用户名: 密码: 验证码:
电控液驱混合动力车辆关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车是能源消耗和污染物排放的主要成员之一,交通与社会经济可持续发展,已成为全球关注的焦点问题。因此,汽车节能已成为全球的热点问题,国内外都在研究开发使用新型动力传动系统和新能源汽车来提高车辆经济性,降低能源消耗,减少大气污染,保护生态环境。节约能源不仅是国民经济的重大课题,也是现代科学技术面临的严重挑战,节约能源从广义上讲包括能量的回收再利用。汽车作为能源消耗大户,探讨和研究汽车运行中的能量消耗和回收再利用技术,体现了科学利用能源的思想。
     电控液驱混合动力车辆采用二次调节技术,动力源可独立工作于经济区,由于动力源系统中储能元件的加入,可回收和再利用车辆制动能。本文以电控液驱混合车辆动力源为研究对象,应用理论分析、仿真技术和实验等手段对其进行较系统和深入地研究。
     在分析动力源工作特点的基础上,对储能元件液压蓄能器的特性进行研究;建立液压泵的效率模型,运用系统辨识和参数估计的方法,获得液压泵效率理论计算的拟合多项式;用系统的观点,提出以动力源总效率做为动力源系统性能的评价指标之一。
     通过对动力源系统元件之间的匹配分析和研究,运用理论计算和仿真分析,确立相关元件工作参数的选择原则;定义蓄能器充液状态概念,提出利用全局最优化能量管理策略和瞬时等效燃油消耗最小策略,以蓄能器充液状态变化为准则,对动力源工作性能进行分析,并以燃油经济性最优为目标进行动力源基本工作参数匹配优化。
     在综合考虑发动机和液压泵特性的条件下,讨论动力源系统的调节特性对车辆经济性和动力性的影响,提出在保证车辆动力性的基础上,如何实现车辆的最佳经济性的方法和途径。
     通过车辆运行的几种典型工作模式的分析,针对发动机、液压泵的不同特点和工作要求,提出采用模糊控制技术和模糊自适应控制策略设计控制器来对动力源控制进行仿真和实验研究。
     为了能够开展对电控液驱混合动力车辆动态性能及动力源性能及其控制规律的研究,研制“电控液驱混合动力车辆原理样车”;完成样车动力源的方案设计、机电液等部件的计算与选型和样车的调试。
     结合实验室的试验平台和自行设计开发的控制器,对电控液驱混合动力车辆的动力源进行模拟实时控制研究。通过模拟试验,一方面验证系统仿真模型与控制策略的正确性;另一方面探索动力源系统的控制规律,为电控液驱混合动力车辆的工程化提供动力源设计与控制的理论基础。
Vehicles is a main member of the energy consumption and emissions, sustainable development of transportation and society and economy has become a global concern. Therefore, saving energy has become a global hot issues for all classes of vehicles, in the national and international both is researched and developed the new powertrain to improve the fuel economy and power performance of vehicles, to reduce energy consumption and air pollution, protect the environment. Saving energy is not only a major issue of national economy, also modern science and technology faced the serious challenges. Saving energy broadly include recycling and reuse. Exploring and studying in the energy recycling and reuse technology of vehicles operation reflects scientific thinking of use energy.
     In this paper, the study is a power source for a new type of the hydraulic drive vehicle with electronic control, make use of theoretical analysis, simulation and experiment to carry out by means of a systematic and deeply research. The new vehicle with electronic control and hydrostatic drive with secondary adjusting technology, the power source can operate independently in the economic zone, as the energy storage element to join, recyclable and reused braking energy.
     Based on the analysis of the operation characteristics of power sources, the hydraulic accumulator for energy storage element characteristics were studied and has established the model of the pump efficiency, the use of system identification and parameter estimation methods, is set up the polynomial fitting equation of a theoretical calculation pump efficiency, and the total efficiency of the power source system is put up to as performance evaluation.
     Through the matching has been analyzed and researched between system components of the power source, the use of theoretical calculations and simulation analysis to establish the selection principle of the relevant components of the key technical parameters, and emissions and the best fuel economy is a targets for the basic parameters for the matching optimization. The state of charge (SOC) of the accumulator is defined, and on this basis the performance of the power source is analyzed in use of global optimization of energy management strategy and instantaneous equivalent onsumption minimization strategy.
     By analyzing typical operation mode for vehicle, aim the different characteristics and requirements of the engine and hydraulic pump, the paper introduces the fuzzy control and fuzzy adaptive control strategy to design controller to simulation and its experimental study. In considering conditions of the characteristics of the engine and pump, discussed the regulation characteristics of the power source system how to affect the power performance and economy of vehicle, and based on to ensure the power performance of vehicle, how to achieve the best economy of the vehicle ways and means.
     In order to study dynamic performance and its control law of a new electronic control hydraulic drive vehicle and power source, developed "a prototype." Completed power source design, calculation and selection of the mechanical-electric-hydraulic and other components and prototype testing.
     Combination of control instruments and self-developed controller, the power source is simulated and real-time control. Verified by simulation on the one hand the system simulation model and the correctness of the control strategy; the other hand, explores the power source system control law and for the engineering design of the new electronic control hydraulic drive vehicle provides a method of power source and the theoretical basis for the control.
引文
[01]我国城市空气质量现状与对策探讨[OL].http://www.docin.com/p-32953000.html#
    [02]韦洪莲.中国城市大气颗粒物源解析研究及空气质量功能区达标现状及展望[EB/OL]. http://www.cneac.com/article/list.asp?id=30
    [03]中华人民共和国国家环境保护总局.大气环境保护标准[EB/OL].http://www.zhb.gov.cn/tech/hj bz/bzwb/dqhjbh/
    [04]国家发展改革委,建设部等.关于鼓励发展节能环保型小排量汽车意见[EB/OL].http://www.gov.cn/gongbao/content/2006/content_212067.htm
    [05]中华人民共和国国务院.国家长期科学和技术发展规划纲要[EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [06]世界石油需求[OL].http://www.zgjrw.com/News/2011124/home/798121997200.shtml
    [07]Taiyo Kawai. Automotive Power Sources for the 21st Century. TOYOTA Technical Review.2000(01):6-11.
    [08]潘继平.全球石油供需状况与资源潜力[J].能源安全,2004(12):21-24.
    [09]Mark Sardella, Julian Darley. Statement on global "Oil Peak" [EB/OL]. http://www.copad.org.2003-03-22
    [10]Nobutaka Morimitsu, Fuel Efficiency Improvement of Gasoline Engine Vehicle, TOYOTA Technical Review,1998(02):12-17.
    [11]我国汽车汽油消费量[OL].http://finance.stockstar.com/SS2007091237443072.shtml
    [12]我国汽车保有量破亿辆http://www.gov.cn/jrzg/2011-09/18/content_1950359.htm
    [13]余志生.汽车理论(第五版)[M].机械工业出版社,2009.
    [14]吴光强.车辆静液驱动与智能控制系统[M].上海:上海科学技术文献出版社,1998.
    [15]闫叶翠,刘国庆,陈杰.液压混合动力公交车动力性能仿真与试验研究[J].汽车工程,2010,32(02):93-97.
    [16]吴光强,罗邦杰.车辆混合动力传动系统开发现状与展望[J].汽车工程,1997(02):78-82.
    [17]张铁柱.城市车辆新型节能动力传动系统研究[J].青岛大学学报1997(02):86-89.
    [18]张铁柱.城市传统车辆与飞轮节能车辆燃油经济性能分析与仿真[J].青岛大学学报,1997(01):
    [19]Nukazawa Norio, Kono Yoichiro. Development of a Braking Energy Regeneration System for City Buses[C]. SAE 872265.
    [20]John Henry Lumkes JR. Design, Simulation, and Testing of An Energy Storage Hydraulic Vehicle Transmission and Controller[D]. University of Wisconsin-Madison, P.H.D Dissertation.1997.
    [21]Clean Automotive Technology[EB/OL]. http://www.epa.gov/otaq/technology
    [22]Zbigniew Pawelski,Sebastian Wittich. Optimal of operating parameters during the accumulator charging process[J]. Int.J.Vehicle Design.2005(38):150-161.
    [23]Bin Wu, Chan-Chiao Lin, Zora Filipi, Huei Peng And Dennis Assanis. Optimization of Power Management for a Hydraulic Hybrid Delivery Vehicle[J]. Vehicle System Dynamics.2004,42(l):23-40.
    [24]EPA. Hydraulic Hybrid Technolygal-A Proven Approach[EB]. EPA420-F-04-024, March,2004.
    [25]Green Car Congress. Eaton and Peterbilt to Produce Hydraulic Hybrids[J]. October 20,2004.
    [26]Green Car Congress. EPA. Eaton and Partners Developing Full Diesel-Hydraulic series Hybrid for UPS[EB].2005,10.
    [27]Trevor Blohm, Scott Anderson. Hybrid Refuse Truck Study.2004 MSC. Software Virtual Product Development Conference.2004. Huntington Beach, California.
    [28]Brian L,Van Batavia. Hydraulic Hybrid Vehicle Energy Management System[C]. SAE 2009011772.
    [29]EPA. World's First Full Hydraulic Hybrid SUV Presented at 2004 SAE Wold Congress[EB]. EPA420-F-04-019. March,2004.
    [30]Beachley Norman H. Frank, Andrew A. Improving Vehicle Fuel Economy with Hybrid Power System[C]. SAE 780667.
    [31]Huiyi Wang and Guangqiang Wu. Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System[C]. SAE973179.pp394-398.
    [32]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公交车辆驱动中的节能技术研究[J].中国机械工程,2001(03):270-272.
    [33]姜继海,韩永刚,王德海,等.二次调节静液驱动系统的智能PID控制[J].哈尔滨工业大学学报,1998,(01):45-48.
    [34]姜继海,于庆涛.二次调节静液传动技术[J].流体传动与控制,2005(04):1-5.
    [35]赵春涛,姜继海,赵克定.二次调节静液传动技术在城市公交车辆中的应用[J].汽车工程,2001,23(06):423-426.
    [36]赵春涛,姜继海,赵克定.车辆串联混合传动中二次调节系统的节能制动[J].中国机械工程,2003,14(06):529-532.
    [37]赵克刚,罗玉涛.一种液压储能汽车的混联式新方案[J].液压与气动,2007,31(07):18-21.
    [38]曾洋.静液驱动二次调节控制技术的研究[D].广州:华南理工大学,2002.
    [39]杜玖玉,苑士华,胡纪滨,等.新型车用功率分流式液压混合动力传动研究[J].液压与气动,2008,32(08):22-25.
    [40]周奉香,苑士华,李辉.公交车辆制动能量回收与再利用系统研究[J].客车技术与研究,2003,25(06):6-7.
    [41]陈华志,苑士华.城市用车辆制动能量回收的液压系统设计[J].液压与气动,2003(04):1-3.
    [42]李翔晟,常思勤.静液压储能传动汽车动力源系统的匹配效率[J].中国公路学报,2007,20(1):118-122.
    [43]李翔晟,常思勤.新型电控液驱车辆储能元件特性分析[J].中国机械工程,2007,18(10):1244-1247.
    [44]李翔晟,常思勤,韩文.静液压储能传动汽车动力源系统匹配及性能分析[J].农业机械学报,2006,37(03):12-16.
    [45]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报,2006,37(10):31-34.
    [46]李翔晟,常思勤.静液压储能传动车辆动力源系统设计分析[J].南京林业大学学报,2005,29(04):65-68.
    [47]韩文,常思勤.新型二次调节静液车辆传动系统的智能PID控制研究[J].农业机械学报,2004,35(05):9-11,19.
    [48]常思勤.关于一种液驱混合动力车辆的探讨[C].2002年江苏机电一体化技术学术会议.南京.2002,11:26-27.
    [49]韩文,常思勤.模糊控制在新型二次调节静液传动车辆的应用[J].汽车工程.,2004,26(03):322-324,335.
    [50]韩文,常思勤.静液二次调节技术传动系统转速的模糊PID控制研究[J].拖拉机与农用运输车,2005(03):27-29.
    [51]韩文.新型电控液驱车关键技术的研究——驱动/制动系统[D].南京:南京理工大学博士论文.2005.
    [52]李翔晟,常思勤.新型电控液驱车辆传动系统特性及匹配研究[J].机床与液压.2006,33(05):105-107,110.
    [53]李翔晟,常思勤.蓄能器与车辆静液压储能传动系统性能及匹配分析[J].公路交通科技,2004,21(03):110-113.
    [54]魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006(08):1645-1648.
    [55]师昌绪,李恒德,周廉.材料科学与工程手册[M].北京:化学工业出版社,2004.
    [56]Pourmovahed A., Otis D.R.. An experiment thermal time-constant correlation for hydraulic accumulators. Journal of Dynamic Systems, Measurement, and Control.1990 (112):116-121.
    [57]于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
    [58]成森,郝利君,何洪文等.串联型混合动力电动汽车辅助动力系统[J].汽车工程,2003,25(03):243-275,272.
    [59]谷中丽,王素贞,李军求.混合动力车辆多目标控制能量管理策略研究[J].北京理工大学学报,2006,26(06):487-491.
    [60]廖承林,张俊智,卢青春.混合动力轿车动力总成控制系统的研发[J].汽车工程,2006,28(05):418-421.
    [61]王保华,王伟明,张建武等.并联混合动力汽车控制策略比较研究[J].系统仿真学报,2006,18(02):401-404.
    [62]浦金欢,严隽琪,殷承良.并联式混合动力汽车控制策略的仿真研究[J].系统仿真学报,2005,17(06):1543-1547.
    [63]孟铭,杜爱民.并联式混合动力汽车的基本控制策略和实时控制策略的比较分析[J].内燃机工程,2005,26(03):11-14.
    [64]Yuan Zhu,Yaobin Chen,Guangyu Tian,etc.A four-step method to design an energy management strategy for hybrid vehicles[C]. Proceedings of American Control Conference 2004.2004,1(01):156-161.
    [65]Langari, R.,Jong-Seob Won. Intelligent energy management agent for a parallel hybrid vehicle-part I:system architecture and design of the driving situation identification process[J]. IEEE Transactions on Vehicular Technology.2005,54(03):925-934.
    [66]Jong-Seob Won, Langari, R. Intelligent energy management agent for a parallel hybrid vehicle-part II:torque distribution, charge sustenance strategies, and performance results[J]. IEEE Transactions on Vehicular Technology.2005,54(03):935-953.
    [67]Stefano B., Carmine M. and Andrea P. A Control Strategy to Minimize Fuel Consumption of Series Hybrid Electric Vehicle[J]. IEEE Transations on Energy Conversion.2004,19(01):187-195.
    [68]Johannesson, L, Asbogard, M. Egardt. B. Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming[C]. Proceedings of IEEE Conference on Intelligent Transportation Systems,2005.
    [69]Mehrdad Ehsani,Yimin Gao,Ali Emadi[美],倪光正,倪培宏,熊素铭,译.现代电动汽车、混合动力汽车和燃料电池汽车[M].北京:机械工业出版社,2010.
    [70]田锐.混合动力汽车用铅酸蓄电池均衡控制策略研究[D],重庆大学,2005.05.
    [71]张玲,唐冬汉.超级电容器极化电极材料的研究进展[J].重庆大学学报(自然科学版),2002(05):152-156.
    [72]H. W. Nikolaus. Antriebssystem mit hydrostatischer Kraftubertragung Patent-anmeldung. P2739968.4 Vom6.9.1977.
    [73]Sun Hui, Jiang Jihai, Wang, Xin. Parameters matching and control method of hydraulic hybrid vehicles with secondary regulation technology[J]. Chinese Journal of Mechanical Engineering (English Edition).2009,22(2):57-63..
    [74]F.Metzner. Secondary Speed Controlled Hydrostatic Units on Quasi-Constant Systems Integrated Engine Transmission Systems[C].1986 C193/86:13-19.
    [75]姜继海.二次调节静液传动技术[J].液压气动与密封,2000(6):1-3.
    [76]W. Backe. Ch. Kogl. Secondary controlled motors in speed and torque control[C]. The Second International Symposium on fluid Power. JHPS, Tokyo, September 1993: 241-248.
    [77]H. Murrenholf. E. Weishaupt. Recent Developments for the Control of Variable Displacement Motors with Impressed Pressur[C]. Third International Symposium on fluid Power. JHPS, Tokyo, Octorber 1996:79-84.
    [78]Huiyi Wang and Guangqiang Wu. Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System[C]. SAE973179.pp394-398.
    [79]William S. Chao. Brake Hydraulic System Resonance Analysis[C]. SAE 975504. pp1329-1332.
    [80]Frank J. Fronczak, Norman H. Beachley. An Integrated Hydraulic Drive Train System for Automobiles [C]. Proceeding of the 8th International Symposium on Fluid Power US.1991:199-215.
    [81]Poumovahed, A, Beachley N. H. Modeling of a Hydraulic Energy Regeneration System[J]. Journal of Dynamic System Measurement and Control,1992,114(3)
    [82]Nukazawa Norio, Kono Yoichiro. Development of a Braking Energy Regeneration System for City Buses[C]. SAE 872265.
    [83]姜继海,王德海,韩永刚,等.二次转速调节静态神经网络非线性控制策略研究[J].机床与液压,1997(3):21-22.
    [84]赵春涛,姜继海,高维忠,等.新型二次调节静液汽车传动系统[J].汽车技术.2001(01):4-6.
    [85]姜继海,徐志进,刘庆和,等.二次调节静液驱动转速PID控制及其试验研究[J].工程机械,1997(11):31-33.
    [86]谢卓伟.二次转速调节静液驱动系统调速特性分析.液压与气动,1989(03):16-20.
    [87]谢卓伟,付永领,刘庆和.二次调节静液驱动系统的微机数字闭环控制[J].工程机械,1990,(11):29-30.
    [88]吴光强.带有能量再生系统市区公共汽车制动性能计算机仿真研究[J].汽车工程,1995(01):42-47.
    [89]吴光强,王会义.市区公共汽车制动能回收再利用理论分析[J].中国公路学报,1996(01):94-98.
    [90]Peter W. Secondary control technology and applications[J]. Fluid Power System and Technology.1998(05):19-34.
    [91]李翔晟.二次调节静液储能传动系统在拖拉机上应用初步探讨[J].拖拉机与农用运输车,2003(01):10-12.
    [92]陈唐民.汽车运输学[M].北京:人民交通出版社,1999.
    [93]常思勤,易刚.一种电控液驱混合动力车辆的性能仿真与分析[J].南京理工大学学报,2004(02):169-173.
    [94]常思勤.关于一种电控液驱混合动力车辆的探讨[J].机械设计与制造工程(增刊)2002:26-27.
    [95]彭莫,刁增祥.汽车动力系统计算匹配及评价[M].北京:北京理工大学出版社,2009.
    [96]E.Hendricks, S.C.Sorenson. Mean value Modeling of Spark Ignition Engines[C]. SAE Technical Paper,1990,900616.
    [97]J.A. Cook,B.K.Dowel. Modeling of an Internal Combustion Engine for Control Analysis[J]. IEEE Control Systems,1988.
    [98]P.R.Crossley,J.A. A.Cook. A nonlinear Engine Model for Drive train System Development[C].Proc.IEE Int.Conf., Control'91, Edinburgh/UK,1991(02):921-925.
    [99]J.J.Moskwa,J.K.Hedrick. Modeling and Validation of Automotive Engines for Control Algorithm Development[J]. ASME Journal of Mechanisms, Transmissions and Automation in Design,1992,114(02):278-285.
    [100]R.W.Weeks,J.J.Moskwa. Automotive Engine Modeling for Real-time Control Using MATLAB/Simulink[C]. SAE paper,1995,950417.
    [101]Rubin Z. J., S. A. Munns, J. J. Moskwa. The Development of Vehicular Powertrain System Modeling Methodologies:Philosophy and Implementation[C]. SAE paper,1997,971089.
    [102]李壮云,葛宜远.液压元件与系统(第2版)[M].北京:机械工业出版社,2006.
    [103]姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002.
    [104]方崇智,萧德云.过程辨识[M].清华大学出版社,2006.
    [105]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真[M].科学出版社,2004.
    [106]赵平亚,余道蓉.多维系统辨识[M].上海科学技术出版社,2004.
    [107]雷天觉.新编液压工程手册(上)[M],北京:北京理工大学出版社,1998:15-30.
    [108][美]霍尔曼.J.P.著.曹黎明译.热力学[M].北京:科学出版社,1986.
    [109]Pourmovahed A., Otis D.R.. An experiment thermal time-constant correlation for hydraulic accumulators[J]. Journal of Dynamic Systems, Measurement, and Control. 1990(112):116-121.
    [110]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002:774-779.
    [111]陈清泉,孙缝春,祝嘉光.现代电动汽车技术.北京:北京理工大学出版社,2002.
    [112]王占林.飞机高压液压能源系统[M].北京:北京航空航天大学出版社,2004:239.
    [113]姚怀新.工程车辆液压动力学与控制原理[M].北京:人民交通出版社,2006.
    [114]李翔晟,常思勤,柯进益.电控液驱混合动力车辆燃油经济性计算与分析[J].拖拉机与农用运输车,2005(06):51-54.
    [115]汽车标准汇编[M].北京:中国标准出版社,2009.
    [116]董宏林.液压变压器与蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程,2003(14),03:192-195.
    [117]汽车工程手册(基础理论篇)[M].北京:北京理工大学出版社,2010.
    [118]薛晓虎,杜金凤.柱塞泵效率特性的分析和研究[J].液压与气动,2003(12):43-46
    [118]吕爱玲,姜友山,邹广德,等.全液压推土机液压驱动系统变量泵效率研究[J].农业装备与车辆工程,2010(05):11-14.
    [119]Karl-Erik Rydberg. Hydrostatic Drives in Heavy Mobile Machinery:New Concept and Development Trends[C]. No.981989, SAE.1998:1-7.
    [120]谷口正明.怠速停用政策及其推行的状况[J].汽车工程,,2004(06):763-764(695).
    [121]M.S.Ju, D.L. Yang. Design of adaptive fuzzy controls based on natural control laws[J]. Fuzzy Sets and Systems.1996(81):191-204.
    [122]G. D. Nicolao, C. Rossi, R. Scattolini, M. Sulritti. Identification and idle speed control of internal combustion engines[J]. Control Engineering Practice.1999(7) 1061-1069.
    [123]Dae Eun Kim Jaehong Park. Neural network control for reducing engine speed fluctuation at idle. IEEE 1999 0-7803-5731-0/99:629-634.
    [124]M.K.Khan,S.K.Spurgeon,P.F.Puleston. Robust Speed Control of an Automotive Engine Using Second Order Sliding Modes[J].Proceeding of the European Control Conference, 2001.
    [125]M.K.Liubakka,J.R.Winkelman. Adaptive Automotive Speed control[J]. IEEE Transactions on Automatic Control,1993(07):1011-1020.
    [126]李翔晟,常思勤.静液储能传动汽车发动机怠速模糊控制[J].车用发动机,2005,4:30-34.
    [127]王立新.自适应模糊系统与控制[M].北京:国防工业出版社,2000.
    [128]张国良,曾静,柯熙政,等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002.
    [129]A.Trebi-Ollennu,J.M.Dlan,P.K.Khosla. Adaptive fuzzy throttle control for an all-terrain vehicle[J]. Proc.Instn.Mech.Engrs. Part 1.2001(215):189-198.
    [130]P.F.Puleston,S.Spurgeon and G.Monsees.Automotive engine speed control:A robust nonlinear control framework[J]. IEE Proc. Control Theory and Application,2001(01): 81-87.
    [131]John J. Moskwa, J. Karl Hedrik. Nonlinear Algorithms for Automotive Engine Control. IEEE Control System Magazine,1990(04):88-93.
    [132]韩曾晋.自适应控制[M].北京:清华大学出版社,1995.
    [133]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700