用户名: 密码: 验证码:
一个新的甜瓜叶色黄化突变体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜(Cucumis melo L.)是一种一年生蔓性草本植物,其果实色、香、味俱佳,在国内外广泛栽培,是重要的经济作物之一。黑龙江省是薄皮甜瓜的传统产地之一,种质资源和变异类型极为丰富,是其育种和有关生物学研究的基础。叶色突变体是研究高等植物光合系统结构、叶绿素代谢、叶绿体发育、光合作用、激素生理等一系列生理代谢过程的理想材料,也是遗传和育种研究中的重要材料。以往对于甜瓜叶色突变体的研究报道主要着重于突变体的发生和遗传规律等方面,但叶色变异的机理尚未明确。
     本研究以新发现的薄皮甜瓜叶色黄化突变体9388-1为试材,对其主要农艺性状、光合特性、叶绿体超微结构、叶绿素生物合成特性、遗传特性等方面进行研究,并利用双向电泳及质谱分析技术,比较叶色黄化突变体与突变亲本叶片蛋白的差异,获得差异表达蛋白,初步明确叶色黄化的机理。主要研究结果如下:
     1.甜瓜叶色黄化突变体从子叶就表现出黄色,且整个生育期该性状稳定。生长周期相对延迟,较白莎蜜1号晚7-10d。植株长势正常,主要农艺性状差异不显著,能开花结实,结实率有所降低;经细胞流式仪对染色体数目进行鉴定分析发现,叶色黄化突变体染色体数目正常,说明该突变体未发生染色体数目的变异。
     2.对甜瓜叶色黄化突变体的光合色素含量、净光合速率及光合作用关键酶、叶绿素荧光参数进行测定分析,结果表明:叶色黄化突变体光合色素含量显著低于白莎蜜1号,其中叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量减少了79.5%,90.3%,81.5%,70.7%,杂交一代植株与白莎蜜1号差异不显著。类胡萝卜素/叶绿素(Caro/Chl)与白莎蜜1号无显著差异,叶绿素a/b (Chla/Chlb)为8.67,显著高于与白莎蜜1号4.10,叶绿素含量的降低幅度大于类胡萝卜素。净光合速率显著降低,为对照的50.23%、66.28%,气孔导度和蒸腾速率差异显著,变化趋势与净光合速率一致;Rubisco的活性显著低于白莎蜜1号,而PEPCase和NADP-ME的活性则高于白莎蜜1号,分别为119.23%和118.91%。F0和Fm显著低于白莎蜜1号和杂交一代植株,而FV/Fm差异不显著。qP与白莎蜜1号无极显著差异,qN显著高于白莎蜜1号和杂交一代植株。ФPSⅡ和ETR与白莎蜜1号及杂交一代差异显著。杂交一代植株的净光合速率、关键酶活性和叶绿素荧光动力学参数与白莎蜜1号差异不显著。
     3.对不同生育期叶色黄化突变体叶片解剖结构特征进行观察发现:在扫描电镜下,白莎蜜1号叶片叶肉组织发达且分化程度高,栅栏组织厚度大,层次多,栅栏组织细胞呈柱状,排列紧密且细胞规则;叶色黄化突变体栅栏组织欠发达,排列松散,无规则,细胞间距较大,叶绿体含量较少。在透射电镜下,白莎蜜1号叶片叶绿体结构发育正常,表现为类囊体膜系统发达,类囊体高度分化,构成基粒的垛叠层数较多,基质片层清晰可见,且排列整齐,淀粉粒含量多。突变体叶绿体发育存在明显缺陷,表现为叶绿体形状不规则,无发育完整的类囊体,其中基粒类囊体数极少,呈线条状,大部分基粒只有几个片层,含有少量淀粉粒。
     4.对叶绿素生物合成前体物质含量及相关键酶活性进行测定,结果表明:该甜瓜叶色黄化突变体叶绿素生物合成前体物质PBG积累,而UrogenⅢ含量显著降低,且ALAD活性显著高于白莎蜜1号,PBGD、COPX、PPOX活性显著降低,表明该突变体叶绿素生物合成受阻,受阻位点是在PBG与UrogenⅢ的反应步骤。
     5.对不同生育期内源激素和氨基酸含量进行测定分析,结果表明:在整个生育期内,叶色黄化突变体IAA、GA3和ABA变化趋势与白莎蜜1号基本一致,IAA和GA3含量与白莎蜜1号差异不显著,而ABA含量显著低于白莎蜜1号;叶色黄化突变体和白莎蜜1号叶片的各游离氨基酸组成相同,含量变化差异显著,其中差异最显著的是Glu和Asp。由于Glu和Asp在整个氨基酸代谢途径的上游,在突变体叶片中由于其转化受阻,造成了代谢下游的氨基酸含量下降。
     6.对不同生育期叶片SOD、POD、CAT、ATP酶活性进行测定分析,结果表明:叶色黄化突变体SOD酶活性在伸蔓期、衰老期均显著高于白莎蜜1号,子叶期、幼苗期和结果期差异不显著;CAT酶活性在子叶期和幼苗期与白莎蜜1号差异不明显,在伸蔓期和结果期酶活性比白莎蜜1号高,差异显著;叶色黄化突变体与白莎蜜1号不同生育期的POD活性均呈现“先升后降”的变化趋势。子叶期至幼苗期,两者的POD活性均缓慢上升,其变化幅度显著低于对照。在伸蔓期时白莎蜜1号POD活性达到最高,之后急剧下降,而叶色黄化突变体则延迟了高峰的到来,在结果期维持较高的POD活性,之后缓慢下降;叶色黄化突变体Mg++-ATP酶活性显著高于白莎蜜1号,Ca++-ATP酶活性相对较低。7.通过连续的自交、正反交、与突变亲本的回交试验表明,叶色黄化突变体自交后代表现为单一表型(黄色),正反交试验结果一致,后代植株表现为单一表型(绿色),和突变体回交及F2分离群体后代分别产生1黄色植株:1绿色植株和3绿色植株:1黄色植株。该叶色黄化突变体是一对核基因控制的隐性遗传,暂命名为ypl基因;SSR标记技术将ypl基因定位在标记N41和MU4104-2之间,遗传距离为2.45cM和3.45cM。
     8.采用双向电泳和质谱技术结合生物信息学的方法对叶色黄化突变体及突变亲本白莎蜜1号叶片差异蛋白质进行比较分析,结果表明:在成功鉴定的18个蛋白质中,有1个叶绿体放氧增强蛋白1、1个苄基醚还原酶2、5个核酮糖1,5二磷酸羧化酶/加氧酶大亚基、1个肌动蛋白、1个核酮糖二磷酸羧化酶活化酶、1个磷酸核酮糖激酶、1个核酮糖二磷酸羧化酶大链条、1个核酮糖二磷酸羧化酶小亚基、4个叶绿体核酮糖羧化酶/加氧酶活化酶1、1个核酮糖二磷酸羧化酶大亚基。发现叶色黄化突变体磷酸核酮糖激酶、核酮糖二磷酸羧化酶活化酶、核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)大小亚基表达量上调;叶绿体核酮糖二磷酸羧化酶/加氧酶、叶绿体放氧增强蛋白1、肌动蛋白等蛋白组分显示表达量下调,与白莎蜜1号差异显著,这可能是叶色黄化突变体叶绿体发育缺陷引起蛋白的变化。结合COG比对结果,推断叶色黄化突变体通过这些蛋白组分的差异表达,保护光合机构不被破坏,从而维持正常的光合作用与能量代谢等一系列的生理过程,在叶色黄化突变体生长发育过程中起到关键性作用,这些蛋白的差异表达可能与叶色黄化有关。
Muskmelon (Cucumis melo L.) is an important annual and economic crop, widely cultivatedin home and abroad, and its fruit is with good flavor, taste and color. Heilongjiang province is oneof the traditional sources of muskmelon, riches in types of resources and variation of germplasmfor breeding and biologic research. The leaf color mutant is an ideal material for study on thephotosynthetic system structure, chlorophyll metabolism, chloroplast development, photosynthesis,hormone and a series of physiological metabolic processes, which is an important material forstudy the genetic and breeding. Previous reports mainly focus on the laws of the occurrence andgenetics, but the mechanism of leaf color mutation in muskmelon is not clear.
     The novel xantha mutant9388-1of muskmelon was used in this study. The main agronomiccharacteristics, photosynthetic, chloroplast ultrastructure, chlorophyll biosynthetic and geneticcharacteristics of mutant were studied. Furthermore, the use of two-dimensional electrophoresisand mass spectrometry techniques obtained the differentially expressed proteins between themutant and parent leaf. All the results were to support the mechanism of transformation of theyellow leaf color. The main results are as follow:
     1. A novel xantha mutant of muskmelon arose spontaneously and displayed a distinctivephenotype of yellow leaf across its whole growth period. Compared to baishami1hao, the growthcycle is relatively long about7-10d, and the plant is normal growth. The main agronomic traitswere no significant differences, so the mutant can blossom and bear fruit, but setting ratedecreased. According to the flow cytometry analysis, the number of chromosome is no differencebetween xantha mutant and baishami1hao, indicating that the mutant did not variation ofchromosome. The vigor of pollen in mutant is viability.
     2. The photosynthetic pigment contents, photosynthetic rate and key enzymes, chlorophyllfluorescence kinetics parameters were determined. The results showed that the photosyntheticpigment content was significantly lower than the baishami1hao, chla, chab, total chl and carodecreased by79.5%,90.3%,81.5%,70.7%, and no significant differences between hybrid F1andbaishami1hao plant. Caro/chl8.67, higher than that of baishami1hao plant in4.10, the reductionof chl content was greater than caro. The net photosynthetic rate was significantly lower, were only50.23%and66.28%. The cond and Trmmol have significant difference, and change trend is sameto Pn. The activity of Rubisco was significantly lower than baishami1hao, while PEPCase andNADP-ME were higher, respectively,119.23%and118.91%. The value of F0and Fmweresignificantly lower than those of hybrid F1and baishami1hao, but there was no significant difference in Fv/Fm. qP is no difference with baishami1hao, and qN is significantly higher thanhybrid F1and baishami1hao, ФPSⅡ and ETR are different.hybrid F1plants have no significantdifferences with photosynthetic pigment contents, photosynthetic rate and key enzymes,chlorophyll fluorescence kinetics parameters from baishami1hao.
     3. Comparative study on the structure characteristics of different growth period leaf anatomicbetween the mutant and baishami1hao. Under the scanning electron microscope, the leafmesophyll tissue of baishami1hao is developed and high differentiation, and palisade tissuethickness is lager than that of mutant, closely spaced and rules arranged.The palisade tissue ofmutant underdeveloped, arranged no rules, cell spacing are further than that of normal, containingless chloroplasts. Under the transmission electron microscope, the chloroplast of normal plants aredeveloped, maintaining highly differentiated form of thylakoid grana, stromal lamellae clearlyvisible, and arranged neatly, containing much more starch.The chloroplast development of mutanthas obvious flaw, maintaining irregular chloroplast, no intact thylakoid and fewer granum, a linestrip, and most grana has only few pieces of layer, containing a small amount of starch.
     4. In order to understand the mechanism of chlorophyll biosynthesis, the precursors oftetrapyrrole synthesis content and key enzyme was measured to evaluate the mutant. The resultshowed that PBG accumulated in mutant leaf, and UrogenⅢ content decreased significantly, andthe activity of PBGD, COPX, PPOX were also significantly decreased, but activity of ALADhigher than that of baishami1hao leaf, indicating that the mutation of chlorophyll biosynthesis isblocked, which is in the reaction steps of PBG and UrogenⅢ.
     5. Endogenous hormones and amino acid content was determined in different growth stage,the result showed that the change of IAA, GA3and ABA of mutant are basically the same trend asbaishami1hao in the whole growth period. IAA and GA3content were no significant differencefrom baishami1hao, but the ABA content was significantly lower than baishami1hao. The mutantand baishami1hao leaf has the same amino acid component but not content, one of the mostsignificant differences are Glu and Asp, indicating that the ABA content decreased ABAbiosynthesis affect caused by chloroplast underdeveloped. Glu and Asp were in the upper reachesof entire amino acid metabolic pathway, its conversion blocked in mutant leaves resulting indownstream of amino acid metabolism declined.
     6. The activity of SOD, POD, CAT and ATP enzyme were measured in different growth stageof leaf in mutant and baishami1hao, the result showed that the activity of SOD in tendril and agingstage were significantly higher than that of baishami1hao, and in cotyledon, seedling stageshowed no significant difference. Compared to the baishami1hao plant, activity of CAT in mutantwas not obvious in cotyledon and seedling stage, but higher in straw stage. Activity of PODshowed a same trend, first increased and then decreased soon. In cotyledon and seedling stage,activity of POD increased slowly, and the change amplitude was significantly lower than that ofbaishami1hao. In tendril stage, reached the highest activity in mutant, while the arrival peak was delayed, and maintain the higher activity in fruit stage, and then decreased slowly. The activity ofMg++-ATP was significantly higher than the baishami1hao, and Ca++-ATP is relatively low.
     7. The xantha mutant in muskmelon was analyzed genetically after inbred and reciprocal,crosses with parental mutant, the result showed that progeny of inbred presenting a singlephenotype (yellow), and reciprocal test indicated that the progeny with a single phenotype (green).The test backcross and F2populations showed that the progeny present segregation ratio of1:1and3:1between baishami1hao green and yellow plant, indicating that xantha mutational trait iscontrolled by a single recessive nuclear gene designated as Yellow-plant (ypl) temporarily. SSRmakers linked to the leaf color mutant were identified, ypl is located between N41and MU4104-2,genetic distances are2.45cM and3.45cM,repectively.
     8. Proteomic analysis was performed to test the proteins expression was different in mutant andparent leaves, using2-DE and GC-MS, the result showed that chloroplast oxygen-evolving enhancerprotein1,phenylcoumaran benzylic ether reductase2, ribulose bisphosphate carboxylase largechain,chloroplast ribulose bisphosphate carboxylase/oxygenase activase1, ribulose-1,5-bisphosphatecarboxylase/oxygenase large subunit,chloroplast ribulose bisphosphate carboxylase/oxygenase activase1,Actin,Ribulose-1,5-bisphosphate carboxylase small subunit, phosphoribulokinase, rubisco activase wereidentified in18proteins.Compared to the baishami1hao plant,phosphoribulokinase, phenylcoumaranbenzylic ether reductase2, ribulose-1,5-bisphosphate carboxylase small and large subunit showed aup-regulated,chloroplast oxygen-evolving enhancer protein1,chloroplast ribulose bisphosphatecarboxylase/oxygenase activase1and Actin showed down regulated in mutant, which may be causedby chloroplast underdeveloped. According to the COG result, differentially expression of these proteins,protecting the photosynthetic mechanism not to be destroyed, and maintaining a series baishami1haophysiological processing of photosynthetic and energy metabolism and playing a key role in plantgrowth of mutant. The differential expression of these proteins might have occurred as a result inyellow color of xantha mutant.
引文
[1]陶华,薛庆中,田振涛.淡绿叶标记光-敏温核不育水稻叶色及育性的遗传分析[J].作物学报,2005,31(4):438-444.
    [2] KOVAL S F,BAIBORODIN S I,FEDOTOVA V D.Interlocus interaction of chlorina mutantgenes cn-A1and cn-D1in near-isogenic lines of,spring wheat Novosibirskaya67(T.aestivum)[J].Wheat information service,2001,92:1-4.
    [3] NAKAYAMA M,MASUDA T,BANDO T,YAMAGATA H,Ohta H,Takamiya K.Cloningand expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localizationof Mg2+concentration-dependent ChlH protein within the chloroplast[J].Plant CellPhysiol.1998,39:275-284.
    [4] YUKARIA, TOSHIYA H.Maize mutant lacking chloroplast FtsY exhibit pleiotropic defects inbiogenesis of thylakoid membranes [J].The Plant Cell,2004,16:201-204.
    [5]魏慧敏,陈云伟,张年辉,等.黄化油菜突变体Cr3592子叶类囊体膜光谱性质研究[J].西北植物学报,2005,25(2):250-255.
    [6]郭士伟,张云华,金永庆,等.小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性[J].作物学报,2003,29(6):958-960.
    [7] ZHAO Y,WANG M L,ZHANGY Z,DU L F,PAN T.A chlorophyll-reduced seedling mutantin oilseed rape,Brassicanapus,for utilization in a F1hybrid production [J].Plant Breed,2000,119(2):131-135.
    [8] STERN D B,HANSON M R,BARKAN A.Genetics and genomic of chloroplast biogenesis:maize as a model system [J].Trends Plants Sci,2004,9:293-301.
    [9]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995.
    [10] AWAN M A,KONZAK C F,RUTGER J N,NILAN R A.Mutagenic deflects of sodium azidein rice[J].Crop Science,1980,20:663-668.
    [11] SOMERVILL C R.Analysis of photosynthesis with mutants of higher plants and algae[J].Ann Rev Plant Physiol,1986,37:467-507.
    [12]夏英武,吴殿星,舒庆尧,等.水稻辐射白色转绿突变系的遗传及叶绿体超微的分析[J].核农学通报,1996,17(1):1-4.
    [13]何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯,2006,42(1):1-9.
    [14] MONDE R A,ZITO F,OLIVE J,et al.Post-transcriptional defects in tobacco chloroplastmutants lacking the cytochrome b6/f complex[J].The Plant Journal,2000,21:61-72.
    [15] KUMAR A M,SOIL D.Antisense HEMA1RNA expression inhibits heme and chlorophyllbiosynthesis in Arabidopsis [J].Plant Physiology,2000,122:49-55.
    [16]邵继荣,王玉忠,刘永胜,等.水稻温敏型突变体叶片间断失绿的超微结构[J].植物学报,1999,41(1):20-24.
    [17]邵继荣.温敏失绿突变冷激应答的细胞与分子机理[D].四川农业大学,2004.
    [18] JUNG K H, HUR J, RYU C H, et al.Characterization of rice chlorophyll deficient mutantusing the T-DNA gene-trap system[J].Plant Cell Physiol,2003,44(5):463-472.
    [19] KOSKI V M,SMITH J H.Chlorophyll formation in a mutant,white seedling-3[J].ArchBiochem,1951,34(1):189-95.
    [20]何瑞锋,丁毅,于金洪,等.水稻温敏叶绿素突变体叶片超微结构的研究[J].武汉植物学研究,2001,19(1):1-5.
    [21] WALLACE R H,SCHWARTING A E.A study of chlorophyll in a white mutant strain ofHelianthus annuus [J].Plant Physiol,1954,29(5):431-436.
    [22] FAMBRINI M,CASTAGNAA,VECCHIA F D.Characterization of a pigment-deficientmutant of sunflower (Helianthus annuus L.)with abnormal chloroplast biogenesis,reducedPSⅡactivity and low endogenous level of abscisic acid[J].Plant Sci,2004,167:79-89.
    [23]郭春爱,周玮,刘芳,许晓明.水稻低叶绿素b突变体光系统Ⅱ的热稳定性[J].作物学报,2007,33(3):1390-1392.
    [24]肖松花,潘家驹,张天真.陆地棉芽黄基因的互作效应研究[J].江苏农业学报,1996,12(2):11-16.
    [25] NASYROV Y S.Genetic of photosynthesis and improving of crop productivity [J].Annreview of pant physiology,1978,29:215-237.
    [26]于海莉,孙志强.一个新的大豆细胞质黄化突变体的初步研究[J].大豆科学,1992,11(2):121-126.
    [27]郑静.一份水稻白化突变体的遗传分析及其基因定位[D].四川农业大学,2008.
    [28]王新其,殷丽青,沈革志.2个水稻黄叶突变体的遗传初步分析[J].上海交通大学学报(农业科学版),2005,23(4):392-400.
    [29]陈涛.一个新的水稻白化转绿突变体的生理特性及基因定位[D].南京:南京农业大学,2006.
    [30] CONSTANTIN M J,NILAN R A.Chromosome aberration assays in barely (Hordeumtvutlgare).A report of the U.S. Environmental protection agency gene-tox program[J].mutant.Res,1982,99:13-36.
    [31] WILLIAM N D,JOPPA L,DUYSEN M E, et al.Inheritance of three chlorophyll-deficientmutants of common wheat[J].Crop Sci,1985,25:1023-1025.
    [32] TOMOKO A,TOMOKIM,SHIGEKO S,et al.Chlorophyll-deficient mutants of ricedemonstrated the deletion of a DNA fragment by heavy-ion irradiation [J].J.Radlat Res.,2002,43:157-161.
    [33] FOSTER C A,WELSH.Two incomplete or semi-dominant mutants of barely [J].BarelyGenetics Newsletter,1972,9:23-24.
    [34] LUTHER SMITH. A rare dominant chlorophyll mutant in durum wheat:induced by atomicbomb irradiation [J].J Hered,1952,43:125-128.
    [35] NGUYEN L V.Transposon tagging and isolation of the SULFUR gene in tobacco(Nicotiana tabacum)[J].North Carolina State University,1995.
    [36]刘富中,GOSTIMSKII S A.豌豆叶绿素突变基因xa-18的遗传分析[J].中国园艺学会第九届学术年会论文集,242-246.
    [37]国艳梅,顾兴芳,张春震,等.黄瓜叶色突变体遗传机制的研究[J].园艺学报,2003,30(4):409-412.
    [38]李丕皋,封如敏.小麦特异材料-返白系的初步研究[A].陕西省遗传学会,陕西省遗传学会论文汇编[C].1985,53-56.
    [39]于海莉,孙志强.一个新的大豆细胞质黄化突变体的初步研究[J].大豆科学,1992,11(2):120-126.
    [40]季道藩,许馥华.棉花叶绿素缺失的细胞质遗传[J].遗传,1979,1(5):15-19.
    [41]马国荣,刘佑斌,盖钧镒,等.大豆细胞质遗传芽黄突变体的发现[J].作物学报,1994,20(3):334-337.
    [42]钱前,朱旭东,曾大力,等.细胞质基因控制的新特异材料白苗的研究[J].作物品种资源,1996,4:11-12.
    [43] BARKAN A,WALKER M,NOLASCO M.A nuclear mutation in maize blocks theprocessing and translation of several chloroplast mRNAs and provides evidence for thedifferential translation of alternative mRNA forms[J].EMBO J,1994,13(13):3170-3181.
    [44] YARONSKAYA E,ZIEMANN V,WALTER G,et al.Metabolic control of tetrapyrrolebiosynthetic pathway for porphyrin distribution in the barely mutant albostrians[J].Plant J,2003,35(4):512-522.
    [45] MILLERD A,MCWILLIAM R.Studies on maize mutant sensitive to low temperatureⅠ.influence of temperature and light on the production of chloroplast pigments[J].PlantPhsiol,1968,43(12):1967-1972.
    [46] ZHANG H T,LI J J,YOO J H,et al.Rice chlorine-1and chlorine-9encode ChlD and CHlIsubunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplastdevelopment[J].Plant Mol Biol,2006,62:325-337.
    [47]王保莉,郭蔼光,王沛洪.小麦突变体返白系返白阶段叶绿素代谢第三变化[J].植物学报,1996,38(7):557-562.
    [48]徐培洲.非孟德尔遗传在EGSR水稻上的表现及叶绿素缺乏突变W1色素缺乏机理的探讨[D].四川农业大学,2006.
    [49]吴殿星,舒庆尧,夏英武,景晓阳,刘贵付.60Co-γ射线诱发的籼型温敏核不育水稻叶色突变系变异分析[J].作物学报,1991,25(1):64-69.
    [50]邵继荣,周仕春,黄明远,等.水稻温敏突变系1103S叶绿素间断失绿性状表达特性的研究[J].四川大学学报(自然科学版),1997,34(5):688-692.
    [51]黄晓群,王平荣,赵海新,邓晓建.一个新的水稻叶绿素缺失突变基因的遗传分析和分子标记定位[J].中国水稻科学,2007,21(4):355-359.
    [52]谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996,22(1):51-57.
    [53] ZHOU X S, WU D X, SHEN S H, SUN J W,SHU Q Y.High photosynthetic efficiencyof rice(Oryza sativa L.)xantha mutant[J].Photosythetica,2006,44(2):316-319.
    [54]赵丽哲,苏小静.小麦返白系返白阶段叶绿体膜光谱特性及色素蛋白质复合体的变化[J].华北农学报,1996,11(2):62-66.
    [55]龚红兵,陈亮明,刁立平,等.水稻叶绿素b减少突变体的遗传分析及相关特性[J].中国农业科学,2001,34(6):686-689.
    [56]赵琦,唐崇钦,彭德川,匡廷云,等.叶片阶段性白化小麦的叶绿体激发能分配和荧光动力学特征[J].生物物理学报,1996,12(4):703-708.
    [57] FREEMAN T P,DUYSEN M E,WILIIAMS N D.Effects of gene dosage on light harvestingchlorophyll accumulation,chloroplast development and photosynthesis in wheat[J].Can JBot,1987,65:2188-2123.
    [58]夏英武,吴殿星,舒庆尧.人工诱发的植物叶绿素突变体的遗传和应用[J].核农学通报,1996,17(1):41-44.
    [59] CHEN G,BI Y R,LI N.EGY1encodes a membrane-associated and ATP-independentmetalloprotease that is required for chloroplast development[J].The Plant Journal,2005,41(3):364-375.
    [60]苏小静,江沛宏,陈毓荃.小麦突变体返白系返机理的研究-Ⅱ、返白阶段叶绿素代谢变化研究[J].西北农林科技大学(自然版),1990,18(3):80-84.
    [61]袁澍.水分胁迫对黄化大麦光系统Ⅱ的影响及黄化大麦突变机理的研究[D].四川大学,2002.
    [62] VON WETTSREIN J D. Nuclear and cytoplasmic factors in development of chloroplaststructure and function[J].Can.J.Bot,1961,39:1537-1545.
    [63] REINBOTHE S,MACHE R,REINBOTHE C.A second,substrate-dependent site of proteinimport into chloroplast [J].Proc.Natl.Acad.Sci.USA,2000,97:9795-9800.
    [64] CORNAH J E,TEERY M J,SMITH A G.Green or red:what stops the traffic in thetetrapyrrole pathway?[J].Trends Plant Sci,2003,8:224-230.
    [65] TERRY M J.Phytochrome chromophore-deficient mutants [J].Plant Cell Environ,1997,20:740-745.
    [66] TERRY M J,KENDRICK R E.The aurea and yellow-green-2mutants of tomato are deficient inphytochorome chromophore synthesis [J].J.Biol.Chem.1996,271:21681-21686.
    [67] PARKS B M,QUAIL P H.Phytochrome-deficient hy1and hy2long hypocotyls mutants ofArabidposis are defective in phytochrome chromophore biosythesis [J].Plant Cell,1991,3:1177-1186.
    [68] NOTT A,JUNG H S,KOUSSEVITZKY S,CHORY J.Plastid-to-Nucleus RetrogradeSignaling[J].Annu.Rev.Plant Biol.,2006,57:215-237.
    [69] KUSHNIR S,BABIY CHUK E,et al.A mutation of the mitochondrial ABC transporter STAIleads to dwarfism and chlorosis in the Arabidopsis mutant starik [J].Plant Cell,2001,13(1):89-100.
    [70] ROBSON P R,DONNISION I S,WANG K,FRAME B,PEGG S E,THOMAS A,THOMASH.Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under thecontrol of a novel maize senescence-enhanced promoter[J].Plant biotechnol,2004,2(2):101-112.
    [71]马志虎,颜素芳,罗秀龙,郝华忠.辣椒黄绿苗突变体对良种繁育及纯度鉴定作用[J].北方园艺,2001,138:13-14.
    [72] MESKAUSKIENE R,NATER M,GOSLINGS D,et al.A negative regulator of chlorophyllbiosynthesis in Arabidopsis thaliana [J].Proc.Natl.Acad.Sci.USA,2001,98(22):12826-12831.
    [73]王吉明,马双武,尚建立,成善汉.葫芦科瓜类作物叶色突变体及其研究进展[J].安徽农业科学,2011,39(26):16039-16040.
    [74] BEALE S I.Green genes gleaned [J].TRENDS in Plant Science,2005,10:309-312.
    [75] SCHULTES N,SAWER R J H, BRUTNELL T P,et al.Maize high chlorophyll fluorescent60mutation is caused by AC disruption of the gene encoding the chloroplast ribosomal smallsubunit protein[J].The Plant Journal,2000,21(4):317-327.
    [76] ZOUNI A,WITT H T,KERN J,et al.Crystal structure of photosystem ⅡfromSynechococcus elongates at3.8resolution[J].Nature,2001,409:739-743.
    [77] LOPEZ-JUEZ E,JARVIS R P,TAKEUCHI A,et al.New Arabidopsis cue mutants suggesta close connection between plastid and phytochrome regulation of nuclear gene expression[J].Plant Physiol,1998,118:803-815.
    [78]陈湘宁,李玉湘,李继耕.水稻、小麦花药培养白化苗质体亚显微结构和蛋白质的研究[J].遗传学报,1988,15(2):95-101.
    [79] AGRAWAL G K,YAMAZAKI M,KOBAYASHI M,et al.Screening of the rice viviparousmutants generated by endogenous retrotransposon Tos17insertion.Tagging of a zeaxanthinepoxidase gene and a novel OsTATC Gene [J].Plant physiol,2001,125:1248-1257.
    [80] SINGH U P,PRITHIVIRAJ B,SARMA B K.Development ofErysiplepisi(powderymildew)on normal and albino mutants of pea(Pisum sativumL.)[J].J.Phytopathol,2000,148(11-12):591-595.
    [81] HANSSON A,KANNANGARA C G,VON WETTSTEIN D,HANSSON M.Molecular basisfor semidominance of missense mutations in the XANTHA-H(42-kDa) subunit of magnesiumchelatase[J].Proc Natl Acad Sci USA,1999,96(4):1744-1749.
    [82]谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体PSⅡ光化学效率较高的原因[J].植物生理学报,1997,23(3):251-256.
    [83]李素芳,成浩,虞富莲,等.安吉白茶阶段性返白过程中氨基酸的变化[J].茶叶科学,1996,16(2):153-154.
    [84]宴小霞.白木香种质资源遗传多样性研究进展[J].中国农学通报,2010,26(19):383-386.
    [85]徐双红,吴成林,戴林建,钟军,等.烟草遗传标记研究进展[J].作物研究,2011,25(3):272-276.
    [86]刘丽娟,舒烈波,罗利军,陈海荣.SRAP标记与形态学标记在西瓜DUS测试中的比较[J].植物遗传资源学报,2011,12(5):790-795.
    [87]李鸿雁,米福贵,李志勇,等.扁蓿豆遗传多样性研究初探[J].草业与畜牧,2007,1:20-23.
    [88]雷泞菲,苏智先,陈劲松.同工酶技术在植物研究中的应用[J].四川师范学院学报,2000,21(4):321-325.
    [89]柳展基,杨小红,毕玉平.蛋白质组学在农业中的应用[J].分子植物育种,2006,4(3):106-110.
    [90]陈颖,汪旭升,许玲莉,等.基因表达数量性状定位的研究进展[J].生命科学,2009,21(1):38-43..
    [91]张扬勇,方智远,王庆彪,等.拟南芥叶绿体SSR引物在甘蓝上的应用[J].园艺学报,2011,38(3):549-555.
    [92]查仁明,王启元,罗洪文,等.用SSR标记鉴定水稻突变体杂交F1的研究[J].中国农学通报,2012,28(33);135-138.
    [93]董冬.小麦SSR标记辅助遗传背景选择技术研究[D].中国农业科学院,2011.
    [94]王同华,曲亮,李莓.一种快速的油菜杂交纯度SSR鉴定方法[J].分子植物研究,2012,10(2):245-249.
    [95]黄晓群.一份新的水稻黄化突变体的遗传分析及基因定位[D].四川农业大学,2006.
    [96] WANG C,HE B,XUN M.et al.Tagging and mapping of gene controlling yellowish-greenleaf[J].Rice Genet Newslett,2003,20:35.
    [97] TAO CHEN,YADONG ZHANG,LING ZHAO,et al.Physiological character and genemapping in a new green-revertible albino mutant in rice [J].Journal of Genetic andGenomics,2007,34(4):331-338.
    [98]李爽.苹果SSR标记体系的优化及遗传图谱构建初探[D].西北农林科技大学,2011.
    [99]杨瑞环,陈德富,闵微,等.利用SSR标记分析黄瓜种质资源的遗传多样性[J].南开大学学报(自然科学版),2012,45(2):17-21.
    [100]何颖红,邹国兴,饶玉春,等.水稻白条叶色突变体(st10)的遗传分析与基因定位[J].分子植物育种,2011.9(2):136-142.
    [101]王全,陈正武,邢嘉佳,等.黄瓜叶色突变体遗传及连锁的分子标记遗传[J].中国瓜菜,2010,23(4):3-5.
    [102]魏文慧.白菜型油菜(Brassica campestris L.)自交亲和性的遗传及SSR标记[D].甘肃农业大学,2009.
    [103]杨洁.一个水稻白苗复绿性状的遗传特性和基因定位研究[D].华中农业大学,2008.
    [104]姜华.水稻分蘖和叶片相关性状的QTL分析及突变体基因定位[D].扬州大学,2008.
    [105] SWINBANK D.Government backs proteome proposal [J].Nature,1995,378:653.
    [106]梁银云,康振生,彭云良.“川麦107”受条锈菌侵入后叶片蛋白质组学分析[D].西北农林科技大学,2006.
    [107]李琦,裴毅.晚期胃癌患者危重病人预警蛋白质(LGT)指纹不同表达时伴随指纹的分析[D].山西医科大学,2009.
    [108] WASINGER V C, CORDWELL S J,CERPA-POLJAK, et al.Progress with gene-productmapping of mollicutes: Mycoplasma genitalium [J].Electrophoresis,1995,16:1090-1094.
    [109]周兴旺.后基因组时代的蛋白质组学及其在药学中的应用[J].药学学报,2002,37(10):828-832.
    [110]袁雪宇,吴国亭,韩玉麒.差异蛋白质组学技术和应用前景[J].同济大学学报(医学版),2004,25(4):349-351.
    [111]金良,陈尚武,马会勤.葡萄蛋白质组学研究进展[J].中国生物工程杂志,2010,30(10):100-107.
    [112]李勤,黄建安,刘硕谦,等.茶树蛋白质双向电泳样品制备技术研究[J].茶叶科学,2011,31(3):173-178.
    [113]赵玉辉,田惠桥.光敏核不育水稻‘农垦58S’精细胞的分离[J].植物生理学通讯,2007,43(1):145-147.
    [114]张煜,王建英,王晶妍.硫酸铵盐析法分离大豆酸沉蛋白[J].河南师范大学学报(自然科学版),2011,39(6):99-100.
    [115]柳青海,张唐伟,李天才.叶蛋白提取分离及应用研究进展[J].食品工业科技,2011,32(9):468-470.
    [116]谢丽源,彭卫红,甘炳成.桑黄多糖脱蛋白方法与条件优化[J].西南农业学报,2011,24(1):363-365.
    [117]申屠静灵.壳聚糖为基质的染料亲和吸附剂的制备及在蛋白质纯化中的应用研究
    [D].浙江大学,2005.
    [118]唐新科,周平兰,谭爱武.菠菜叶绿体蛋白质的提取与分离[J].湘潭师范学院学报(自然科学版),2008,30(4):33-35.
    [119]白海鑫,刘小花,杨帆,等.通过一步萃取法将组蛋白分为多个亚组分的蛋白质预分离方法的建立[J].高等学校化学学报,2010,31(7):1314-1321.
    [120]杜俊变,王丽惠,段江燕.2D-DIGE技术在蛋白质组学中的应用[J].生物学杂志,2011,28(3):86-88.
    [121]马进,刘志高,郑钢.差异蛋白组学及其在植物盐胁迫响应研究中的应用[J].浙江农林大学学报,2011,28(1):139-143.
    [122] UNLU M,MORGAN M E,MINDEN J S.Difference gel electrophoresis:a single gelmethod of detecting changes in protein extracts[J].Electrophoresis,1997,18(11):2071-2077.
    [123] NESVIZHSKII A I, AEBERSOLD R. Analysis statistical validation and dissemination oflarge-scale proteomics datasets generated by tan dem MS [J].DDT,2004,9(4):173-181.
    [124] BERANOVA-GIORGIANNI S.Proteome analysis by two-dimensional gel electrophoresisand mass spectrometry:strengths and limitations [J].Trends in Analytic Chemistry,2003,22(5):273-280.
    [125] LOPACHIN R M,JONES R C,PATTERSON T A,et al.Application of proteomics to thestudy of molecular mechanisms in neurotoxicology.R.M [J].Neuro Toxicology,2003,24:761-775.
    [126] LIANG Y,JING Y X,SHEN S H.Advances in plant proteomics[J].Acta PhytoecologicaSinica,2004,28:114-125.
    [127]杨礼富.蛋白质组学研究技术与展望[J].热带农业科学,2007,27(2):58-62.
    [128]王英超,党源,李晓艳,等.蛋白质组学及其技术发展[J].生物技术通讯,2010,21:139-144.
    [129]季芝娟,薛庆中.植物蛋白质组学研究进展[J].生命科学,2004,16(4):241-245.
    [130]杨礼富.蛋白质组学研究技术与展望[J].热带农业科学,2007,27(2):58-62.
    [131] KOMATSU S,MUHANMMAD A,RAKWAL R.Separation and characterization ofproteins from green and etiolated shoots of rice (Oryza sativa L.):Towards a riceproteome[J].Electrophoresis,1999,20:630-635.
    [132]王玉忠,邵继荣,刘永胜,等.温敏失绿突变体水稻1103s在失绿过程中全叶蛋白的变化[J].植物学报,1999,41(5):519-523.
    [133]林宏辉,杜林芳,贾勇炯,等.野生河黄化大麦类囊体膜色素蛋白的分离和比较[J].西北植物学报,1997,17(1):34-38.
    [134]方向明,贾俊丽,谈建中,等.桑树斑状叶色突变体Cty-Sm差异蛋白质组的分析[J].蚕业科学,2009,35(1):1-5.
    [135]侯典云.小麦返白系叶绿体基因组分析及叶绿体超微结构和差异表达蛋白质研究
    [D].西北农林科技大学,2009.
    [136] SCARCHUK J..Inheritance of light yellow corolla and leaf lendrils in ground (Cucurbitapepo var. ovifera Alef.)[J].Hort Science,1974,9:464.
    [137] BESOMBES D,GIOVINAZZO N,OLIVIER C,et al.Description and inheritance of albinomutant in melon[J].Cucurbit Genet Coop Rep,1999,22:14-15.
    [138] BURNHAM M,PHATAK S C,PETERSON C E.Graft-aided inheritance study ofachlorophyll deficient cucumber[J].Proc Amer Soc Hort Sci,1966,89:386-389.
    [139] WHELAN E D P.Inheritance of a radiation-induced light sensitive mutant of cucumber[J].J Amer Soc Hort Sci,1972,97:765-767.
    [140] MAINS E B. Inheritance in Cucurbita pepo [J].Paper Mich Acad Sci Arts Letters,1950,30:27-30.
    [141] LòPEZ-ANIDO F,CRAVERO V,COINTRY E.Inheritance of yellow seedling lethal inCucurbita maxima Duch[J].Cucurbit Genetic Cooperative Report,2005,28/29:73-74.
    [142] WARID A,ABD-EL-HAFEZ AA.Inheritance of maker genes of leaf color and ovary shapein watermelon,Citrulls vulgaris Schrad[J].The Libyan J Sci,1976,6:1-8.
    [143] WHITAKER T W.Genetic and chlorophyll studies of yellow-green mutant in muskmelon[J].Plant Physiol,1952,27:263-268.
    [144] DYUTIN K E,AFANAS’EVA E A.Inheritance of yellow-green color of young leaves of thesquash Cucurbita maxima Duch [J].Tsitologiyai Genetika,1981,15(5):81-82.
    [145] ABUL H Z,WILLIAMS P H.Inheritance of two seedling makers in cucumber [J].HortScience,1976,11:145.
    [146] STRONG W J.Breeding experiments with the cucumber (Cucumis sativus L.)[J].Sci Agr,1931,11:333-346.
    [147] RAY D T,MCCREIGHT J D.Yellow-tip:A cytoplasmically inherited trait in melon(Cucumis melo)[J].J Hered,1996,87:245-247.
    [148] RHODES B B.Genes affecting foliage color in watermelon [J].J Hered,1986,77:134-135.
    [149] RUCINSKA M,NIEMIROWICZ-SZCZYTT K,KORZENIEWSKAA.Acucumber (Cucumissativus L.) mutant with yellow stem and leaf petioles[J].Cucurbit Genet Coop Rpt,1991,14:8-9.
    [150] POOLE C F.Genetics of cultivated cucurbits [J].J Hered,1944,35:122-128.
    [151] COYNE D P.Inheritance of mottle-leaf in Cucurita moschata Poir [J].Hort Science,1970,5:226-227.
    [152]马双武,张莉.携带西瓜白化致死基因突变体株的发现[J].中国瓜菜,1999,(4):22.
    [153] ZHANG X P,RHODES B B,BRIDGES W C.Phenotype,inheritance and regulation ofexpression of new virescent mutant in watermelon:Juvenile albino [J].J Amer Soc Hort Sci,1996,121:609-615.
    [154]张建农,满艳萍,燕丽萍.黄化西瓜叶片叶绿体结构与光合作用特性[J].果树学报,2004,21(1):50-53.
    [155]王凤辰,王浩波.西瓜“芽黄”新突变体简报[J].中国西瓜甜瓜,1997,(3):14-15.
    [156]马双武,张莉,尹文山.西瓜叶片后绿资源的选育及研究利用[J].中国西瓜甜瓜,1998,(1):9-10.
    [157]苗晗,顾兴芳,张圣平,等.黄瓜黄绿叶突变体光合色素变化及相关基因差异表达[J].中国农业科学,2010,43(19):4027-4035.
    [158]陈福龙,高剑峰,李景富,等.黄瓜芽黄突变体的超微结构分析[J].安徽农业科学,2007,35(14):4124-4125.
    [159] LIN Z F,LIN G Z,PENG C L,et al.Alteration of chlorophyll-protein complex componetsand distribution of exciation energy between two photosystems in two new rice chlorophyllb-less mutants[J].Photosynthetica,2003,41(4):589-595.
    [160]王家训,苏晓东,刘卫东.黄瓜黄绿叶突变性状的遗传分析[J].遗传,2000,22(5):313-315.
    [161]朱道迂,杨宵,郅玉宝,等.用流式细胞仪鉴定中华猕猴桃的多倍体[J].植物生理学通讯,2007,43(5):905-907.
    [162]王艳哲,崔彦宏,张丽华,等.玉米花粉活力测定方法的比较研究[J].玉米科学,2010,18(3):173-176.
    [163]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [164] LILLEY R M,WALKER D A.An improved spectrophotometric assay for ribulosediphospate carboxylase [J].Biochim Biophys Acta,1974,358:226-229.
    [165] SAYRE R T, KENNEDY R A,PRINGNITZ D J.Photosynthetic enzyme activities andlocalization in mollugo verticillata population differing on the leaves of C3and C4cycleoperations[J].Plant Physiol,1979,64:293-229.
    [166] JOHNSON H S,HATCH M D.Properties and regulation of leaf NADP-malatedehydrogenase and malic enzyme in plants with C4-dircarboxlic pathway ofphotosynthesis[J].Biochem J,1970,119:273-280.
    [167]侯燕鸣,胡剑江,方蔷,等.扫描电镜的不同含水量植物叶片样品的处理机观察方法研究[J].分析仪器,2011,5:45-47.
    [168]郝树芹,刘世琦,张自坤,等.银叶病对西葫芦叶片光合特性和叶绿体超微结构的影响[J].园艺学报,2010,37(1):109-113.
    [169]王平荣.水稻824ys黄绿叶突变基因的图位克隆及功能分析[D].四川农业大学,2010.
    [170] DEI M.Benzyladenine-induced stimulation of5-aminoleuvulinic acid accumulation undervarious light intensities in levulinic acid-treated cotyledons of etiolated cucumber [J].PhysiolPlant,1985,64:153-160.
    [171] BOGORAD L.Porphyrin synthesis [A].Colowick S P,KAPLAN N O.Methods inEnzymology5[C].New York:Academic Press,1962.885-891.
    [172] REBEIZ C A,MATTHEIS J R,SMITH B B,et al.Chloroplast biosythesis and accumulationof protochlorophyll isolated etioplasts and developing chloroplast [J].Arch BiochemBiophys,1975,171:549-567.
    [173] SCARPONI L,REID J D,NEI HUNTER C.ALA-dehydratase activity in Zea maysL.[J].Plant and soil,1985,337-343.
    [174] FRYDMAN R B,FRYDMAN B.Disappearance of porphobilinnogen deaminase activity inleaves before the onset of senescence [J].Plant Physiol,1979,63:1164-1157.
    [175] LABBE P,CAMADRO J M,CHAMBON H.Fluorometirc assys for coproporphyrinogenoxidase and protoporphyrinogen oxidase[J].Analytical Biochemistry.1985,149(1):248-260.
    [176]俞奔驰,黄富宇,吕平,等.剑麻叶片内源激素高效液相色谱测定方法研究[J].安徽农业科学,2011,39(22):13266-13267.
    [177]燕辉,彭晓邦,薛建杰.Nacl胁迫对花棒叶片光合特性及游离氨基酸代谢的影响[J].应用生态学报,2012,23(7):1790-1796.
    [178]萧浪涛,王三根.植物生理学实验技术[M].北京:中国农业出版社,2005.
    [179]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [180]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [181]李征.黄瓜M基因分子标记精细定位和图位克隆初探[D].沈阳农业大学,2007.
    [182] GONZALO,et al.Simple-sequence repeat markers used in merging linkage maps of melon(Cucumis melo L.)[J].Theor Appl Genet,2005,110(5):802-811.
    [183]于松,高庆荣,袁凯,等.小麦幼穗蛋白质双向电泳条件的优化[J].基因组学与应用生物学,2012,31(1):84-89.
    [184]杨爱珍,王一鸣,花宝光,等.桃果实硬核后期中果皮与内果中蛋白质组表达的双向电泳分析[J].中国农学通报,2010,26(14):59-64.
    [185] MOTOHASHI R,ITO T,KOBAYASHI M,TAJI T,et al.Functional analysis of37kDainner envelope membrane polypeptide in chloroplast biogenesis using a Ds-taggedArabidopsis pale-green mutant [J].Plant J,2003,34(5):719-731.
    [186]华春莉,邢文刚,邵光成.时空亏缺滴灌对青椒叶绿素荧光动力学参数影响的试验研究[J].节水滴灌,2011,4:1-3.
    [187] VAN KOOTEN O,SNEL J TH.The use of chlorophyll nomenclature in plant stressphysiology [J].Photosyn.Res,1990,25:147-150.
    [188] SCHREIBER U, BILGER W, NEUBAUER C. Chlorophyll fluorescenceas a nonintrusiveindicator for rapid assessment of in vivophotosynthesis[C].Berlin:Springer-Verlag,1994,49-70.
    [189] BJ RKMAN O,DEMMING B.Photon yield of O2evolution and chlorophyll fluorescenceat77K among vascular plants of diverse origins [J].Planta,1987,170:489-504.
    [190] GENTY B,BRIANTAIS J M,BAKER N R.The relationship between the quantum yield ofphotosynthetic electron transport and quenching of chlorophyll fluorescenceas[J].BiochimBiophys Acta,1989,990:87-92.
    [191]吕典华.水稻叶色突变体的光合和生理生化特性研究[D].西南大学,2010.
    [192]王平荣,张帆涛,高家旭,等.高等植物叶绿素生物合成的研究进展[J].西北植物学报,2009,29(3):629-636.
    [193] BARAK S,HEIMER Y,NEJIAT A,VOLKITA M.The peroxisomal glycolate oxidase geneis differentially expressed in yellow and white sector of the DP1variegated tobacco mutant[J].Physiol Plant,2000,110(1):120-126.
    [194]谢戎,邵继荣,孙敬三,等.水稻温敏叶片间断失绿过程中的氨基酸组分的变化[J].乐山师范学院学报,2001,4:28-30.
    [195]马旭俊,朱大海.植物超氧化物岐化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [196]严硕,高文远,路幅平,等.太空环境对甘草生理生化的影响[J].中国中药杂志,2010,35(2):135-137.
    [197]朱诚,傅亚萍,孙宗俢.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学,2002,16(4):326-330.
    [198]何龙飞,王爱勤,沈振国,等.高等植物细胞的Ca2+—ATP酶[J].广西农业科学生物科学,2000,19(1):64-66.
    [199]武立权,沈圣泉,王荣富,等.水稻黄叶突变体光合特性的日变化[J].核农学报,21(5):425-429.
    [200]李贤勇,王楚桃,李武顺,等.一个水稻高叶绿素含量基因的发现[J].西南农业学报,2002,15(4):122-123.
    [201]来乐春,富昊伟,徐建良,等.粳稻6108白叶突变性状的遗传分析及农艺性状表现[J].作物研究,2003,1:10-12.
    [202]王军,王宝和,周丽慧,等.一个水稻新黄绿叶突变体基因的分子定位[J].中国水稻科学,2006,20(5):455-459.
    [203]贾银华.水稻白苗复绿性状的遗传及其在两系杂交水稻种的应用[D].华中农业大学,2005.
    [204]贾玉峰,许耀奎,邬信康.春小麦黄绿色突变系的遗传及叶绿体结构的分析[J].吉林农业大学学报,1992,14(1):1-5.
    [205]汤泽生.一个细胞质遗传实验材料:南黄大麦[J].四川师范学院学报(自然科学版),1990,11(3):217-221.
    [206]陈熙,崔香菊,张炜.低叶绿素b水稻突变体类囊体膜的比较蛋白质组学[J].生物化学与生物物理进展,2006,33(7):653-659.
    [207]杨莉,郭蔼光,关旭.小麦突变体返白系返白阶段叶绿体超微结构变化研究[J].西北植物学报,2003,12(4):64-67.
    [208]王祖秀,汤泽生.大麦叶色黄化突变体的遗传分析[J].西南农业学报,1996,8:180-182.
    [209]杨胜洪,杜林芳,赵云,等.抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J].云南植物研究,23(1):97-104.
    [210]林植芳,彭长莲,徐信兰,等.两个新的水稻缺叶绿素b突变体光合作用的热稳定性[J].中国科学(C辑),2004,34(5):395-401.
    [211]彭倩,周青.La(Ⅲ)对UV2B辐射胁迫下大豆叶绿素合成与降解影响的机理[J].中国农业气象,28(3):285-288.
    [212]孙捷音,张年辉,杜林芳.油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J].西北植物学报,2007,27(10):1962-1966.
    [213]徐培洲,李云,袁澍,等.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究[J].中国农业科学,2006,39(7):1299-1305.
    [214] MOCHIZUKI N,BRUSSLAN J A,LARKIN R,et al.Arabidopsis genomes uncoupled5(GUN5)mutant reveals the involvement of Mg-chelatse H subunit in plastid-to-nucleussignal transduction[J].Proc Natl Acad Sci USA,2001,98:2053-2058.
    [215] WHELAN D P.Golden cotyledon: A radiation-induced mutant in cucumber [J].HortScience,1971,6:343.
    [216]夏九成.水稻白化突变体和云南软米的超微结构观察及相关基因的遗传和分子标记定位[D].四川农业大学,2006.
    [217]苏小静,赵丽哲.小麦返白系返白机理研究-返白阶段线粒体超微结构及呼吸作用的变化[J].山西农业科学,1996,24(3):17-20.
    [218]谭新星,许大全,沈允钢.小麦叶片状态转换和光合作用的光抑制关系[J].科学通报,1997,42(20):2208-2211.
    [219]林鈺琼,刘松,傅亚萍,等.T-DNA插入水稻突变体库的叶绿素和净光合速率变化[J].中国水稻科学,2003,17(4):369-372.
    [220]贺立红,贺立静,梁红.银杏不同品种叶绿素荧光参数的比较[J].华南农业大学学报,2006,27(4):43-46.
    [221] XU D Q,CHENG X M,ZHANG L X,et al.Leaf photosynthesis and chlorophyll-deficientsoybean mutant[J].Photosynthetica,29(1):103-112.
    [222] GOODCHLID D J,HIGHKIN H R,BOARDMAN N K.The fine structure of chloroplastin a barely mutant lacking chlorophyll Ⅱb[J].Expe.Cell Res,1966,43:684-688.
    [223]胡忠,梁汉兴,彭丽萍.一个黄绿水稻突变体的光合特性[J].云南植物研究,1981,3(4):449-456.
    [224]赵云,王茂林,李江,等.幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J].四川大学学报(自然科学板),2003,40(1):974-977.
    [225] GAN S, AMASINO R M.Ihibition of leaf senescence by autroregulated production ofxytokinin [J].Science,1995,270:1986-1988.
    [226] SCHWARTZ S H, QIN X,ZEEVAART J A D.Eludation of the indirect pathway ofabscisic acid biosynthesis by mutants,genes and enzymes[J].Plant Physiol,2003,131:1591-1601.
    [227]吴殿星,黎军英.水稻转绿型白化突变系W25的叶绿体超微结构研究[J].浙江农业学报,1997,23(4):451-452.
    [228] THOMBER J P.Chlorophyll-proteins:Light-havesting and reaction center components ofplants[J].Annal Rev Plant Physiol,1990,5:90-98.
    [229] FRIDOVICH I.The bilogy of oxdical [J].Science,,1997,201:875-880.
    [230]张桂菊,吴军,王玉忠,等.Nacl胁迫对光蜡树幼苗保护酶系统的影响[J].河南农业科学,2007,(9):75-78.
    [231]张荣铣,许晓明,戴新宾,等.叶绿素b含量低的水稻突变体的光合功能衰退及其与活性氧的关系[J].植物生理与分子生物学报,2003,29(2):104-108.
    [232]曹莉,王辉,孙道杰,等.一个新的小麦黄化突变体的遗传研究[J].遗传,2008,30(12):1603-1607.
    [233] WU D X,SHU Q Y,XIAY W.In vitro mutagenesis induced novelthermo/photoperod-sensitive genic male sterile indica rice with green-revertible xxnthan leafcolor maker[J].Euphytica,2002,123:195-202.
    [234]谢戎,曾正明,刘成元,等.水稻间断失绿回复突变体特性分析[J].西南农业学报,2007.20(1):1-6.
    [235] PALMER R G,MASCIA P N.Genetic and ultrastracture of a cytoplasmically inheritedyellow mutantion soybean [J].Genetics,1980,985-1000.
    [236]严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组学研究[D].中国科学研究生院,2006.
    [237]何瑞锋,丁毅,余金红.水稻“斑马”突变性状表达过程中叶片蛋白的双向电泳分析[C].全国植物分子生物学与生物技术学术研讨会论文集,2000.
    [238] GAO F,ZHOU Y J,ZHU W P,et al.Protemic analysis of cold stress-responsive proteinsinthellogiella rosette leaves [J].Planta,2009,230(5):1033-1046.
    [239]付庆云.BNS型温敏雄性不育小麦不育与转换系的差异蛋白[D].河南科技学院,2010.
    [240] MIECHELS A K,WEDEL N,KROTH P G.Diation plastids possess a phosphoribulokinasewith altered regulation and no oxidative pentose phosphate pathway[J].Plant physiology,2005,137(3):911-920.
    [241] EL-KHATIB R T,GOOD G M,MUENCH D G.Analysis of Arabidopsis cell suspensionphosphoproteome in response to short-term low temperature and abscisic acid treatment[J].Plant Physiology,2007,129(4):687-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700