用户名: 密码: 验证码:
废纸造纸废水中苯类有机物共代谢降解条件下丝状菌膨胀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废纸造纸废水中存在着一类难降解的苯类有机污染物,不利于造纸废水处理率的进一步提高,通过共代谢的微生物作用将难降解苯类污染物转化为无毒物质或彻底降解已成为近年来研究的热点,但是在生物法处理废水的工程应用中,丝状菌膨胀现象时有发生,对系统运行效果产生不利影响。本课题对造纸废水中典型难降解有机物邻苯二甲酸二丁酯(DBP)和二甲苯的共代谢降解以及其对微生物的影响和碳源共代谢条件下丝状菌膨胀现象进行深入研究。
     采用逐渐增加进水COD浓度,固定水力停留时间的方法对反应器进行启动,34天就能达到很好的启动效果。反应器运行稳定,出水水质稳定,COD总去除率平均达88%,DBP的降解率从49%逐渐上升到75%;二甲苯的降解率从55%逐渐上升到78%。
     葡萄糖和甲酸共同作为碳源共代谢基质时,COD的去除率平均为96.5%;DBP的去除率平均为87.6%;二甲苯的去除率平均为90.2%,处理效果均要优于仅有葡萄糖和甲酸单独作为共代谢基质。当碳源共代谢基质为葡萄糖和甲酸时,厌氧段的多糖为103mg/gMLVSS,一级兼氧段多糖为125 mg/gMLVSS;当仅有葡萄糖作为共代谢基质时,厌氧段的多糖为89mg/gMLVSS,一级兼氧段多糖为97mg/gMLVSS;且随着COD负荷的减少,多糖含量也减少;当碳源共代谢基质为葡萄糖和甲酸时,厌氧段的蛋白质为13mg/gMLVSS,一级兼氧段蛋白质为21 mg/gMLVSS;蛋白质随水流的变化没有多糖变化明显。
     当二甲苯的浓度低于40mg/L时,其对微生物脱氢酶活性的抑制率低于25%,为轻度抑制;而大于80mg/L时,其对脱氢酶活性的抑制由中度抑制逐渐转为轻度抑制。相对于二甲苯,DBP对微生物的抑制作用稍强。大分子有机物的水解酸化主要发生在24小时之内。在第1、2天,DBP和二甲苯对污泥耗氧速率抑制较大,但随着DBP和二甲苯的逐渐降解,其对微生物耗氧速率的影响逐渐减小。
     当HRT为8h时,一级兼氧段pH值下降到4.7左右,低pH值使生物膜中原有的生态体系失去平衡,生物相发生变化。能适应低pH值的丝状微生物迅速繁殖,而其它微生物因为不能适应低pH值环境数量减少,引起菌胶团解体,发生丝状菌膨胀。对造纸废水中引起丝状菌膨胀的微生物进行了鉴定,为Fungi.spp。研究表明,pH值是引起其过快增长的关键因素。DBP对Fungi.spp和菌胶团细菌的生长都有抑制作用,但其对Fungi.spp的抑制程度更大一些。在一定程度上,DBP对抑制Fungi.spp膨胀发生有一定作用。当葡萄糖和甲酸一起添加时,Fungi.spp和菌胶团细菌的比生长速率增加幅度大于单独添加葡萄糖和甲酸时Fungi.spp和菌胶团细菌的比生长速率。当单独添加葡萄糖时,菌胶团细菌比生长速率的增加大于单独添加甲酸时;但单独添加甲酸时,Fungi.spp比生长速率的增加大于单独添加葡萄糖时。
A class of refractory organic pollutants exists in regenerated papermaking wastewater, which is not conducive to improve wastewater treatment rate.How to translate benzene into non-toxic pollutants or make it completely degrade by microbial co-metabolism has become a research hotspot in recent years, but filamentous bulking phenomena occurs in engineering applications, which has a negative impact on effluent quality. In this research co-metabolism degradation of refractory organic pollutants, the impact refractory organic pollutants on microorganism and filamentous bulking phenomena were studied so that they can provide a theoretical basis for engineering practice.
     By increasing the influent COD and fixing hydraulic retention time to start the reactor, it can bring good start effect after 34 days.Effluent quality was stabile;COD average removal rate was 88%; dibutyl phthalate degradation rate gradually increased from 49% to 75%; xylene degradation rate gradually increased from 55% to 78%.
     COD removal rate was 96.5%;DBP removal rate was 87.6%;xylene removal rate was 90.2% with glucose and formic acid as a carbon source.The removal rate was better than glucose and formic acid as a carbon source alone.With glucose and formic acid as a carbon source,there was 103mg/gMLVSS polysaccharide at anaerobic phase and 89mg/gMLVSS polysaccharide at first anoxic phase.With glucose and formic acid as a carbon source alone, there was 89mg/gMLVSS polysaccharide at anaerobic phase and 97mg/gMLVSS polysaccharide at first anoxic phase.Polysaccharide decreased as COD reduced.With glucose and formic acid as a carbon source, there was 13mg/gMLVSS protein at anaerobic phase and 21mg/gMLVSS protein at first anoxic phase.The change of protein was smaller than that of polysaccharide as current.
     When the xylene concentration was lower than 40mg/L,its inhibition rate of microbial dehydrogenated activity was less than 25%,a mild degree;while it was more than 80mg/L, its inhibition of dehydrogenated activity translated a moderate degree into a mild degree.And comparing to xylene, dibutyl phthalate had more serious inhibition on the microorganisms. Macromolecular organic acidification mainly occurred in 24 hours.In the first two days,the inhibition rate of oxygen consumption was higher, but as dibutyl phthalate and xylene degradation,its inhibition rate of oxygen consumption gradually decreased.
     While HRT was 8h, pH decreased to 4.7 in first anoxic phase and filamentous bulking occurred.Biofilm ecosystem was out of balance at low pH value and biological phase changed. Some filamentous micro-organisms which adapted to low pH value grew rapidly, while other microbes which did not adapt to a low pH value grew slowly. Zoogloea disintegrated and filamentous bulking occurred. The predominant bulking causing filamentous microorganism in the paper mill effluent treatment system was identified.Fungi spp.was found to be the predominant filamentous microorganisms.The kinetics study revealed that the pH was a critical factor affecting the excessive growth of Fungi spp.The limiting percentage of filamentous is higher than that of floc-forming bacteria. The increase rates of floc-forming bacteria and filamentous were highest when glucose and formic acid were provided together. The increase rate of floc-forming bacteria while glucose was provided was higher than that while formic acid was provided, but the increase rate of filamentous while formic acid was provided was higher than that while glucose was provided.
引文
[1]胡宗渊.废纸造纸深层次矛盾和问题亟待解决[J].造纸信息,2005,(04):2-4
    [2]苗庆显,秦梦华,等.废纸造纸废水处理技术的现状与发展[J].中国造纸,2005,24(12):55
    [3]万金泉,马邕文,等.废纸造纸废水特点及其处理技术[J].造纸科学与技术,2005,24(5):58
    [4]万金泉,陈金中,等.废纸脱墨废水的污染特征及其处理方法[J].天津造纸,1999,(3):18-20
    [5]高玉杰.废纸再生实用技术[M].北京:化学工业出版社,2003
    [6]苗庆显,秦梦华,徐清华.废纸造纸废水处理技术的现状与发展[J].中国造纸,2005,24(12):55-58
    [7]陈国宁、王双飞.造纸废水处理技术概述[J].西南造纸,2004,33(6):27-30
    [8]万金泉,马邕文,等.制浆造纸废水封闭循环应用研究[J].中国造纸,2003,22(12):1-3
    [9]李志才,吴香波,等.造纸中段废水深度处理技术的现状和发展[J].环保与节能,2009,40(2):46-51
    [10]杨龙君.水解酸化—接触氧化法处理废纸造纸[J].中国造纸,2007,26(10):65-66
    [11]陈永静,马邕文.废纸造纸废水有机污染物的降解研究[J].环境科学与技术,2008,31(6):127-131
    [12]金相灿.有机化合物污染化学—有毒有机物污染化学[M].北京:清华大学出版社,1990:124-126
    [13]US EPA.National Primary Drinking Water Regulations. Federal Register,40 CFR Chapter I,Part 141 [M].Washington, DC:US Environmental Protection Agency, 1991
    [14]金朝晖,李红亮.酞酸酯对人与环境的危害[J].上海环境化学,1997,16(12):39-42
    [15]赵振华.酞酸酯对人与环境潜在危害的研究概况[J].环境化学,1991,10(3):41-43
    [16]JOBLING S,REYNOLDS T, WHITE R, et al.A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic[J].Environ Health Perspectives,1995,103(Suppl.7):582-587
    [17]ALLSOPP M, SANTILLO D, JOHNSTON P. Poisoning the future:Impacts of endocrine-disrupting chemicals on wildlife and human health[M].Amsterdam: Greenpeace International,1997:254-255
    [18]GRAY LE, WOLF C, LAMBRIGHT C, et al. Administration of potentially antiandrogenic pesticides(procymidone, linuron, iprodione, chlozolinate, p, p'-DDE, and ketonazole) and toxic substances (dibutyl-and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat[J].Toxicol & Industrial Health,1999,15: 94-118
    [19]POSTER P M,MYLCHREEST E, GAIDO K W, et al.Effects of phthalate esters on the developing reproductive tract of male rats[J].Hum Reprod Update,2001,7(3):231-235
    [20]朱南文,闵行,陈美慈,等.TTC-脱氢活性酶常温萃取测定法及应用[J].中国沼气,1996,14(2):3-5
    [21]洪梅.脱氢酶活性检测技术在污水处理厂的应用研究[J].石油化工环境保护,2001(4):30-33
    [22]布多,张颖,顾平.氯化铁絮凝法减轻膜污染[J].城市环境与城市生态,2003,12(6):46-48
    [23]曾锋,傅家谟,等.邻苯二甲酸二甲酯的微生物降解研究[J].环境科学研究,1999,12(4),12-14
    [24]曾锋、傅家谟,等DBP的酶促降解性的研究[J].应用与环境生物学报,2000,6(5):477-48
    [25]鲁翌、徐轶鸣,等.高效酞酸酯降解菌的驯化、筛选及其降解的初步研究[J].卫生研究,2007,36(6):671-673
    [26]王建龙,吴立波.驯化活性污泥降解邻苯二甲酸酯类化合物的研究[J].环境科学,1998,19(1):18-20
    [27]叶张荣、夏风毅,等.4种邻苯二甲酸酯的降解及其降解菌株生长特性的研究[J].江苏工业学院学报,2004,16(3):34-37
    [28]李会茹、曾锋,等.Pseudomonas fluorescens Z1999降解邻苯二甲酸酯的二级动力学特征[J].环境化学,2005,24(2):189-192
    [29]吴振斌、赵文玉,等.复合垂直流构建湿地对DBP的净化效果[J].环境化学,2002,21(5):495-499
    [30]王琳、罗启芳.硅藻土吸附固定化微生物对DBP的降解特性研究[J].卫生研究, 2006,35(1):23-25
    [31]张鹤清,胡洪营,等.6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J].环境科学,2003,24(6):83-89
    [32]程金平,郑敏,等.苯系化合物好氧生物降解性实验研究[J].干旱环境监测,2002,16(2):107-109
    [33]豆俊峰,刘翔.苯系化合物在硝酸盐还原条件下的生物降解性能[J].环境科学,2006,27(9):1846-1852
    [34]赵俊明,李咏梅,等.模拟城市污水在厌氧、缺氧以及好氧反应器中的毒性削减研究[J].环境科学,2006,27(11):2314-2317
    [35]赵同强,张凤娥,等.缓释曝气生物膜处理突发性河水中的苯、甲苯、乙苯和二甲苯[J].化工进展,2006,25(10):1237-1240
    [36]M.Ziagova, M.Liakopoulou-Kyriakides.Comparison of cometabolic degradation of 1, 2-dichlorobenzene by Pseudomonas sp.And Staphylococcus xylosus[J].Enzyem and Microbial Technology,2007(40):1244-1250
    [37]Yuki Morono, Hajime Unno,Katsutoshi Hori.Correlation of TEC cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria[J], Biochemical Engineering Journal,2006(31):173-179
    [38]Erkan Sahinkaya, Filiz B.Dilek. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-Evaluation of biokinetic coefficients [J].Environmental Research,2005(99):243-252
    [39]Meltem Urgun-Demirtas, Benjamin C.Stark, K.R.Pagilla. Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B.cepacia and B.cepacia bearing the bacterial hemoglobin gene[J].Water Research,2006(40): 3123-3130
    [40]Gao Jian-wei,Rodaney S.Skeen. Glucose-induced biodegradation of cis-dichloroethyle-ne under aerobic conditions[J].Water Research,1999,33(12):2789-2796
    [41]Chen Yan-min, Lin Tsair-Fuh, Chih Huang, et al.Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida[J].Journal of Hazar-dous Materials,2007(148):660-670
    [42]David G. Wahman, Andrea E.Henry, Lynn E.Katz, et al.Cometabolism of trihalomethan-es by mixed culture nitrifiers[J],Water Research,2006(40):3349-3358
    [43]张锡辉,R.Bajpai.以关键酶为基础共代谢模型的建立---以甲烷细菌共代谢三氯乙 烯为例[J].环境科学学报.2000,20(5):558-562
    [44]Gerald E.Speital Jr and Robert L.Segar Jr. Cometabolism in biofilm reactor[J].Water Sci.and Technology.1995,31(1):215-225
    [45]巩宗强,李培军.多环芳烃高效降解菌的筛选[J].农业环境科学学报,2007,26(增刊):92-96
    [46]张甲耀,龚丽萍,等.嗜碱细菌复合碳源条件下对麦草木质素的降解[J].环境科学,2002,23(1):70-73
    [47]US EPA.National Primary Drinking Water Regulations,Federal Register,40 CFR Chapter I, Part 141 [M].Washington, DC:US Environmental Protection Agency,1991
    [48]翟福平,张晓健,何苗.氯苯类有机物生物降解性及共代谢作用研究[J].中国环境科学,1997,17(2):142-146
    [49]付莉燕,文湘华,钱易.厌氧条件下活性翠蓝生物降解性能的研究[J].上海环境科学,2001,20(6):274-276
    [50]张锡辉,R.Bajpai.以关键酶为基础共代谢模型的建立[J].环境科学学报,2000,20(5):558-562
    [51]Arp.DJ, Yeager. CM, Hyman.MR. Molecular and Cellular Fundamentals of Aerobolic Cometabolism of Trichloroethylene[J].Biodegradation 2001,12(2):81-103
    [52]张志杰,孙先锋,曹启囤,王赞芝.焦化废水中难降解有机污染物降解特性[J].长安大学学报,2002,22(1):77-79
    [53]王凯军.活性污泥膨胀的机理与控制[M].北京:中国环境科学出版社,1993:113-149
    [54]龙腾锐,何强,林刚.活性污泥中丝状菌与絮体结构的关系研究[J].中国给水排水,2000,16(2):5-8
    [55]田凯勋,戴友芝,等.有机废水厌氧水解酸化工艺研究与工业应用现状[J],工业水处理,2003,23(3):20-23
    [56]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社.1998:17-32
    [57]刘亚丽,张智,等.接触氧化有机污染物降解动力学模型研究[J].水处理技术,2008,34(11):19-22
    [58]刘雨等.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000:87-88
    [59]肖琳,杨柳燕,等.环境微生物实验技术[M].北京:中国环境科学出版社,2004,34-35
    [60]陈济安,舒为群,张学奎,等.邻苯二甲酸二(2-乙基己基)酯酶促降解研究[J],应 用与环境生物学报,2004,10(4):471-474
    [61]鲁翌,徐轶鸣,王颖,等.高效酞酸酯降解菌的驯化、筛选及其降解的初步研究[J].卫生研究,2007,36(6):671-673
    [62]曾锋,康跃惠,傅家谟,等.邻苯二甲酸二(2-乙基己基)酯酶促降解性的研究[J].环境科学学报,2001,21(1):13-17
    [63]李魁晓,顾继东.环境激素邻苯二甲酸二丁基酯的好氧微生物降解[J].海洋环境科学,2006,25(1):7-9
    [64]LOH K C,WANG S J.Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources[J]. Biodegradation,1997,8(5):329-338.
    [65]WANG S J,LOH K C.Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate[J].Biodegradation,1999,10(4):261-269
    [66]夏柳荫,孙永利,等.混合固定化耐受菌共代谢降解五氯苯酚[J].化学工业与工程,2008,25(2):138-142
    [67]方亮,张丽丽,蔡伟民.活性污泥胞外多聚物提取方法的比较[J].环境科学与技术,2006,29(3):46-47
    [68]Dubois M, Gilles KA, Hamilton JK et al.Colorimetric method for determination of Sugars and related substances[J].Anal Cherry,1956,28:350
    [69]Dubois M, Gilles K A, Hamilton J K, et al.Acolorimetric method for the determination of sugars[J].Nature,1951,168-167
    [70]王淑红.废水中难降解苯类污染物碳源协同共代谢降解研究[D].广州:华南理工大学,2009
    [71]Dignac M F, Urbain V, Rybacki D,et al.1998.Chemical description of extracellular polymers:implication on activated sludge floc structure[J].Wat Sci Tech,38(8P9):45-53
    [72]Houghton J I, Stephenson T.2002.Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J].Water Research,36:3620-3628
    [73]Liu H, Fang H H P.2002.Extraction of extracellular polymeric substances(EPS) of slud-ges[J].Journal of Biotechnology,95(3):249-256
    [74]Fr《lund B,Palmgren R, Keiding K, et al.1996.Extraction of extracellular polymers fr-om activated sludge using a cation exchange resin[J].Water Research,30(8):1749-1758
    [75]Forstor C.F.Factors involved in the settlement of activated sludge-Inutrients and surface polymers [J].Water Res,1985,19(10):1259-1264
    [76]Jimenez B,Noyola A,Capdeville B et al.,Dextran Blue Colorant as a Reliable Tracer in Submerged Filters[J].Wat.Res.,1998,22:1253-1257
    [77]Dignac M F,Urbain V,Rybacki D et al.,Chemical Description of Extracellular Poly-mers:Implication on Activated Sludge Floc Matrix[J].Wat.Sci Tech.,1998,38:45-53
    [78]Fang H H P.2000.Microbial distribution in UASB granules and its resulting effects[J]. Water Sci Tech,42(12):201-208
    [79]郭明,陈红军.4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,11(19):523-527
    [80]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996:211-213
    [81]李今,吴振斌,等.生物膜活性测定中TTC-脱氢酶活性测定法的改进[J].吉首大学学报(自然科学版)[J],2005,1(26):37-39
    [82]周恢,左永生,等.MBR中污泥脱氢酶活性测定方法的改进[J].中国环保产业,2006,12:31-33
    [83]Joanna Surmacz-Gorska, Krzst Gernaey, Car Demuynck. Nitrification Monitoring in Activated Sludge by Oxygen Up take rate (OUR) Measurements[J].Wat.Res.,1996, 30(5):1228-1236
    [84]戴友芝,施汉昌.含五氯酚废水的生物降解性和微生物毒性试验[J].环境科学,2000,3(2):40-45
    [85]曾锋,康跃惠,傅家谟,等.邻苯二甲酸二(2-乙基己基)酯酶促降解性的研究.环境科学学报[J],2001,21(1):13-17
    [86]G.Thompson, C.Forster, Bulking in activated sludge plants treating paper mill wastewa-ters[J].Wat.Res.,2003 (37):2636-2644
    [87]D.Jenkins, M.G. Richard, G.T.Daigger. Manual on the Causes and Control of Activ at-ed Sludge Bulking[M],Foaming and Other Solids Separation Problems,Lewis Publish-ers,2004:187-189
    [88]D.Jenkins,Towards a comprehensive model of activated sludge bulking and foaming[J], Wat. Sci.Technol,1992(25):215-230
    [89]Y.F.Tsang,H.Chua, S.N.Sin, C.Y.Tam.A novel technology for bulking control in biological wastewater treatment plant for pulp and paper making industry[J].Biochem-ical Engineering Journal,2006(32):127-134
    [90]A.M.P.Martins,K. Pagilla, J.J.Heijnen, M.C.M.Van Loosdrecht, Filamentous Bulk-ing sludge-a critical review[J].Wat. Res.2004(38):793-817
    [91]张倩.加氯消毒过程中细菌生成消毒副产物的研究[D].广州:华南理工大学,2009
    [92]范秀容,李广武,沈萍.微生物学实验[M].江苏:科技出版社,1994:57-60
    [93]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003:246-248
    [94]王庆文,杨玉恒.有机化学中的氢键问题.天津:天津大学出版社,1998:65-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700