用户名: 密码: 验证码:
In_2O_3稀磁半导体及其与La_(0.7)Ca_(0.3)MnO_3异质结构的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物基的稀磁半导体材料由于其在自旋电子学方面的潜在应用,近年来受到人们的广泛关注。In_2O_3作为一种宽禁带的透明半导体,人们希望利用过渡金属掺杂,能使其成为一种集光、电和磁于一体的自旋电子学材料,但人们对通过掺杂能否得到均相的稀磁半导体以及其磁性来源和机制等存在一定的争议。
     具有接近100%的自旋极化率和庞磁电阻效应的钙钛矿锰氧化物La_(0.7)Ca_(0.3)MnO_3,由于其在磁头、磁探测和磁随机存储器件等方面的潜在应用而成为自旋电子学的另一个研究热点。但由于其居里温度和金属-绝缘体的转变温度均低于室温,妨碍了它在实际器件当中的应用。因此提高La_(0.7)Ca_(0.3)MnO_3材料的居里温度和金属-绝缘体转变温度具有重要的意义。
     本论文采用固相反应、真空退火技术制备了(In_(1-x)Ni_x)_2O_3(x=0.03,0.06)粉末,研究了真空退火对Ni掺杂In_2O_3粉末结构和铁磁性的影响,并对样品的铁磁性来源和磁性机制进行了探讨。采用脉冲激光沉积技术制备了单层的La_(0.7)Ca_(0.3)MnO_3和La_(0.8)Sr_(0.2)MnO_3,比较了制备条件、厚度对其结构和性能的影响。选择La_(0.7)Ca_(0.3)MnO_3与具有室温铁磁性的In_2O_3稀磁半导体以及纯In_2O_3半导体等复合形成异质结构,研究不同的异质结构对La_(0.7)Ca_(0.3)MnO_3磁性及输运性质的影响。主要研究内容如下:
     (1)采用固态反应方法和真空退火技术制备了(In_(1-x)Ni_x)_2O_3(x=0.03,0.06)粉末。系统研究了Ni含量和真空退火对(In_(1-x)Ni_x)_2O_3粉末结构和磁性的影响。结果表明,空气烧结的样品显示顺磁性,经过真空退火后样品表现为明显的室温铁磁性,再经过空气退火铁磁信号消失,又真空退火后铁磁性又出现。因此样品的铁磁性被真空、空气退火调制呈“开”“关”状态,这说明样品的铁磁性与氧空位密切相关。X射线衍射、高分辨率透射电镜和场冷/零场冷测试表明真空退火样品的铁磁性不是来源于Ni团簇或者Ni的氧化物二次相。而纯的In_2O_3粉末无论是经历空气还是真空退火,样品均不显铁磁性。这些结果表明真空退火所产生的氧空位和Ni提供的局域自旋是In_2O_3粉末产生铁磁性的两个必不可少的因素,其磁性产生机制符合束缚磁极子模型。由于我们在真空退火的纯In_2O_3粉末中没有发现室温铁磁性,为了进一步探究d0磁性是否存在,我们对纯的ZnO、TiO_2及CuO粉末都进行了真空退火,结果显示这些纯氧化物粉末中均不显室温铁磁性。
     (2)采用脉冲激光沉积技术在SrTiO3(001)基片上制备了单层的La_(0.7)Ca_(0.3)MnO_3和La_(0.8)Sr_(0.2)MnO_3薄膜,分别研究了制备条件、薄膜厚度对样品磁性及输运性质的影响。结果表明:高的氧气分压对制备La_(0.8)Sr_(0.2)MnO_3和La_(0.7)Ca_(0.3)MnO_3化学计量比的外延薄膜非常重要;两种薄膜的饱和磁化强度、居里温度及金属-绝缘体转变温度均随着厚度的增加而增大。当厚度大于100nm时,La_(0.8)Sr_(0.2)MnO_3薄膜的居里温度和金属-绝缘体转变温度均大于300K,厚度为209nm的La_(0.8)Sr_(0.2)MnO_3薄膜在5T外场下的最大磁电阻值仅为37%。而无论厚度为多大的La_(0.7)Ca_(0.3)MnO_3薄膜的两个转变温度均远低于室温300K。例如45nm的La_(0.7)Ca_(0.3)MnO_3薄膜在5T外场下,其磁电阻值高达100%,但是其在该场下的金属-绝缘体转变温度仅为145K,居里温度为190K。
     (3)采用脉冲激光沉积技术在SrTiO3(001)基片上制备了La_(0.7)Ca_(0.3)MnO_3/(In_(0.95)Fe_(0.05))_2O_3异质结和La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)/In_2O_3三明治结构,这两种结构中Fe的原子含量基本相同。为了比较,我们还制备了La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)和La_(0.7)Ca_(0.3)MnO_3/In_2O_3两种异质结构,并研究了这些结构对La_(0.7)Ca_(0.3)MnO_3薄膜磁性和输运性质的影响。结果表明,与单层的La_(0.7)Ca_(0.3)MnO_3薄膜比较,三明治结构La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)/In_2O_3的饱和磁化强度和金属-绝缘体转变温度均有显著地提高,饱和磁化强度增大了约35%,在零场时的金属-绝缘体转变温度由75K增大到145K。然而,未覆盖In_2O_3的La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)样品,以及双层的La_(0.7)Ca_(0.3)MnO_3/In_2O_3和La_(0.7)Ca_(0.3)MnO_3/(In_(0.95)Fe_(0.05))_2O_3样品的饱和磁化强度均减小,而两个双层样品没有出现金属-绝缘体转变。另外,La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)的阻值很大,超出了107的测试极限。原子力显微镜和X射线光电子谱测试表明0.5nm的Fe形成了铁氧化物纳米点。由于铁氧化物纳米点中Fe离子自旋与La_(0.7)Ca_(0.3)MnO_3中Mn离子自旋之间的交换耦合作用,使得La_(0.7)Ca_(0.3)MnO_3/Fe (0.5nm)/In_2O_3样品的金属-绝缘体转变温度有了大幅度地提高。
     总之,我们制备出了具有室温铁磁性的(In_(1-x)Ni_x)_2O_3粉末,并对其磁性来源和机制进行了探讨,发现氧空位和局域自旋对其室温铁磁性缺一不可。我们成功将La_(0.7)Ca_(0.3)MnO_3的金属-绝缘体转变温度提高了约70K,虽然该转变温度仍然低于室温,这为实现强关联体系La_(0.7)Ca_(0.3)MnO_3材料在实际器件中的应用起到了一定的推动作用。
Oxide-based diluted magnetic semiconductors (DMSs) haverecently attracted heightened interest because of their promisingpotential in spintronics. In_2O_3is a transparent semiconductor with awide band gap. It is expected as a spintronics material integratingphotonic, electronic, and magnetic properties by transition metaldoping. However, the acquisition of the homogenous DMSs and theorigin of ferromagnetism (FM) are still controversial.
     La_(0.7)Ca_(0.3)MnO_3(LCMO), a representative manganite with colossalmagnetoresistance (MR) and spin polarization of100%, has attractedmuch attention because of its potential application in magnetic read,magnetic sensors and magnetic random access memory. However,the Curie temperature (Tc) and metal-insulator transition (MIT)temperature (Tp) of LCMO film are below room temperature. Theseproperties severely hinder the application of LCMO in practical device.So the enhancement of Tcand Tpis especially important.
     In this work,(In_(1-x)Ni_x)_2O_3(x=0.03,0.06) samples were prepared bysolid state reaction and a vacuum annealing process. The influencesof vacuum annealing on the structural and magnetic properties of (In_(1-x)Ni_x)_2O_3powders were studied. The origin and mechanism of FM insamples were discussed. The single-layer LCMO and La_(0.8)Sr_(0.2)MnO_3(LSMO) films were prepared by pulsed laser deposition technique. Theinfluences of preparation condition and thickness on the structureand properties of LCMO and LSMO films were compared. LCMO, In_2O_3DMSs with room temperature FM, and pure In_2O_3were combined toform different heterostructures. The influences of these structureson magnetic and transport properties of LCMO film were investigated.The results are summarized as follows:
     (1)(In_(1-x)Ni_x)_2O_3(x=0.03,0.06) samples were prepared by solid statereaction and a vacuum annealing process. The influences of Niconcentration and vacuum annealing on the structural and magneticproperties of (In_(1-x)Ni_x)_2O_3powders were studied. The air-sinteredsamples initially showed paramagnetism, and then exhibited obviousroom temperature FM after vacuum annealing. The ferromagneticsignal almost disappeared after air annealing and reappeared aftervacuum annealing. Hence, the FM can be switched “on” and “off” byalternate air and vacuum annealing. This finding indicates that theoxygen vacancies in the samples play a critical role in inducing FM.X-ray diffraction, high-resolution transmission electron microscopy,and field-cooled/zero-field-cooled measurements were performed.These analyses confirmed that there was no detectable trace of Ni orNi oxide secondary phase in vacuum-annealed (In_(1-x)Ni_x)_2O_3samples.No ferromagnetic signal emerged from pure In_2O_3powders regardlessof undergoing vacuum or air annealing. These results revealed thatoxygen vacancy from vacuum annealing and local spin from Ni dopingare two factors that indispensably affect the ferromagnetic properties of the Ni-doped In_2O_3system. The BMP mechanism suitablyexplains the FM in our vacuum-annealed (In_(1-x)Ni_x)_2O_3samples. Toexplore further the possibility of the existence of d0FM, the vacuumannealing for pure ZnO, TiO_2and CuO powders was carried out. Theresult indicated that all vacuum-annealed oxides powders didn’texhibit room temperature FM.
     (2) The single-layer LCMO and LSMO films were prepared by pulsedlaser deposition technique. The influences of preparation conditionand thickness on the structure, magnetic and transport properties ofLCMO and LSMO films were studied. The high oxygen partial pressureis very important to prepare the epitaxial LCMO and LSMO films withstoichiometric ratio. The saturation magnetization, Tcand Tpallincrease with increased thickness in the both films. Tcand Tpof LSMOfilm are above300K when the thickness is more than100nm. Themaximum MR value of209nm-thick LSMO film is37%at5T. Tcand Tpof LCMO film with various thicknesses are far lower than300K. Forexample, the maximum MR value of45nm-thick LCMO film can reach100%at5T, however the Tpand Tcare only145K and190K,respectively.
     (3) The LCMO/(In_(0.95)Fe_(0.05))_2O_3and LCMO/Fe (0.5nm)/In_2O_3heterostructures were deposited on single-crystal (001) orientedSrTiO3substrates using pulsed laser deposition. The total number ofFe atoms in both samples is almost the same. In order to comparewith them, the LCMO/Fe (0.5nm) and LCMO/In_2O_3heterostructures alsowere prepared. The influences of these structures on magnetic andtransport properties of LCMO film were investigated. Compared withthe LCMO single layer, remarkably enhanced magnetization and Tp were observed for the sandwich structure LCMO/Fe (0.5nm)/In_2O_3. Thesaturation magnetization increased by~35%, and the Tpincreasedfrom75K to145K at zero field. However, the saturationmagnetization all decreased for the LCMO/Fe (0.5nm), LCMO/In_2O_3andLCMO/(In_(0.95)Fe_(0.05))_2O_3heterostructures. The resistance of LCMO/Fe(0.5nm) is above107Ω exceeding the limit of our measurementcapacity, the samples LCMO/In_2O_3and LCMO/(In_(0.95)Fe_(0.05))_2O_3shownsemiconductor behavior. An extensive investigation of x-rayphotoelectron spectroscopy and atomic force microscope revealedthat sputtering0.5nm-thick Fe was oxidized and formed nanodots.Due to the exchange coupling between the Fe ions’ spins in ironoxides nanodots and the Mn’s spins in the LCMO, the Tpof LCMO/Fe(0.5nm)/In_2O_3sample was increased significantly.
     In summary, we have prepared (In_(1-x)Ni_x)_2O_3powders with roomtemperature FM, and discussed the origin and mechanism of FM. Theresult indicated that oxygen vacancy and local spin are twoindispensable factors effecting the induction of long-rangeferromagnetic coupling in Ni-doped In_2O_3. We have raised successfullythe Tpof LCMO by75K. Although the values of transition temperatureare still lower than room temperature, the enhancement is significant.It could act to push the strongly correlated LCMO material intopractical devices.
引文
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,A. Friederich, and J. Chazelas. Giant magnetoresistance of (001)Fe/(001)Cr magneticsuperlattices[J]. Phys. Rev. Lett.,1988,61:2472-2475.
    [2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinm. Enhanced magnetoresistance inlayered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B,1989,39:4828-4830.
    [3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L.Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: a spin-based electronics visionfor the future[J]. Science,2001,294:1488-1495.
    [4] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen.Thousandfold change in resistivity in magnetoresitive La-Ca-Mn-O films[J]. Science,1994,264:413.
    [5]刘俊明,王克锋.稀土掺杂锰氧化物庞磁电阻效应[J].物理学进展,2005,25(1):82-130.
    [6] H. Ohno. Making Nonmagnetic semiconductors ferromagnetic[J]. Science,1998,281(5379):951-956.
    [7] J. K. Furdyna. Diluted magnetic semiconductors[J]. J Appl. Phys.,1988,64:29-64.
    [8] R. L. Aggarwal, J. K. Furdyna, and S. Von Molnár. Dilute magnetic (semimagnetic)semiconductors[J]. Mater. Res. Soc. Proc.,1987,89:97-110.
    [9] S. Von Molnár, and D. Read. New materials for semiconductor spin-electronics[J].Proceedings of the IEEE,2003,91:715-726.
    [11]赵建华,邓加军,郑厚植.稀磁半导体的研究进展[J].物理学进展,2007,27(2):109-150.
    [12] J. K. Furdyna. Magnetic properties of diluted magnetic semiconductors: A review(invited)[J]. J. Appl. Phys.,1988,64:29-64.
    [13] H. Ohno, H. Munekata, T. Penney, S. von Molnár, and L. L. Chang. Magnetotransportproperties of p-type (In, Mn)As diluted magnetic III-V semiconductors[J]. Phys. Rev. Lett.,1992,68:2664-2667.
    [14] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye.(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs[J]. Appl. Phys. Lett.,1996,69:363.
    [15] L. Chen, X. Yang, F. H. Yang, J. H. Zhao, J. Misuraca, P. Xiong, and S. von Molnár.Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to200K viananostructure engineering[J]. Nano Lett.,2011,11:2584-2589.
    [16] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand. Zener Model description offerromagnetism in Zinc-Blende magnetic semiconductors[J]. Science,2000,287:1019-1022.
    [17] K. Ueda, H. Tabata, and T. Kawai. Magnetic and electric properties of transition-metaldoped ZnO films[J]. Appl. Phys. Lett.,2001,79(7):988-990.
    [18] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, T. Kawasaki, P.Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma. Room-temperature ferromagnetism intransparent transition Metal-doped Titanium dioxide[J]. Science,2001,291:854-856.
    [19] X. X. Wei, C. Song, K. W. Geng, F. Zeng, B. He, and F. Pan. Local Fe structure andferromagnetism in Fe-doped ZnO films[J]. J. Phys.: Condens. Matter.,2006,18:7471.
    [20] X. L. Li, Z. L. Wang, X. F. Qin, H. S. Wu, X. H. Xu, and G. A. Gehring. Enhancement ofmagnetic moment of Co-doped ZnO films by postannealing in vacuum[J]. J. Appl. Phys.,2008,103:023911.
    [21] X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A.M. Fox, and G. A. Gehring. Carrier-induced ferromagnetism in n-type ZnMnAlO andZnCoAlO thin films at room temperature[J]. New J. Phys.,2006,8:135.
    [22] X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, and W. Shi, Doping concentration dependenceof room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laserdeposition[J]. Appl. Phys. Lett.,2006,88:062508.
    [23] Y. J. Lee, M. P. de Jong, and R. Jansen. Magnetism and heterogeneity of Co in anataseCo: TiO2magnetic semiconductor[J]. Appl. Phys. Lett.,2010,96:082506.
    [24] Z. Wang, W. Wang, J. Tang, L. D. Tung, L. Spinu, and W. Zhou. Extraordinary Halleffect and ferromagnetism in Fe-doped reduced rutile[J]. Appl. Phys. Lett.,2003,83:518-520.
    [25] Z. Wang, J. Tang, Y. Chen, L. Spinu, W. Zhou, and L. D. Tung. Room-temperatureferromagnetism in manganese doped reduced rutile titanium dioxide thin films[J]. J. Appl.Phys.,2004,95:7384.
    [26] T. C. Kaspar, S. M. Heald, C. M. Wang, J. D. Bryan, T. Droubay, V. Shutthanandan, S.Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin, and S. A. Chambers. Negligiblemagnetism in excellent structural quality CrxTi1-xO2anatase: contrast with high-Tcferromagnetism in structurally defective CrxTi1-xO2[J]. Phys. Rev. Lett.,2005,95:217203.
    [27] S. G. Yang, T. Li, B. X. Gu, Y. W. Du, H. Y. Sung, S. T. Hung, and C. Y. Wong,Pakhomov A. B.. Ferromagnetism in Mn-doped CuO[J]. Appl. Phys. Lett.,2003,83(13):3746-3748.
    [28] S. C. Kashyap, K. Gopinadhan, D. K. Pandya, and S. Chaudhary. A study of roomtemperature ferromagnetism in transition metal and fluorine-doped spray-pyrolyzed SnO2thinfilms[J]. Journal of Magnetism and Magnetic Materials,2009,321:957-962.
    [29] Y. H. Chang, Y. L. Soo, W. C. Lee, M. L. Huang, Y. J. Lee, S. C. Weng, W. H. Sun, M.Hong, J. Kwo, S. F. Lee, J. M. Ablett, and C. C. Kao. Observation of room temperatureferromagnetic behavior in cluster-free Co doped HfO2films[J]. Appl. Phys. Lett.,2007,91:082504.
    [30] J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, and Y. M. Kim. Co-metal clustering as theorigin of ferromagnetism in Co-doped ZnO thin films[J]. Appl. Phys. Lett.,2004,84:1338-1340.
    [31] J. K. Kim, J. H. Park, B. G. Park, H. J. Noh, S. J. Oh, J. S. Yang, D. H. Kim, S. D. Bu, T.W. Noh, H. J. Lin, H. H. Hsieh, and C. T. Chen. Ferromagnetism induced by clustered Co inCo-doped anatase TiO2thin films[J]. Phys. Rev. Lett.,2003,90:017401.
    [32] J. He, S. Xu, Y. K. Yoo, Q. Xue, H. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I.Takeuchi. Room temperature ferromagnetic n-type semiconductor in (In1-xFex)2O3-δ[J]. Appl.Phys. Lett.,2005,86:052503.
    [33] G. B. González, T. O. Mason, J. P. Quintana, O. Warschkow, D. E. Ellis, J. H. Hwang, J. P.Hodges, and J. D. Jorgensen. Defect structure studies of bulk and nano-indium-tin oxide[J]. J.Appl. Phys.,2004,96:3912.
    [34] T. J. Coutts, and S. Naseem. High efficiency indium tin oxide/indium phosphide solarcells[J]. Appl. Phys. Lett.,1985,46:164-166.
    [35]牛新书,仲皓想. In2O3纳米粉体的制备及其气敏性能研究[J].电子元件与材料,2005,24(11):10-12.
    [36] Y. K. Yoo, Q. Xue, H. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, S. Xu, J. He, Y. S. Chu,S. D. Preite, S. E. Lofland, and I. Takeuchi. Bulk synthesis and high-temperatureferromagnetism of (In1-xFex)2O3-δwith Cu co-doping[J]. Appl. Phys. Lett.,2005,86:042506.
    [37] F. X. Jiang, X. H. Xu, J. Zhang, C. F. Xiao, H. S. Wu, M. Alshammari, Q. Feng, H. J.Blythe, D. S. Score, M. Al-Qahtani, and G. A. Gehring. Room temperature ferromagnetism inmetallic and insulating (In1xFex)2O3thin films[J]. J. Appl. Phys.,2011,109:053907.
    [38] O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, A. Gupta, K. V. Rao, D. V.Louzguine-Luzgin, A. Inoue, P. A. Glans, J. H. Guo, K. Samanta, M. K. Singh, and R. S.Katiyar. Structural and magnetic properties of (In1-xFex)2O3(0.0≤x≤0.25) system: Preparedby gel combustion method[J]. Appl. Phys. Lett.,2007,91:052504.
    [39] P. F. Xing, Y. X. Chen, S. S. Yan, G. L. Liu, L. M. Mei, K. Wang, X. D. Han, and Z.Zhang. High temperature ferromagnetism and perpendicular magnetic anisotropy in Fe-dopedIn2O3films [J]. Appl. Phys. Lett.,2008,92:022513.
    [40] H. Kim, M. Osofsky, M. M. Miller, S. B. Qadri, R. C. Y. Auyeung, and A. Piqué, Roomtemperature ferromagnetism in transparent Fe-doped In2O3films[J]. Appl. Phys. Lett.,2012,100,032404.
    [41] Z. G.Yu, J. He, S. Xu, Q. Xue, O. M. J. vantErve, B. T. Jonker, M. A. Marcus, Y. K. Yoo,S. Cheng, and X. D. Xiang. Origin of ferromagnetism in semiconducting(In1-x-yFexCuy)2O3-δ[J]. Phys. Rev. B,2006,74:165321.
    [42] X. H. Xu, F. X. Jiang, J. Zhang, X. C. Fan, H. S. Wu, and G. A. Gehring, Magnetic andtransport properties of n-type Fe-doped In2O3ferromagnetic thin films[J]. Appl. Phys. Lett.,2009,94:212510.
    [43] F. X. Jiang, X. H. Xu, J. Zhang, X. C. Fan, H. S. Wu, and G. A. Gehring, Role of carrierand spin in tuning ferromagnetism in Mn and Cr-doped In2O3thin films[J]. Appl. Phys. Lett.,2010,96:052503.
    [44] C. Y. Hsu. Role of structural disorder in ferromagnetism of chromium-doped indiumoxide[J]. J. Phys. D: Appl. Phys.,2011,44:415303.
    [45] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R.Leclair, T. S. Santos, and J. S. Moodera. Carrier-controlled ferromagnetism in transparentoxide semiconductors[J]. Nature Mater.,2006,5:298-304.
    [46] R. P. Pangnluri, P, Kharel, C. Sudakar, R. Naik, R. Suryanarayanan, V. M. Naik, A. G.Petukhov, B. Nadgorny, and G. Lawes. Ferromagnetism and spin-polarized charge carriers inIn2O3thin films[J]. Phys. Rev. B,2009,79,165208.
    [47] N. H. Hong, J. Sakai, N. T. Huong, and Brizé. Room temperature ferromagnetism in laserablated Ni-doped In2O3thin films[J]. Appl. Phys. Lett.,2005,87:102505.
    [49] G. Peleckis, X. Wang, and S. X. Dou. High temperature ferromagnetism in Ni-dopedIn2O3and indium-tin oxide[J]. Appl. Phys. Lett.,2006,89:022501.
    [50] K. Okada, S. Kohiki, S. Nishi, H. Shimooka, H. Deguchi, M. Mitome, Y. Bando, and T.Shishido. Room temperature ferromagnetism of Fe doped Indium Tin oxide based ondispersed Fe3O4nanoparticles[J]. Jpn. J. Appl. Phys.,2007,46: L823-L825.
    [51] G. Subías, J. Stankiewicz, F. Villuendas, M. P. Lozano, and J. García. Local structurestudy of Co-doped indium oxide and indium-tin oxide thin films using x-ray absorptionspectroscopy[J]. Phys. Rev. B,2009,79:094118.
    [52] D. Bérardan, and E. Guilmeau. Magnetic properties of bulk Fe-doped indium oxide[J]. J.Phys.: Condens. Matter.,2007,19:236224.
    [53] D. Bérardan, E. Guilmeau, and D. Pelloquin. Intrinsic magnetic properties of In2O3andtransition metal-doped-In2O3[J]. J. Magn. Magn. Mater.,2008,320:983-989.
    [54] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé. Room-temperature ferromagnetismobserved in undoped semiconducting and insulating oxide thin films[J]. Phys. Rev. B,2006,73,132404.
    [55] N. H. Hong, A. Barla, J. Sakai, and N. Q. Huong. Can undoped semiconducting oxidesbe ferromagnetic?[J]. Phys. Stat. Sol.(c),2007,4(12):4461-4466.
    [56] S. M. Heald, T. Kaspar, T. Droubay, V. Shutthanandan, S. Chambers, A. Mokhtari, A. J.Behan, H. J. Blythe, J. R. Neal, A. M. Fox, and G. A. Gehring. X-ray absorption fine structureand magnetization characterization of the metallic Co component in Co-doped ZnO thinfilms[J]. Phys. Rev. B,2009,79:075202.
    [57] M. P. Yu, H. Qiu, X. B. Chen, and H. X. Liu. Magnetic, magnetoresistance and electricaltransport properties of Ni and Al co-doped ZnO films grown on glass substrates by directcurrent magnetron co-sputtering[J]. Mater. Chem. Phys.,2010,120:571-575.
    [58] Y. C. Cho, S. J. Kim, S. Lee, S. J. Kim, C. R. Cho, H. H. Nahm, C. H. Park, S. Park, T. E.Hong, S. Kuroda, and S. Y. Jeong. Reversible ferromagnetic spin ordering governed byhydrogen in Co-doped ZnO semiconductor[J]. Appl. Phys. Lett.,2009,95:172514.
    [59] Z. G. Yu, J. He, S. F. Xu, Q. Z. Xue, O. M. J. van’t Erve, B. T. Jonker, M. A. Marcus, Y.K. Yoo, S. F. Cheng, and X. D. Xiang. Origin of ferromagnetism in semiconducting (In1-x-yFexCuy)2O3-δ[J]. Phys. Rev. B,2006,74:165321.
    [60] H. Toyosaki, T. Fukumubra, Y. Yasuhiro, K. Nakajima, T. Hasegawa, H. Koinuma, and M.Kawasaki. Anomalous Hall effect governed by electron doping in a room-temperaturetransparent ferromagnetic semiconductor[J]. Nature Mater.,2004,3:221-224.
    [61] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X H. Xu, J. R. Neal, A. M. Fox, and G.A. Gehring. Two magnetic regimes in doped ZnO corresponding to a dilute magneticsemiconductor and a dilute magnetic insulator[J]. Phys. Rev. Lett.,2008,100:047206.
    [62] J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A.Gehring. Room-temperature magneto-optics of ferromagnetic transition metal doped ZnO thinfilms[J]. Phys. Rev. Lett.,2006,96:197208.
    [63] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R.Ramesh, R. L. Greene, and T. Venkatesan. Co-occurrence of superparamagnetism andanomalous Hall effect in highly reduced Cobalt-doped rutile TiO2-δfilms[J]. Phys. Rev. Lett.,2004,92:166601.
    [64] R. R. Ma, F. X. Jiang, X. F. Qin, and X. H. Xu. Effects of oxygen vacancy and local spinon the ferromagnetic properties of Ni-doped In2O3powders[J]. Mater. Chem. Phys.,2012,132:796-799.
    [65] X. F. Wang, J. B. Xu, W. Y. Cheung, J. An, and N. Ke. Aggregation-based growth andmagnetic properties of inhomogeneous Cu-doped ZnO nanocrystals[J]. Appl. Phys. Lett.,2007,90,212502.
    [66] B. Martínez, F. Sandiumenge, L. Balcells, J. Arbiol, F. Sibieude, and C. Monty. Structureand magnetic properties of Co-doped ZnO nanoparticles[J]. Phys. Rev. B,2005,72:165202.
    [67] C. Zener, Interaction between the d shells in the transition metals[J]. Phys. Rev.,1951,81:440-446.
    [68] M. Rudennan, and C. Kttel. Indirect exchange coupling of nuclear magnetic moments byconduction electrons[J]. Phys. Rev.,1954,96:99-102.
    [69]戴道生,钱昆明.铁磁学(上册)[M].北京,科学出版社, p235-241.
    [70]姜寿亭,李卫.凝聚态磁性物理(第一版)[M].北京,科学出版社,2003,146-159.
    [71] T. Ogawa, M. Shirai, N. Suzuki, and I. Kitagawa. First-Principles calculations ofelectronic structures of diluted magnetic semiconductors (Ga,Mn)As[J]. J. Magn. Magn.Mater.,1999,196-197:428-429.
    [72] A. Krol, Y. L. Soo, S. Huang, Z. H. Ming, Y H. Kao, H. Munekata, and L. L. Chang.Local structure about Mn atoms in ln1-xMnxAs diluted magnetic semiconductors[J]. Phys. Rev.B,1993,47:7187-7197.
    [73] S. D. Sarma, J. Fabian, X. Hu, and I. uti. Spin electronics and spin computation[J].Solid State Commun.,2001,119:207-215.
    [74] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald. Donor impurity band exchange indilute ferromagnetic oxides[J]. Nature Mater.,2005,4:173-179.
    [75] G. L. Liu, Q. Cao, J. X. Deng, P. F. Xing, Y. F. Tian, Y. X. Chen, S. S. Yan, and L. M. Mei,High Tc ferromagnetism of Zn1-xCoxO diluted magnetic semiconductors grown by oxygenplasma-assisted molecular beam epitaxy[J]. J. Appl. Phys.,2007,90:052504.
    [76] X. Li, C. T. Xia, X. L. He, X. Gao, S. Liang, G. Q. Pei, and Y. J. Dong. Enhancement offerromagnetic properties in In1.99Co0.01O3by additional Cu doping[J]. Scripta Mater.,2008,58:171-174.
    [77] A. Samariya, R. K. Singhal, S. Kumar, Y. T. Xing, S. C. Sharma, P. Kumari, D. C. Jain, S.N. Dolia, U. P. Deshpande, T. Shripathi, and E. Saitovitch. Effect of hydrogenation vs.re-heating on intrinsic magnetization of Co doped In2O3[J]. Appl. Surf. Sci.,2010,257:585-590.
    [78] S. Mal, S. Nori, S. Mula, J. Narayan, and J. T. Prater, Defect mediated reversibleferromagnetism in Co and Mn doped zinc oxide epitaxial films[J]. J. Appl. Phys.,2012,112:113917.
    [79] M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey. Thin films: Unexpected magnetismin a dielectric oxide[J]. Nature,2004,430:630.
    [80] J. B. Goodenough, and A. L. Loeb, Theory of ionic ordering, crystal distortion, andmagnetic exchange due to covalent forces in spinels[J]. Phys. Rev.,1955,98:391-408.
    [81] C. Zener, Interaction between the d-Shells in the Transition Metals. II. FerromagneticCompounds of Manganese with Perovskite Structure[J]. Phys. Rev.,1951,82:403-405.
    [82] H. A. Jahn, and E. Teller Stability of polyatomic molecules in degenerate electronic statesI-orbital degeneracy[J]. Proc. Roy. Soc. A,1937,161:220-224.
    [83] G. H. Janker, and J. H. Van Santen. Ferromagnetic compounds of manganese withperovskite structure[J]. Physica,1950,16:337-349.
    [84] J. B. Goodenough, and J. M. Lango Landolt-B rnstein, Numerical Data and FunctionalRelationships in Science and Technology[M], New Series, Vol. III.4Springer, Berlin (1970).
    [85] P. A. Cox. Transition Metal Oxides: An Introduction to Their Electronic Structure andProperties[M]. Oxford University Press, USA,1992.
    [86] W. E. Pickett, and D. J. Singh. Electronic structure and half-metallic transport in theLa1-xCaxMnO3system[J]. Phys. Rev. B,1996,53:1146.
    [87] E. O. Wollan, and W. C. Koehler. Neutron diffraction study of the magnetic properties ofthe series of perovskite type compounds [(1-x)La, xCa]MnO3[J]. Phys. Rev.,1955,100:545-563.
    [88] G. H.Jonker. Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds[J]. Physica,1956,22:707-722.
    [89] E. Dagotto, T. Hotta, and A. Moreo. Colossal magnetoresistant materials: the key role ofphase separation[J]. Phys. Rep.,2001,344:1-153.
    [90] A. B. Pippard. Magnetoresistance in Metals[M]. Cambridge University Press, Cambridge.1989.
    [91] R. M. Kusters, J. Singgleton, D. A. Keon, R. M. Greedy, and W. Hayes,Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3[J]. PhysicaB,1989,155:362-365.
    [92] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negativemagnetoresistance in perovskitelike La2/3Ba1/3MnO3ferromagnetic films[J]. Phys. Rev. Lett.,1993,71:2331-2333.
    [93] S. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh. Colossal magnetoresistance inLa-Ca-Mn-O ferromagnetic thin films (invited)[J]. J. Appl. Phys.,1994,76:6929-6933.
    [94] W. E. Picket, and D. J. Singh. Electronic structure and half-metallic transport in theLa1-xCaxMnO3system[J]. Phys. Rev. B,1996,53:1146-1160.
    [95] C. N. R. Rao, and A. K. Cheetham, Charge Ordering in Manganates[J], Science,1997,276:91-912.
    [96] A. J. Millis. Lattice effects in magnetoresistive manganese perovskites[J]. Nature,1998,392:147.
    [97] F. Martin, G.Jakob,W. Westerburg, and H. Adrian. Growth mechanism andtransport properties of thin La0.67Ca0.33MnO3films[J]. J. Magn. Magn. Mater.,1999,196-197:509-511.
    [98] S. Seiro, E. Koller, Y. Fasano, and. Fischer. Homogeneous strain-relaxation effects inLa0.67Ca0.33MnO3films grown on NdGaO3[J]. Appl. Phys. Lett.,2007,91:091913.
    [99] S. Liang, J. R. Sun, J. Wang, and B. G. Shen. Magnetic and conductive dead layer at theLa0.67Ca0.33MnO3–SrTiO3:Nb interface[J]. Appl. Phys. Lett.,2009,95:182509.
    [100] A. Gupta, G. Q. Gong, G. Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang,and V. P. Dravid. Grain-boundary effects on the magnetoresistance properties of perovskitemanganite films[J]. Phys. Rev. B,1996,54: R15629.
    [101] M. F. Hundley, M. Hawley, R. H. Heffner, Q. X. Jia, J. J. Neumeier, J. Tesmer, J. D.Thompson, and X. D. Wu. Transport magnetism correlations in the ferromagnetic oxideLa0.7Ca0.3MnO3[J]. Appl. Phys. Lett.,1995,67:860.
    [102] S. Jin, T. H. Tiefel, M. McCormack, H. M. O’Bryan, L. H. Chen, R. Ramesh, and D.Schurig. Thickness dependence of magnetoresistance in La–Ca–Mn–O epitaxial films, Appl.Phys. Lett.,1995,67:557.
    [103] J. S. Helman, and B. Abeles. Tunneling of spin-polarized electrons andmagnetoresistance in granular Ni films[J]. Phys. Rev. Lett.,1976,37:1429-1432.
    [104] A.Fert, and I. A. Campbell. Electrical resistivity of ferromagnetic nickel and iron basedalloys[J]. J. Phys. F: Metal Phys.,1976,6:849-871.
    [105] E. Gommert, H. Cerva, J. Wecker, and K. Samwer. Influence of misfit stress on themagnetoresistive properties of La0.7Ca0.3MnO3thin films[J]. J. Appl. Phys.,1999,85(8):5417-5419.
    [106] E. S. Vlakhov, R. A. Chakalov, R. I. Chakalova, K. A. Nenkov, K. D rr, A. Handstein,and K. H. Müller. Influence of the substrate on growth and magnetoresistance ofLa0.7Ca0.3MnO3thin films deposited by magnetron sputtering[J]. J. Appl. Phys.,1998,83(4):2152-2157.
    [107] G. Herranz, M. Berkowski, E. Jedryka, M. Wojcik, F. Sánchez, M. Bibes, and J.Fontcuberta. Charge localization in nanometric La2/3Ca1/3MnO3thin films grown on nearlymatching substrates[J]. J. Appl. Phys.,2003,93(10):8065-8067.
    [108] T. Y. Koo, S.H.Park, K.B. Lee, and Y. H. Jeong.Anisotropic strains andmagnetoresistance of La0.7Ca0.3MnO3[J]. Appl. Phys. Lett.,1997,71:977.
    [109] T. Walter, K. D rr, K.-H. Müller, D. Eckert, K. Nenkov, M. Hecker, M. Lehmann, and L.Schultz. Magnetic and electrical properties of coherently grown low-strain La0.7Ca0.3MnO3films[J]. J.Magn.Magn.Mater.,2000,222:175-181.
    [110] B. Vengalis, A. Maneikis, F. Anisimovas, R. Butkut, L. Dapkus, and A. Kindurys,Effect of strains on electrical and optical properties of thin La0.67Ca0.33MnO3films[J]. J. Magn.Magn. Mater.2000,211(1-3):35-40.
    [111] M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe. Thicknessdependent magnetic and magnetotransport properties of strain-relaxed La0.7Ca0.3MnO3films[J]. J. Appl. Phys.,2002,91:9930.
    [112] M. Salvato, A. Vecchione, A. De Santis, F. Bobba, and A. M. Cucolo. Metal-insulatortransition temperature enhancement in La0.7Ca0.3MnO3thin films[J]. J. Appl. Phys.,2005,97:103712.
    [113] S. Valencia, Ll Balcells, J. Fontcuberta, and B. Martínez. Strain-induced chargedepletion in La2/3Ca1/3MnO3epitaxial thin films[J]. Appl. Phys. Lett.,2003,82(25):4531-4533.
    [114] L. Yu, Y. Wang, H.S. Li, X. Liu, and P. X. Zhang. Post annealing effect on transportproperties of La0.67Ca0.33MnO3films grown on vicinal cut substrates[J]. J. Alloys Compd.,2011,509:8991-8993.
    [115] P. K. Siwach, V. P. S. Awana, H. Kishan, R. Prasad, H. K. Singha, S. Balamurugan, E.Takayama-Muromachi, and O. N. Srivastava. Room temperature magneto-resistance andtemperature coefficient of resistance in La0.7Ca0.3-xAgxMnO3thin films[J]. J. Appl. Phys.,2007,101:073912.
    [116] L. Righi, P. Gorria, M. Insausti, J. Gutiérrez, and J. M. Barandiarán. Influence of Fe ingiant magnetoresistance ratio and magnetic properties of La0.7Ca0.3Mn1xFexO3perovskitetype compounds[J]. J. Appl. Phys.,1997,81:5767.
    [117] T. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen. Tuning themetal-insulator transition in manganite films through surface exchange coupling withmagnetic nanodots[J]. Phys. Rev. Lett.,2011,106:157207.
    [1]许小红,江凤仙,扈俊清,李小丽,田龙,王芳,黄晓霞.一种真空退火炉,实用新型专利, ZL200820013708.0.
    [2] D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L.McLean, and M.Croft. Preparation of Y-Ba-Cu oxide superconductor thin films usingpulsed laser evaporation from high Tc bulk material[J]. Appl. Phys. Lett.,1987,51(8):619-621.
    [3]李美成,杨建平等.脉冲激光薄膜制备技术[J].真空与低温,2000,6(2):63.
    [4]陈传忠,包全合等.脉冲激光沉积技术及其应用[J].激光技术,2003,7(5):443.
    [5]邓联文,江建军等.脉冲激光沉积技术在磁性薄膜制备中的应用[J].材料导报,2003,17(2):66.
    [6] R. K. Singh, and J. Narayan. Pulsed-laser evaporation technique for deposition of thinfilms, Physics and theoretical model[J]. Phys. Rev. B.,1990,41(13):8843-8859.
    [7]岳岩,霍裕昆等.脉冲激光沉积薄膜生长机制的计算机模拟研究[J].核技术,1998,21(6):329-333.
    [8]张端明,李智华,郁伯铭等.脉冲激光制备薄膜材料的机理[J].中国科学(A),2001,31(8):743-753.
    [10] J. W. Hastie, D. W. Bonnel, A. J. Paul, and P. K. Schenck. Gas dynamics andchemistry in the pulsed laser deposition of oxide dielectric thin films[J]. Mater. Res. Soc.,1993,334:305.
    [11] X. Y. Chen, and Z. G. Liu. Interaction between laser beam and target in pulsed laserdeposition: laser fluence and ambient gas effects[J]. Appl. Phys. A,1999,69: S523-S525.
    [13]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.337.
    [14]邓联文,江建军,何华辉.脉冲激光沉积技术在磁性薄膜制备中的应用[J].材料导报,2003,17(2):66-68.
    [15]陈学康.大功率脉冲激光纳米薄膜制备技术[J].真空科学与技术,1995,15(2):86.
    [16]钱存富,耿岩. X射线晶体学[M].沈阳:东北大学出版社,2003.
    [17]钱逸泰.结晶化学导论[M].安徽:中国科技大学出版社,1999.
    [18]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:北京冶金工业出版社,2003.
    [19]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器,2005,3(1):22-26.
    [20] G. Binning, C. F. Quate, and C. Gerber. Atomic Force Microscope[J]. Phys. Rev. Lett.,1986,4:930-933.
    [21]袁欢欣,欧阳健明. X射线光电子能谱在配合物研究中的应用及其研究进展[J].光谱与光谱分析,2007,2:395-399.
    [22] J. H. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben, Handbook of X-rayPhotoelectron Spectroscopy[M], edited by J. Chastain.1992, Perkin-Elmer, Eden Prairie,MN.
    [23]陈林,李敬东,唐跃进,任丽.超导量子干涉仪发展和应用现状[J].低温物理学报,2005,27(5):657-661.
    [24]黄昆.固体物理[M].北京:高等教育出版社,1998, p344-346.
    [25]陈长乐.固体物理学[M].西安:西北工业大学出版社,1998, p190-193.
    [1] Y. K. Yoo, Q. Xue, H. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, S. Xu, J. He, Y. S. Chu, S.D. Preite, S. E. Lofland, and I. Takeuchi. Bulk synthesis and high-temperatureferromagnetism of (In1-xFex)2O3-δwith Cu co-doping[J]. Appl. Phys. Lett.,2005,86:042506.
    [2] J. He, S. Xu, Y. K. Yoo, Q. Xue, H. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I.Takeuchi. Room temperature ferromagnetic n-type semiconductor in (In1-xFex)2O3-δ[J]. Appl.Phys. Lett.,2005,86:052503.
    [3] F. X. Jiang, X. H. Xu, J. Zhang, C. F. Xiao, H. S. Wu, M. Alshammari, Q. Feng, H. J.Blythe, D. S. Score, K. Addison, M. Al-Qahtani, and G. A. Gehring. Room temperatureferromagnetism in metallic and insulating (In1xFex)2O3thin films[J]. J. Appl. Phys.,2011,109:053907.
    [4] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R.Leclair, T. S. Santos, and J. S. Moodera. Carrier-controlled ferromagnetism in transparentoxide semiconductors[J]. Nature Mater.,2006,5:298-304.
    [5] Zener. Interaction between the d shells in the transition metals[J]. Phys. Rev.,1951,81:440-446.
    [6] A. H. Slobodsky, V. K. Dugaev, and M. Vieira. Ferromagnetic ordering in diluted magneticsemiconductors[J]. Conden. Matt. Phys.,2002,3:531-540.
    [7] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald. Donor impurity band exchange indilute ferromagnetic oxides[J]. Nature Mater.,2005,4:173-179.
    [8] M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey. Thin films: Unexpected magnetism ina dielectric oxide[J]. Nature,2004,430:630.
    [9] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé. Room-temperature ferromagnetism observedin undoped semiconducting and insulating oxide thin films[J]. Phys. Rev. B,2006,73:132404.
    [10] Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P.Esquinazi, C. Meinecke, and M. Grundmann. Room temperature ferromagnetism in ZnOfilms due to defects[J]. Appl. Phys. Lett.,2008,92:082508.
    [11] S. D. Yoon, Y. Chen, A. Yang. Addendum to “Magnetic semiconducting anatase TiO2-δgrown on(100) LaAlO3having magnetic order up to880K”[J]. Magn Magn Mater,2007,309:171-175]. J. Magn. Magn. Mater.,2008,320:597-599.
    [12] N. H. Hong, J. Sakai, N. T. Huong, and Brizé. Room temperature ferromagnetism in laserablated Ni-doped In2O3thin films[J]. Appl. Phys. Lett.,2005,87:102505..
    [13] G. Peleckis, X. Wang, and S. X. Dou. High temperature ferromagnetism in Ni-dopedIn2O3and indium-tin oxide[J]. Appl. Phys. Lett.,2006,89:022501.
    [14] F. X. Jiang, X. H. Xu, J. Zhang, H. S. Wu, and G. A. Gehring. High temperatureferromagnetism of the vacuum-annealed (In1-xFex)2O3powders[J]. Appl. Surf. Sci.,2009,255:3655.
    [15] D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, C. F. Pan, and G. D. Tang. Roomtemperature ferromagnetism in Ni-doped ZnO films[J]. Curr. Appl. Phys.,2010,10:124-128.
    [16] P. Sharma, R. Dutta, and A. Pandey. Effect of nickel doping concentration on structuraland magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles[J]. J.Magn. Magn. Mater.,2009,321:3457.
    [17] B. Pandey, S. Ghosh, P. Srivastava, P. Kumar, D. Kanjilal, S. Zhou, and H. Schmidt.Room temperature transparent ferromagnetism in200keV Ni2+ion implanted pulsed laserdeposition grown ZnO/sapphire film[J]. J. Appl. Phys.,2010,107:023901.
    [18] S. C. Li, P. Ren, B. C. Zhao, B. Xia, and L. Wang. Room temperature transparentferromagnetism in200keV Ni2+ion implanted pulsed laser deposition grown ZnO/sapphirefilm[J]. Appl. Phys. Lett.,2009,95:102101.
    [1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer. Giant negativemagnetoresistance in perovskitelike La2/3Ba1/3MnO3ferromagnetic films[J]. Phys. Rev. Lett.,1993,71:2331-2333.
    [2] S. Mathews, R. Ramesh, T. Vankatesan, and J. Benedetto. Ferroelectric field effecttransistor based on epitaxial perovskite heterostructures[J]. Science,1997,276:238-240.
    [3] A. Goyal, M. Rajeswari, R. Shreekala, SE Lofland, SM Bhagat, T. Boettcher, C. Kwon, R.Ramesh, and T. Venkatesan, Material characteristics of perovskite manganese oxide thin filmsfor bolometric applications[J]. Appl. Phys. Lett.,1997,71:2535.
    [4] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen.Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films[J]. Science,1994,264:413.
    [5] E. Gommert, H. Cerva, J. Wecker, and K. Samwer. Influence of misfit stress on themagnetoresistive properties of La0.7Ca0.3MnO3thin films[J]. J. Appl. Phys.,1999,85(8):5417-5419.
    [6] B. Vengalis, A. Maneikis, F. Anisimovas, R. Butkut, L. Dapkus, and A. Kindurys, Effectof strains on electrical and optical properties of thin La0.67Ca0.33MnO3films[J], J. Magn.Magn. Mater.,2000,211(1-3):35-40.
    [7] F. Tsui, M. C. Smoak, and C. B. Eom. Strain-dependent magnetic phase diagram ofepitaxial La0.67Sr0.33MnO3thin films[J]. Appl. Phys. Lett.,2000,76:2421-2423.
    [8] M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe. Thicknessdependent magnetic and magnetotransport properties of strain-relaxed La0.7Ca0.3MnO3films[J]. J. Appl. Phys.,2002,91:9930.
    [9] J. Dvorak, Y. U. Idzerda, S. B. Ogale, S. Shinde, T. Wu, T. Venkatesan, R. Godfrey, and R.Ramesh. Are strain-induced effects truly strain induced? A comprehensive study of strainedLCMO thin films[J]. J. Appl. Phys.,2005,97:10C102.
    [10] E. Dagotto, Jan Burgy, and A. Moreo. Nanoscale phase separation in colossalmagnetoresistance materials: lessons for the cuprates?[J]. Solid State Commun.,2003,126(1-2):9-22.
    [1] A. J. Millis. Lattice effects in magnetoresistive manganese perovskites[J]. Nature,1998,392:147.
    [2] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen.Thousandfold change in resistivity in magnetoresitive La-Ca-Mn-O films[J]. Science,1994,264:413.
    [3] M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe. Thicknessdependent magnetic and magnetotransport properties of strain-relaxed La0.7Ca0.3MnO3films[J]. J. Appl. Phys.,2002,91:9930.
    [4] S. Seiro, E. Koller, Y. Fasano, and. Fischer. Homogeneous strain-relaxation effects inLa0.67Ca0.33MnO3films grown on NdGaO3[J]. Appl. Phys. Lett.,2007,91:091913.
    [5] M. F. Hundley, M. Hawley, R. H. Heffner, Q. X. Jia, J. J. Neumeier, J. Tesmer, J. D.Thompson, and X. D. Wu. Transportmagnetism correlations in the ferromagnetic oxideLa0.7Ca0.3MnO3[J]. Appl. Phys. Lett.,1995,67:860.
    [6] S. Jin, T. H. Tiefel, M. McCormack, H. M. O’Bryan, L. H. Chen, R. Ramesh, and D.Schurig. Thickness dependence of magnetoresistance in La–Ca–Mn–O epitaxial films[J].Appl. Phys. Lett.,1995,67:557.
    [7] L. Righi, P. Gorria, M. Insausti, J. Gutiérrez, and J. M. Barandiarán. Influence of Fe ingiant magnetoresistance ratio and magnetic properties of La0.7Ca0.3Mn1xFexO3perovskite typecompounds[J]. J. Appl. Phys.,1997,81:5767.
    [8] P. K. Siwach, V. P. S. Awana, H. Kishan, R. Prasad, H. K. Singha, S. Balamurugan, E.Takayama-Muromachi, and O. N. Srivastava. Room temperature magneto-resistance andtemperature coefficient of resistance in La0.7Ca0.3-xAgxMnO3thin films[J]. J. Appl. Phys.,2007,101:073912.
    [9] M. Salvato, A. Vecchione, A. De Santis, F. Bobba, and A. M. Cucolo, Metal-insulatortransition temperature enhancement in La0.7Ca0.3MnO3thin films[J]. J. Appl. Phys.,2005,97,103712.
    [10] B. Vengalis, A. Maneikis, F. Anisimovas, R. Butkut, L. Dapkus, and A. Kindurys, Effectof strains on electrical and optical properties of thin La0.67Ca0.33MnO3films[J], J. Magn. Magn.Mater.,2000,211(1-3):35-40.
    [11] T. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen. Tuning theMetal-Insulator Transition in Manganite Films through Surface Exchange Coupling withMagnetic Nanodots[J]. Phys. Rev. Lett.,2011,106:157207.
    [12] F. X. Jiang, X. H. Xu, J. Zhang, C. F. Xiao, H. S. Wu, M. Alshammari, Q. Feng, H. J.Blythe, D. S. Score, K. Addison, M. Al-Qahtani, and G. A. Gehring. Room temperatureferromagnetism in metallic and insulating (In1xFex)2O3thin films[J]. J. Appl. Phys.,2011,109,053907.
    [13] P. F. Xing, Y. X. Chen, S. S. Yan, G. L. Liu, L. M. Mei, K. Wang, X. D. Han, and Z.Zhang. High temperature ferromagnetism and perpendicular magnetic anisotropy in Fe-dopedIn2O3films [J]. Appl. Phys. Lett.,2008,92:022513.
    [14] M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, and M. Gautier-Soyer, Use of XPSin the determination of chemical environment and oxidation state of iron and sulfur samples:constitution of a data basis in binding energies for Fe and S reference compounds andapplications to the evidence of surface species of an oxidized pyrite in a carbonate medium[J].Appl. Surf. Sci.,2000,165:288-302.
    [15] M. Preisinger, M. Krispin, T. Rudolf, S. Horn, and D. R. Strongin, Electronic structure ofnanoscale iron oxide particles measured by scanning tunneling and photoelectronspectroscopies[J]. Phys. Rev. B,2005,71:165409.
    [18] M. Salvato, A. Vecchione, A. De Santis, F. Bobba, and A. M. Cucolo. Metal-insulatortransition temperature enhancement in La0.7Ca0.3MnO3thin films[J]. J. Appl. Phys.,2005,97:103712.
    [19] O. Arnache, A. Hoffmann, and D. Girata. Effect of Fe doping on structural and magneticproperties of La2/3Ca1/3Mn1-yFeyO3(y=0-0.03) thin films[J]. Microelectron. J.,2008,39:544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700