用户名: 密码: 验证码:
模拟月壤的渗水力模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国进行探月工程,对于开发空间资源、维护和平以及增强综合国力具有深远的意义。月球车在月球上行走、月壤的原位勘察测试取样以及月球基地的建设,都需要我们对人工装置与月壤相互作用问题有明确的认识。月壤的物理力学性质和工程性质对这些问题有非常重要的影响。在地球上研究上述相互作用问题需要重视不同重力场对模拟月壤工程性质的影响。
     本文选用过0.5mm筛的吉林靖宇黑色火山灰作为模拟月壤的原料,它能够较好地模拟真实月壤的主要物理力学性质。对模拟月壤进行了干土和饱和三轴剪切试验,获得了一些基本的物理力学参数。
     本文采用的自制渗水力模型试验装置由试验箱、测量记录装置、试验台等几个部分构成,通过该模型试验装置来研究不同重力场对载荷板系统、圆管系统和拉板系统等月面探测器简化人工装置与模拟月壤相互作用的影响。在1/6g、1g、2g和6g模拟重力场下所进行的试验表明:不同重力场对同一尺寸的人工装置的影响较为明显。随着模拟重力场的增大,在载荷板、圆管、和拉板达到相同位移时候所受的力、压强等也相应的增大,但它们的增大倍数不同于重力场的增大倍数。边界效应对模型有一定影响,以圆管贯入为例,在相同的模拟重力场和尺寸情况下,中心圆管受力要比距离中心10cm处的略大一些。对于圆管贯入的剪切应力,2g和6g重力场下,小圆管剪切强度是迅速达到峰值后逐渐趋于稳定状态,而中圆管和大圆管的剪切强度则在开始发展缓慢,直到贯入达到一定的深度后才开始增加,并保持增加趋势。在1/6g重力场下,剪切强度从开始一直呈现增长趋势,直到达到峰值后稳定;在1g重力场下,在初始阶段,小圆管和中圆管剪切强度迅速达到启动强度后降低并趋于稳定,而大圆管则在贯入达到一定深度才后开始缓慢增加。拉板在拉出土体时的净拉力峰值与相应加速度存在较好的线性关系,但是与理论值还有较大的差距。
     本文的研究结论,可为在地球上研究月球车、勘探装置与模拟月壤相互作用以及月球基地的建设提供一定的参考。
China's lunar probe program is very important to the exploration of space resources and strengthening the national capabilities. It is necessary for us to be aware of situation of the interaction of lunar soil and manual facilities to realize the moving of moon rover, inspection tests on soil sampling and constructions of a lunar base. Physical and mechanical properties of lunar soil have an impact on these problems. When interaction problems are studied, the different gravity effect on the engineering properties of lunar soil simulant should be paid attention to.
     Volcanic ash in Jingyu, Jilin province is selected as primary material in this paper, as it can simulate the actual lunar soil physical and mechanical properties of the main. Triaxial tests of dry and saturated lunar soil simulant are carried out to obtain the physical and mechanical parameters.
     The test equipment of water seepage model used in this paper is made of test chamber, measuring and recording device, test bed and so on. Through seepage model tests, the interactions are studied of lunar soil and simplified artificial device on the detectors, such as the load board system, tube simulant system and the pull plate system. The tests of 1/6g, 1g, 2g and 6g gravity field show that: gravity field has great impact on manual facilities of the same size. With the increasing of simulated gravitational field, the pressures and forces on the load plate, tube and steel plate of the same displacement increase, but the increasing rates are different from those of gravitational field. Boundary effect has a certain influence on the model, in the tube simulant test for example, with the same simulated gravity field and tube size, the force of the center tube is slightly larger than that of the tube 10 cm away from the center. In tube test, when gravity field is 2g and 6g, the shear stress of small tube reaches its peak rapidly and becomes stable, while the shear stress of medium and large tubes develops slowly in the beginning until a certain depth of penetration to increase and keeps increasing. In 1/6g gravity field, the shear strength of the three tubes increases from the beginning until the peak. When the gravity field is 1g, in the initial stage, the shear stress of small and medium tubes quickly covers the starting strength and falls to a stable value, while that of large tube develops slowly until a certain depth of penetration. There is a significantly linear relation between the maximum net forces when pulling plate is pulled out and the corresponding gravities. But there is a considerable gap between the maximum net forces and the theoretical values.
     Conclusions in this paper can be of reference value for the study of the interaction of lunar rovers, prospecting equipment and lunar soil simulant as well as constructions of a lunar base.
引文
[1]欧阳自远,邹永廖.月球的地质特征和矿产资源及我国月球探测的科学目标[J].国土资源情报,2004,1:p36-39
    [2]欧阳自远.探月工程离不开地质工作[N].中国矿业报,2006-03-02:(2).
    [3]黄永明.嫦娥奔月:深空探测第一步[N].科技导报,2007,(21).
    [4]新华.我国探月三步走[J].中国测绘,2003,(05):p45.
    [5]欧阳自远.深空探测进展与我国的发展战略[J].中外科技信息,2002,10:5-9.
    [6]郑永春,王世杰等.模拟月壤研制的初步设想[J].空间科学学报,2005,25(1):p70-75
    [7]刘春辉.微重力科学与应用研究[J].宇航学报,1996,10:p110-114
    [8] Walter W Boles,Wesley D.scott.,and John F.Connolly.Excavation Forces in Reduced Gravity Environment ,Aerospace enginering. April 1997,99-103
    [9]邓宗全,王少纯,胡明等.微小型航天着陆器技术初探[J].导弹与航天运载技术,2003,2:p1-6
    [10]李钟.土工模型试验研究状况综述[J].军工勘察,1994,04:p41-43
    [11]丁金粟,汤启明,龚有满.用渗水力模型研究饱和土地基载荷性状[J].岩土工程学报,1994.16(1):p8-20
    [12]龚有满.水力模型在地基基础研究中的应用[J].水文地质工程地质,1995(1):p34-36
    [13]方磊,李广信,黄锋.室内土工模型试验的新方法——桩基渗水力土工模型试验[J].高等地质学报,1997,3(4):p451-457
    [14]李广信,黄锋,帅志杰.不同加载方式下桩的摩阻力的试验研究[J].工业建筑,1999,29(12):p19-p21
    [15]夏素平,王立波,王祥.模型试验体力加载方法[J].山西建筑,2005,(12)
    [16]李志刚.人工装置与模拟月壤相互作用的土工离心模型试验研究[D]:清华大学工学硕士论文.北京:清华大学,2008
    [17]杜斌.模拟月壤物理力学性质和渗水力模型试验的研究[D]:清华大学工学学士论文.北京:清华大学,2008
    [18]刘淑军,管西强,李遥,杜三虎.松软月壤上月球车驱动能力的仿真研究[J].机械设计与研究,2010,(02):p43-46
    [19]李因武,李建桥,邹猛,任露泉.月壤力学性质对月球车牵引性能影响的模拟[J].农业机械学报,2009,(01):p1-4
    [20]鄢泰宁,补家武,吴翔,王荣璟.试论月球表面钻探取样的难点与关键技术[J].地质科技情报,2004,(04):p12-14
    [21]鄢泰宁,补家武,王恒.月球表面钻探取样——中国钻探界面临的新任务展望[J].探矿工程,2003,(01):p9-10
    [22]段新胜,鄢泰宁,顾湘,段苏浩.我国探月工程可采用的一种月球钻探取样方法的初步分析[J].地质科技情报,2003,(06):p125-127
    [23] Yoshida Kazuya, Ishigami Genya. Steering Characteristics of A Rigid Wheel for Exploration on Loose Soil. International Conference on Intelligent Robots and Systems (IROS),2004,4:p3995-4000
    [24]李翠兰,马培荪,高雪官,曹志奎.一种新型的可被动适应崎岖表面的六轮月球漫游车[J].传动技术,2005,19(1):p9-13
    [25]邓宗全,高海波,胡明,王少纯.行星越障轮式月球车的设计[J].哈尔滨工业大学学报,2003,35(2):p203-206.
    [26]王少纯,邓宗权,胡明,高海波.一种模拟月球着陆器低重力着陆试验方法[J].上海交通大学学报,2005,39(6):p889-992
    [27] Melzer, K. J. Methods for Investigating the Strength Characteristics of a Lunar Soil Simulant. Geotechnique, v 24, n 1, Mar, 1974, 13-20.
    [28]郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):p14-19
    [29]刘春茹,王世杰,冯俊明等.我国低钛月海型模拟月壤初始物质选择的地球化学依据[J].矿物岩石,2007,27(3):p28-33
    [30]郑永春,王世杰等.CAS-1模拟月壤[J].矿物学报,2007,27(3/4):p571-578
    [31]王清.土体原位测试与工程勘察[M].北京:地质出版社,2006. p130
    [32] Willman, B.M., Boles, W.W., McKay, D.S. and Allen, C.C., 1995. Properties of lunar soil simulant JSC-1[J] .Journal of Aerospace Engineering, 8(2): 77-87.
    [33] Morris RV,et al. Handbook of Lunar Soils[J],NASA Johnson Space Center,1983, p914.
    [34] L. D. Jaffe. Bearing Strength of Lunar Soil [J]. The Moon,1971,3:p337-345
    [35] Steven W.Perkins.,and Craig R.Madson.Mechanical and Load-Settlement Characteristic of two lunar soil simulants, Aerospace enginering.January 1996,1-9
    [36] Weiblen P.W., Murawa M.J., Reid K.J., Preparation of Simulants for Lunar Surface Materials. Engineering, Construction, and Operations in Space II, American Society of Civil Engineers,1990:p428-435.
    [37] Steven W. Perkins, Craig R. Madson. Mechanical and Load-Settlement Characteristic of Two Lunar Soil Simulants [J]. Journal of Aerospace Engineering,1996,9(1):p1-9
    [38]李广信.高等土力学[M].北京:清华大学出版社,2004. p19
    [39] Willman, B.M. and Boles, W.W., 199S. Soil-tool interaction theories as they apply to lunar soil simulant[J]. Journal of Aerospace Engineering, 8(2): 88-99.
    [40] McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C, and Allton, J.H., 1994. JSC-1:Anew lunar soil simulant, Engineering, Construction, and Operations in Space IV.American Society of Civil Engineers, 857-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700