,范红松,李旭东,等.纳米羟基磷灰石/胶原复合材料的制备及生物学评价.中国生物医学工程学报,2006,25(1):63-68
    [45]刘琳,孔祥东,蔡玉荣,等.纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物相容性研究.化学学报,2008,66(16):1919-1923
    [46]Yuan Q, Venkatasubramanian R, Hein S, et al. A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater, 2008, 4(4): 1024-1037
    [47]Itokazu M, Kumazawa S, Wada E, et al. Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteogenic sarcoma in mice. Cancer Lett, 1996, 107(1):11-18
    [48]王永峰,靳安民,魏坤,等.抗感染纳米羟基磷灰石局部药物缓释微球的研制及体外释药实验.南方医科大学学报,2006,26(6):754-756
    [49]Liu TY, Chen SY, Liu DM, et al. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drag delivery. J Control Release, 2005, 107(1):112-121
    [50]朱晒红,周科朝,黄伯云,等.羟基磷灰石纳米颗粒:一种新型基因转染载体材料.生物医学工程学杂志,2005,22(5):980-984
    [51]Hideki A, Masataka O, Seisuke K. Effects of HAP-sol on cell growth. Report of the Institute for Medical and Dental Engineering, 1992, 26:15-21
    [52]Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett, 2006, 6(4):587-591
    [53]Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett, 2006, 6(6):1121-1125
    [54]Wang L, Mao J, Zhang GH, et al. Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. World J Gastroenterol, 2007, 13(29):4011-4014
    [55]Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, et al. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials, 2005, 26(15):2685-2694
    [56]Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng, 2005, 100(1):1-11
    [57]Hideki A, Masataka O. Effects of adriacin-adsorbing HAP-sol on Ca-9 cell growth. Reports of the Institute for Medical and Dental Engineering, 1993, 27:39-44
    [58]Fu Q, Zhou N, Huang W, et al. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale .hydroxyapatite bone cement. J Mater SciMater Med, 2004, 15(12):1333-1338
    [59]Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol, 2003, 9(9):1968-1971
    [60]张士成,李世普,陈芳.磷灰石超微粉对癌细胞作用的初步研究.武汉工业大学学报,1996,18(1):5-8
    [61]魏凤香,张涛,李红枝,等.羟基磷灰石纳米粒子诱导肝癌SMMC-7721细胞凋亡后bcl-2和bax表达的变化.中国老年学杂志,2008,28(13):1261-1263
    [62]王培军,罗佳滨,吕冬霞.羟基磷灰石纳米粒子对肝癌H22小鼠肿瘤细胞凋亡的研究.解剖学研究,2007,29(3):168-170
    [63]刘志苏,唐胜利,艾中立,等.羟基磷灰石纳米粒子诱导人肝癌细胞凋亡模型的构建.世界华人消化杂志,2003,11(9):1357-1361
    [1] Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell, 2007, 130(2):223-233
    [2] Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov, 2002, 1(5):383-393
    [3] 陈意生,史景泉.肿瘤分子细胞生物学.第2版.北京:人民军医出版社,2004.126-143
    [4] Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 1997, 88(5):657-666
    [5] Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4):503-514
    [6] Chong L, van Steensel B, Broccoli D, et al. A human telomeric protein. Science, 1995, 270(5242):1663-1667
    [7] Zakian VA. Telomeres: beginning to. understand the end. Science, 1995, 270(5242):1601-1607
    [8] Chiu CP, Harley CB, Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med, 1997, 214(2):99-106
    [9] Panarese S, Brunetti B, Sarli G. Evaluation of telomerase in canine mammary tissues by immunohistochemical analysis and a polymerase chain reaction-based enzyme-linked immunosorbent assay. J Vet Diagn Invest, 2006, 18(4):362-368
    [10] Collins K, Kobayashi R, Greider CW. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell, 1995, 81(5):677-686
    [11] Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell, 1989, 59(3):521-529
    [12] Taga S, Osaki T, Ohgami A, et al. Prognostic impact of telomerase activity in non-small cell lung cancers. Ann Surg, 1999, 230(5):715- 720
    [13] Hiyama K, Hiyama E, Ishioka S, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst, 1995, 87(12):895-902
    [14] Dejmek A, Yahata N, Ohyashiki K, et al. Correlation between morphology and telomerase activity in cells from exfoliative lung cytologic specimens. Cancer, 2000, 90(2):117-125
    [15] Marchetti A, Bertacca G, Buttitta F, et al. Telomerase activity as a prognostic indicator in stage Ⅰnon-small cell lung cancer. Clin Cancer Res, 1999, 5(8):2077-2081
    [16] Yashima K, Litzky LA, Kaiser L, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res, 1997, 57(12):2373-2377
    [17] Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 1997, 91(1):25-34
    [18] Kawashima T, Kagawa S, Kobayashi N, et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res. 2004,10(1 Pt 1):285-292
    [19] Kawashima T, Kagawa S, Kobayashi N, et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res, 2004,10(1 Pt 1):285-292
    [20] Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: a phase Ⅰ/Ⅱstudy in patients with non-small cell lung cancer. Cancer Immunol Immunother, 2006, 55(12):1553-1564
    [21] Tajima K, Ito Y, Demachi A, et al. Interferon-gamma differentially regulates susceptibility of lung cancer cells to telomerase-specific cytotoxic T lymphocytes. Int J Cancer, 2004,110(3):403-412
    [22] Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science, 1995, 269(5228):1236-1241
    [23]Song JS, Kim SB, Lee YH, et al. Adenovirus-mediated antisense expression of telomerase template RNA induces apoptosis in lung cancer cells. J Microbiol Biotechnol, 2002, 12(1):89-95
    [24]何剑,陈琼,易红,等.端粒酶的反义核苷酸抑制肺癌细胞端粒酶活性的研究.中国现代医学杂志,2004,14(11):14-17
    [25]Ma XB, Han WD, Hao HJ, et al. Inhibitory effect of antisense human telomerase reverse transcriptase(hTERT) on telomerase activity of human pulmonary giant cell carcinoma cell line(PLA-801D). Ai Zheng, 2003, 22(9):932-937
    [26]Tian FJ, Wang ZY, Ma JY, et al. Inhibition of anti-sense human telomerase reverse transcriptase (hTERT) retroviral vector on lung cancer cells. Ai Zheng, 2004, 23(5):545-549
    [27]Horikawa I, Cable PL, Afshari C, et al. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res, 1999, 59(4):826-830
    [28]Yazawa K;Fisher WE;Brunicardi FC. Current progress in suicide gene therapy for cancer. World J Surg, 2002, 26(7):783-789
    [29]Fillat C, Carrio M, Cascante A, et al. Suicide gene therapy mediated by the Herpes Simplex Virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther, 2003, 3(1):13-26
    [30]Song JS, Kim HP. Adenovirus-mediated HSV-TK gene therapy using the human telomerase promoter induced apoptosis of small cell lung cancer cell line. Oncol Rep, 2004, 12(2):443-447
    [31]王艳萍,唐小军,周清华,等.人端粒酶催化亚单位启动子调控自杀基因HSV-TK靶向性表达治疗肺癌的体内外实验研究.四川大学学报医学版,2008,39(5):701-705
    [32]Song JS. Adenovirus-mediated suicide SCLC gene therapy using the increased activity of the hTERT promoter by the MMRE and SV40 enhancer.Biosci Biotechnol Biochem, 2005, 69(1): 56-62
    [33]Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet, 2003, 362(9393): 1401-1403
    [34]Kosciolek BA, Kalantidis K, Tabler M, et al. Inhibition of telomerase activity in human cancer cells by RNA interference. Mol Cancer Ther, 2003, 2(3): 209-216
    [35]赵亚力,韩卫东,宋海静,等.A549肿瘤细胞中特异性hTERT-siRNA的干扰作用研究.解放军医学杂志,2004,29(8):670-673
    [36]Tian FJ, Wang ZY, Ma JY, et al. Inhibitory effect of hTERT dsRNA on telomerase activity in lung carcinoma cell line A549. Ai Zheng, 2005, 24(3): 257-261
    [37]Zou W, Liu C, Chen Z, et al. Studies on bioadhesive PLGA nanoparticles: A promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm, 2009, 370(1-2): 187-195
    [38]Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oncol Clin North Am, 2004, 18(1): 215-229
    [39]Christensen CL, Zandi R, Gjetting T, et al. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther, 2009, 9(4): 437-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700