用户名: 密码: 验证码:
聚(γ-烷基-α,L-谷氨酸酯)的合成及其表面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚肽作为蛋白质的模拟物,具有和蛋白质类似的化学组成和二级结构,是一类低毒、生物相容性好、容易被肌体和代谢的生物降解高分子,在生物医学领域如药物控释、组织工程等方面具有广泛的应用前景。本论文旨在通过α-氨基酸N-内酸酐(NCA)开环聚合合成聚肽,研究具有不同亲/疏水性及形貌的聚肽表面性能,以期对材料的表面性能有深入的了解,同时利用金属氨基卟啉的配位作用合成卟啉功能化的高分子量聚肽。具体研究内容如下:
     合成了烷基链分别为乙基、辛基、十二烷基和十八烷基的四种高分子量聚(γ-烷基-α,L-谷氨酸)(PALG),然后分别通过旋涂和静电纺丝法制备成致密膜和纤维膜。疏水性测试显示随着烷基侧链的增长,聚肽致密膜的疏水性不断增强,而纤维膜可以进一步放大相应致密膜表面的亲水或疏水性。同时发现PALG表面化学组成和形貌均显著影响其表面的血液相容性。
     采用电纺(喷)技术,通过调节聚(γ-十八烷基-α,L-谷氨酸酯)(PSLG)浓度制备了不同形貌的PSLG粗糙表面,研究了它们的疏水性能。证实颗粒膜表面具有更强的疏水性能,其中PSLG浓度为2 wt.%电喷颗粒形成的表面为低粘附力超疏水表面。另外,在3 wt.%的浓度下,在亲水性铝箔上电喷少量PSLG或者电喷PSLG含量为20~50wt.%的聚(γ-十二烷基-α,L-谷氨酸酯)(PDLG)/PSLG混合物溶液得到的粗糙表面是高粘附力超疏水表面,具有良好的液滴无损转移能力。
     以单氨基卟啉(APTPP)和二氨基卟啉(BAPDPP)及相应的金属氨基卟啉(MAPTPP,MBAPDPP)作为引发剂,引发γ-十八烷基-α,L-谷氨酸NCA(sLGNCA)开环聚合合成了卟啉功能化的PSLG。证实金属卟啉引发剂可以有效地消除SLGNCA聚合中的副反应,其中以CoAPTPP效果最为明显。进一步将这些卟啉化的PSLG电纺成纤维膜,其中APTPP和ZnAPTPP引发得到的PSLG制得的纤维形貌较差但具有很强的荧光;而CoAPTPP引发得到PSLG虽然可以制成良好形态的纤维,但纤维的荧光较弱。而含有APTPP的PSLG电纺膜对氯化氢具有良好的传感作用。
Polypeptides and their derivatives are attractive polymers with potential applications in various fields such as tissue engineering and pharmaceutical materials.In this work, Poly(γ-alkyl-α,L-glutamate)s(PALG) were synthesized by ring-opening polymerization (ROP) ofα-amino acid N-carboxyanhydrides(NCA).Dense films and electrospun mats were carefully fabricated and studied to evaluate the effect of surface chemical composition and morphology on the surface properties.Furthermore,novel metalloporphyrins were used to initiate theγ-stearyl-α,L-glutamate NCA(SLGNCA) to synthesize porphyrinated poly(γ-stearyl-α,L-glutamate)(PSLG) with high molecular weight.The main results of this work are listed as follows:
     Dense films and electrospun mats of PALG with four different alkyl groups were prepared by spin casting and electrospinning,respectively.The hydrophobicities of dense films increased with the increment of the alkyl chain length while the microfiber structure of electrospun mats could enhance the hydrophobicity/hydrophobicity of PALG.It was found that the blood biocompatibility of these PALG surfaces were determined by both their surface chemical composition and morphology.
     By electrospinning/electrospraying at different concentrations,PSLG mats with different morphologies were prepared.It was found that the surface composed of beads had higher hydrophobicity than that of microfibers.No matter for the electrosprayed mats or electrospun mats,the hydrophobicity increased with the decrease of the bead or microfiber diameters.Low adhesive superhydrophobic surface was prepared by electrospraying PSLG at concentration of 3 wt.%for 60 min.By electrospraying PSLG at concentration of 3 wt.%for 5 min or PDLG/PSLG mixtures with PSLG content of 20~50 wt.%for 60 min on aluminium,high adhesive superhydrophobic surfaces can be obtained.
     5-(4-Aminophenyl)-10,15,25-triphenylporphyrin(APTPP) and corresponding metal APTPP(MAPTPP) were firstly applied as initiators for the ROP of SLGNCA.PSLGs synthesized by the metalloporphyrins had higher molecular weight than that synthesized by APTPP,especially for CoAPTPE PSLG synthesized with APTPP and ZnAPTPP can be electrospun into discontinus fiber mats with strong fluorescence intensities while PSLG synthesized with CoAPTPP can be electrospun into well-define mats but with low fluorescence intensities.
引文
[1].Deming T J.Synthetic polypeptides for biomedical applications.Prog.Polym.Sci.,2007,32(8-9):858-875.
    [2].Yu M E,Deming T J.Synthetic polypeptide mimics of marine adhesives.Macromolecules,1998,31(15):4739-4745.
    [3].Yoda R.Elastomers for biomedical applications.J.Biomat.Sci.Polym.Ed.,1998,9(6):561-626.
    [4].Smeenk J M,Lowik D W P M,van Hest J C M.Peptide-containing block copolymers:Synthesis and potential applications of bio-mimetic materials.Curr.Org.Chem.,2005,9(12):1115-1125.
    [5].Deming T J.Polypeptide materials:New synthetic methods and applications.Adv.Mater.,1997,9(4):299-311.
    [6].Kricheldorf H R.Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides.Angew.Chem.Int.Edit.,2006,45(35):5752-5784.
    [7].Leuchs H.Ueber die glycin-carbons(a|¨)aure.Ber.Dtsch.Chem.Ges.,1906,39:857-859.
    [8].Leuchs H,Geiger W.Anhydride von α-amino-N-carbonsauren und die von α-aminosauren.Ber.Dtsch.Chem.Ges.,1908,41:1721-1726.
    [9].李丽颖,孙平川,要旸,周慧静,陈铁红,李宝会,金庆华,丁大同.两亲性二嵌段共聚物MPEG(44)-b-Phe的合成及其在水溶液中的自组装.高分子学报,2006,(1):124-128.
    [10]林桓,邵正中,周平,高勤卫,于同隐.聚(L-γ-氯乙基谷氨基酸)的合成与构象,高等学校化学学报,2000,(5):819-821.
    [11].Mossel E,Formaggio F,Crisma M,Toniolo C,Sonke T,Roos E C,Broxterman Q B,Kamphuis J.C~α-Methyl phenylglycine-based semi-synthetic ampicillin and cephalexin analogues.Lett.Pept.Sci.,1998,5(1):43-48.
    [12].Poche D S,Daly W H,Russo P S.Synthesis and some solution properties of poly(γ-stearyl α,L-glutamate).Macromolecules,1995,28(20):6745-6753.
    [13].Daly W H,Poche D.The preparation of N-carboxyanhydrides of α-amino-acids using bis(trichloromethyl)carbonate.Tetrahedron Lett.,1988,29(46):5859-5862.
    [14].Vayaboury W,Giani O,Collet H,Commeyras A,Schue F.Synthesis of N-ε-protected-L-lysine and γ-benzyl-L-glutamate N-carboxyanhydrides(NCA) by carbamoylation and nitrosation.Amino Acids,2004,27(2):161-167.
    [15].Taillades J,Collet H,Garrel L,Beuzelin I,Boiteau L,Choukroun H,Commeyras A.N-carbamoyl amino acid solid-gas nitrosation by NO/NOx:A new route to oligopeptides via a-amino acid N-carboxyanhydride.Prebiotic implications.Mol.Evol.,1999,48(6):638-645.
    [16].Koga K,Sudo A,Nishida H,Endo T.Convenient and useful synthesis of N-carboxyanhydride monomers through selective cyclization of urethane derivatives of a-amino acids.J.Polym.Sci.Polym.Chem.,2009,47(15):3839-3844.
    [17].Kamei Y,Sudo A,Nishida H,Kikukawa K,Endo T.Synthesis of polypeptides from activated urethane derivatives of α-amino acids.J.Polym.Sci.Polym.Chem.,2008,46(7):2525-2535.
    [18].Kamei Y,Nagai A,Sudo A,Nishida H,Kikukawa K,Endo T.Convenient synthesis of poly(γ-benzyl-L-glutamate) from activated urethane derivatives of γ-benzyl-L-glutamate.J.Polym.Sci.Polym.Chem.,2008,46(8):2649-2657.
    [19].Poche D S,Moore M J,Bowles J L.An unconventional method for purifying the N-carboxyanhydride derivatives of α-alkyl-L-glutamates.Synth.Commun.,1999,29(5):843-854.
    [20].Schilling G,Kricheldorf H R.C~(13) NMR sequence-analysis.6.sequence polypeptides ofglycine and β-alanine.Makromol.Chem.,1977,178(3):885-892.
    [21].Kricheldorf H R,Schultze J.C~(13) NMR sequence-analysis.10.Synthesis and spectroscopic characterization of sequence polypeptides containing taurine, γ-aminopropanesulfonic acid,and sulfanilic acid.Makromol.Chem.,1977,178(11):3141-3163.
    [22].Kricheldorf H R.Mechanism of NCA-polymerization.5.Catalysis by secondary-amines.Makromol.Chem.,1977,178(7):1959-1970.
    [23].Kopple K D.The reaction of amines with amino acid N-carboxyanhydrides.J.Am.Chem.Soc.,1957,79(3):662-664.
    [24].Katchalski E,Sela M.Synthesis and chemical properties of Poly(α-Amino Acids).Adv.Protein.Chem.,1958,13:243-492.
    [25].Bamford C H,Block H.Initiation step in Polymerization of N-carboxy-α-amino-acid anhydrides.2.Effects related to structure of amine initiators.J.Chem.Soc.,1961:4992-4995.
    [26].Deming T J.Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization.Adv.Polym.Sci.,2006,202:1-18
    [27].Deming T J.Living polymerization of α-amino acid-N-carboxyanhydrides.J.Polym.Sci.Polym.Chem.,2000,38(17):3011-3018.
    [28].Dimitrov I,Schlaad H.Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides.Chem.Commun.,2003,(23):2944-2945.
    [29].Lu H,Cheng J J.Hexamethyldisilazane-mediated controlled polymerization of α-Amino acid N-carboxyanhydrides.J.Am.Chem.Soc.,2007,129(46):14114-14115.
    [30].Deming T J.Amino acid derived nickelacycles:Intermediates in nickel-mediated polypeptide synthesis.J.Am.Chem.Soc.,1998,120(17):4240-4241.
    [31].Deming T J.Facile synthesis of block copolypeptides of defined architecture.Nature,1997,390(6658):386-389.
    [32].Deming T J.Transition metal-amine initiators for preparation of well-defined poly(γ-benzyl L-glutamate).J.Chem.Soc.,1997,119(11):2759-2760.
    [33].Yamashit S,Tani H.Polymerization of γ-benzyl L-glutamate N-carboxyanhydride with metal acetate-tri-normal-butylphosphine catalyst system.Macromolecules,1974,7(4):406-409.
    [34].Irving H,Mellor D H.Stability of metal complexes of 1,10-phenanthroline and its analogues.1.1,10-Phenanthroline and 2,2'-bipyridyl.J.Chem.Soc.,1962,(12):5222-5237.
    [35].Aliferis T,Iatrou H,Hadjichristidis N,Messman J,Mays J.Synthesis of 3-and 4-arm star-block copolypeptides using multifunctional amino initiators and high vacuum techniques.Macromol.Symp.,2006,240:12-17.
    [36].Aliferis T,Iatrou H,Hadjichristidis N.Living polypeptides.Biomacromolecules,2004,5(5):1653-1656.
    [37].Vayaboury W,Giani O,Cottet H,Deratani A,Schue F.Living polymerization of α-amino acid N-carboxyanhydrides(NCA) upon decreasing the reaction temperature.Macromol.Rapid.Comm.,2004,25(13):1221-1224.
    [38].Vayaboury W,Giani O,Cottet H,Bonaric S,Schue F.Mechanistic study of α-amino acid N-carboxyanhydride(NCA) polymerization by capillary electrophoresis.Macromol.Chem.Physic.,2008,209(15):1628-1637.
    [39].Simo C,Cottet H,Vayaboury W,Giani O,Pelzing M,Cifuentes A.Nonaqueous capillary electrophoresis-mass spectrometry of synthetic polymers.Anal.Chem.,2004,76(2):335-344.
    [40].Mori H,Iwata M,Ito S,Endo T.Ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride in ionic liquids.Polymer,2007,48(20):5867-5877.
    [41].Rypacek F,Pytela J,Kotva R,Skarda V,Cifkova I.Biodegradation of poly(amino acid)s:Evaluation methods and structure-to-function relationships.Macromol.Symp.,1997,123:9-24.
    [42].Kunioka M,Choi H J.Preparation conditions and swelling equilibria of biodegradable hydrogels prepared from microbial poly(γ-glutamic acid) and poly(ε-lysine).J.Environ.Polym.Degr.,1996,4(2):123-129.
    [43].Romberg B,Metselaar J M,deVringer T,Motonaga K,den Bosch J J K,Oussoren C,Storm G,Hennink W E.Enzymatic degradation of liposome-grafted poly(hydroxyethyl L-glutamine).Bioconjugate Chem.,2005,16(4):767-774.
    [44].Chow D,Nunalee M L,Lim D W,Simnick A J,Chilkoti A.Peptide-based biopolymers in biomedicine and biotechnology.Mater.Sci.Eng.R.,2008,62(4):125-155.
    [45].Henry C.Block polypeptide hydrogels-Material formed at low concentration could find use in tissue engineering.Chem.Eng.News,2002,80(21):14-14.
    [46].Pihlajamaki H K,Karjalainen P T,Aronen H J,Bostman O M.MR imaging of biodegradable polylevolactide osteosynthesis devices in the ankle.J.Orthop.Trauma.,1997,11(8):559-564.
    [47].丁珊,李立华,周长忍.新型组织工程材料.生物医学工程学杂志,2002,19(1):122-126.
    [48].Barrera D A,Zylstra E,Lansbury P T,Langer R.Copolymerization and degradation of poly(lactic acid-co-lysine).Macromolecules,1995,28(2):425-432.
    [49].Peng H,Xiao Y,Mao X L,Chen L,Crawford R,Whittaker A K.Amphiphilic triblock copolymers of methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for enhancement of osteoblast attachment and growth.Biomacromolecules,2009,10(1):95-104.
    [50].Luo K,Yin J B,Song Z J,Cui L,Cao B,Chen X S.Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(α,L-glutamic acid) and chitosan.Biomacromolecules,2008,9(10):2653-2661.
    [51].Deng C,Tian H Y,Zhang P B,Sun J,Chen X S,Jing X B.Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer.Biomacromolecules,2006,7(2):590-596.
    [52]. Deng C, Chen X S, Yu H J, Sun J, Lu T C, Jing X B. A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine): Synthesis, self-assembly and RGD peptide modification. Polymer, 2007, 48(1): 139-149.
    [53]. Hayashi S, Ohkawa K, Suwa Y, Sugawara T, Asami T, Yamamoto H. Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine. Macromol. Biosci., 2008, 8(1): 46-59.
    [54]. Hayashi S, Ohkawa K, Yamamoto H. Random and sequential copolypeptides a containing O-phospho-L-threonine and L-aspartic acid; Roles in CaCO_3 biomineralization. Macromol. Biosci., 2006, 6(3): 228-240.
    [55]. Ohkawa K, Hayashi S, Kameyama N, Yamamoto H, Yamaguchi M, Kimoto S, Kurata S, Shinji H. Synthesis of collagen-Like sequential polypeptides containing O-phospho-L-hydroxyproline and preparation of electrospun composite fibers for possible dental application. Macromol. Biosci., 2009, 9(1): 79-92.
    [56]. Liu Y P, Shen Z R, Li L Y, Sun P C, Zhou X D, Li B H, Jin Q H, Ding D T, Chen T H. Synthesis of hierarchically structured silica with polypeptide-based triblock copolymer as a template. Microporous Mesoporous Mater., 2006, 92: 189-194.
    [57]. Liu Z M, Xu Z K, Wang J Q, Yang Q, Wu J, Seta P. Surface modification of microporous polypropylene membranes by the grafting of poly(γ-stearyl-L-glutamate). Eur. Polym. J., 2003, 39(12): 2291-2299.
    [58]. Liu Z M, Xu Z K, Ulbricht M. Surface modification of polypropylene microporous membrane by tethering polypeptides. Chinese J. Polym. Sci., 2006, 24(5): 529-538.
    [59]. Deming T J. Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv. Drug. Deliver. Rev., 2002, 54(8): 1145-1155.
    [60]. Ryser H J P, Shen W C. Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug-resistance in cultured-cells. PNAS, 1978, 75(8): 3867-3870.
    [61]. Pratten M K, Lloyd J B, Horpel G, Ringsdorf H. Micelle-forming block copolymers - pinocytosis by macrophages and interaction with model membranes.Makromol.Chem.,1985,186(4):725-733.
    [62].Pratesi G,Savi G,Pezzoni G,Bellini O,Penco S,Tinelli S,Zunino F.Poly-L-aspartic acid as a carrier for doxorubicin:a comparative in vivo study of free and polymer-bound Drug.Brit.J.Cancer,1985,52(6):841-848.
    [63].Sela M,Katchalski E.Biological properties of poly(α-amino acids).Adv.Protein.Chem.1959,14:391-477.
    [64].Lee T A T,Cooper A,Apkarian R P,Conticello V P.Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides.Adv.Mater.,2000,12(15):1105-1110.
    [65].Wan W K,Yang L,Padavan D T.Use of degradable and nondegradable nanomaterials for controlled release.Nanomedicine,2007,2(4):483-509.
    [66].Markland P,Zhang Y H,Amidon G L,Yang V C.A pH-and ionic strength-responsive polypeptide hydrogel:Synthesis,characterization,and preliminary protein release studies.J.Biomed.Mater.Res.,1999,47(4):595-602.
    [67].Kawashima Y.Preface nanoparticulate systems for improved drug delivery.Adv.Drug.Deliver.Rev.,2001,47(1):1-2.
    [68].Wang N,Zhao Y,Jiang L.Low-cost,thermoresponsive wettability of surfaces:Poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning.Macromol.Rapid.Commun.,2008,29(6):485-489.
    [69].Mackay J A,Chilkoti A.Temperature sensitive peptides:Engineering hyperthermia-directed therapeutics.Int.J.Hyperther.,2008,24(6):483-495.
    [70].Kim K S,Kim T K,Graham N B.Controlled release behavior of prodrugs based on the biodegradable poly(L-glutamic acid) microspheres.Polym.J.,1999,31(10):813-816.
    [71].范镇基.氨基酸聚合物在生产中的应用前景.广东科技,1997,8:3-7.
    [72].Formhals A.Process and apparatus for preparing artificial threads.U.S.Patent:No.2 077 373, 1934.
    [73]. Formhals A. Method and apparatus for spinning. US Patent: No. 2 160 962, 1939.
    [74]. Formhals A. Artificial thread and method of producing same. US Patent: No. 2 187 306, 1940.
    [75]. Formhals A. Production of artificial fibers from fiber forming liquids. US Patent: No. 2 323 025, 1943.
    [76]. Formhals, A., Method and apparatus for spinnin. US Patent: No. 2 349 950. 1944.
    [77]. Feng C, Khulbe K C, Matsuura T. Recent Progress in the Preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci., 2009, 115(2): 756-776.
    [78]. Fang J, Niu H T, Lin T, Wang X G. Applications of electrospun nanofibers. Chinese Sci. Bull., 2008, 53(15): 2265-2286.
    [79]. Chen J M, Xu J K, Wang A L, Zheng M H. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expet. Rev. Med. Dev., 2009, 6(1): 61-73.
    [80]. Che A F, Yang Y F, Wan L S, Wu J, Xu Z K. Molecular imprinting fibrous membranes of poly(acrylonitrile-co-acrylic acid) prepared by electrospinning. Chem. Res. Chin. Univ., 2006, 22(3): 390-393.
    [81]. Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett., 2001, 78(8): 1149-1151.
    [82]. Deitzel J M, Kleinmeyer J D, Hirvonen J K, Tan N C B. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 2001, 42(19): 8163-8170.
    [83]. Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15): 2223-2253.
    [84]. Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1): 261-272.
    [85]. Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40(16): 4585-4592.
    [86]. Zong X H, Kim K, Fang D F, Ran S F, Hsiao B S, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16): 4403-4412.
    [87]. Shenoy S L, Bates W D, Frisch H L, Wnek G E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005, 46(10): 3372-3384.
    [88]. McKee M G, Wilkes G L, Colby R H, Long T E. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 2004, 37(5): 1760-1767.
    [89]. Gupta P, Elkins C, Long T E, Wilkes G L. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005, 46(13): 4799-4810.
    [90]. Minato K I, Ohkawa K, Yamamoto H. Chain conformations of poly (γ-benzyl-L-glutamate) pre and post an electrospinning process. Macromol. Biosci., 2006, 6(7): 487-495.
    [91]. Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett., 2004, 58: 493-497.
    [92]. Liu H Q, Hsieh Y L. Ultrafme fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Polym. Phys., 2002, 40(18): 2119-2129.
    [93]. Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J. Electrostat., 1995, 35: 151-160.
    [94]. Kang M, Jung R, Kim H S, Jin H J. Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloid. Surf. A, 2008, 313: 411-414.
    [95]. Park J Y, Han B W, Lee I H. Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system. J. Ind. Eng. Chem., 2007, 13(6): 1002-1008.
    [96]. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Nanostructured fibers via electrospinning. Adv. Mater., 2001, 13(1): 70-72.
    [97]. Nisbet D R, Forsythe J S, Shen W, Finkelstein D I, Home M K. Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering. J. Biomater. Appl., 2009, 24(1): 7-29.
    [98]. Smith L A, Liu X H, Ma P X. Tissue engineering with nano-fibrous scaffolds. Soft. Matter., 2008,4(11):2144-2149.
    [99]. Kwon I K, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18): 3929-3939.
    [100]. He W, Ma Z W, Teo W E, Dong Y X, Robless P A, Lim T C, Ramakrishna S. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J. Biomed. Mater. Res. A., 2009, 90A(1): 205-216.
    [101]. Thomas V, Jagani S, Johnson K, Jose M V, Dean D R, Vohra Y K, Nyairo E. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J. Nanosci. Nanotechnol., 2006, 6(2): 487-493.
    [102]. Nie H, Ho M L, Wang C K, Wang C H, Fu Y C. BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials, 2009, 30(5): 892-901.
    [103]. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15): 2603-2610.
    [104]. Kumbar S G, James R, Nukavarapu S P, Laurencin C T. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater., 2008, 3(3): 1-15.
    [105]. Ding B, Wang M R, Yu J Y, Sun G. Gas sensors based on electrospun nanofibers. Sensors-Basel, 2009, 9(3): 1609-1624.
    [106]. Jayaraman K, Kotaki M, Zhang Y Z, Mo X M, Ramakrishna S. Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol., 2004,4(1-2): 52-65.
    [107]. Li P, Li Y, Ying B Y, Yang M J. Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens. Actuators B, 2009, 141(2): 390-395.
    [108]. Ding B, Kim J H, Miyazaki Y, Shiratori S M. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens. Actuators B, 2004, 101(3): 373-380.
    [109]. Ding B, Yamazaki M, Shiratori S. Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens. Actuators B, 2005, 106(1): 477-483.
    [110]. Luoh R, Hahn H T. Electrospun nanocomposite fiber mats as gas sensors. Compos. Sci. Technol., 2006, 66(14): 2436-2441.
    [111]. Yang A, Tao X M, Wang R X, Lee S C, Surya C. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers. Appl. Phys. Lett., 2007,91(13): 133110-1-3.
    [112]. Wang X Y, Drew C, Lee S H, Senecal K J, Kumar J, Samuelson L A. Electrospinning technology: A novel approach to sensor application. J. Macromol. Sci. A, 2002, A39(10): 1251-1258.
    [113]. Wang X Y, Drew C, Lee S H, Senecal K J, Kumar J, Sarauelson L A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano. Lett., 2002, 2(11): 1273-1275.
    [114]. Manesh K M, Santhosh P, Gopalan A, Lee K P. Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal. Biochem., 2007, 360(2): 189-195.
    [115]. Wan L S, Wu J, Xu Z K. Porphyrinated nanofibers via copolymerization and electrospinning.Macromol.Rapid.Comm.,2006,27(18):1533-1538.
    [116].Lv Y Y,Wu J,Wan L S,Xu Z K.Novel porphyrinated polyimide nanofibers by electrospinning.J.Phys.Chem.C,2008,112(29):10609-10615.
    [117].王振则,基于聚丙烯腈的分离膜制备与酶固定化研究[博士论文],杭州:浙江大学,2008.
    [118].Barthlott W,Neinhuis C.Purity of the sacred lotus,or escape from contamination in biological surfaces.Planta,1997,202(1):1-8.
    [119].Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces.Ann.Bot.,1997,79(6):667-677.
    [120].翟锦,李欢军,李英顺,李书宏,江雷.物理,2002,31(8):483-486.
    [121].高雪峰,江雷.物理,2006,35(7):559-564.
    [122].Young T.An essay on the cohesion of fluids.Phil.Trans.Roy.Soc.,1805,95:65-87.
    [123].Adamson A W.Physical Chemistry of Surfaces,New York:John&Sons,Inc.,1990,4-6.
    [124].Nishino T,Meguro M,Nakamae K,Matsushita M,Ueda Y.The lowest surface free energy based on-CF3 alignment.Langmuir,1999,15(13):4321-4323.
    [125].Wenzel R N.Resistance of solid surfaces to wetting by water.Ind.Eng.Chem.Res.,1936,28:988-994.
    [126].Cassie A B D,Baxter S.Wettability of porous surfaces.Trans.Faraday Soc.,1944,40:546-551.
    [127].Lafuma A,Quere D.Superhydrophobic states.Nat.Mater.,2003,2(7):457-460.
    [128].Johnson R E,Dettre R H.Contact angle hysteresis,Part Ⅰ,Study of an idealized rough surfaces.Adv.Chem.Ser.,1964,43:112-135.
    [129].Patankar N A.On the modeling of hydrophobic contact angles on rough surfaces.Langmuir,2003,19(4):1249-1253.
    [130].Vogler E A.Structure and reactivity of water at biomaterial surfaces.Adv.Colloid Interface Sci.,1998,74:69-117.
    [131].Yoon R H,Flinn D H,Rabinovich Y I.Hydrophobic interactions between dissimilar surfaces.J.Colloid Interface Sci.,1997,185(2):363-370.
    [132].Berg J M,Eriksson L G T,Claesson P M,Borve K G N.3-Component Langrnuir-Blodgett-films with a controllable degree of polarity.Langmuir,1994,10(4):1225-1234.
    [133].郭朝伟,聚合物表面几何微结构与其浸润性研究[博士论文],北京:中国科学院研究生院,2005.
    [134].Feng L,Zhang Y A,Xi J M,Zhu Y,Wang N,Xia F,Jiang L.Petal effect:A superhydrophobic state with high adhesive force.Langmuir,2008,24(8):4114-4119.
    [135].Burkarter E,Saul C K,Thomazi F,Cruz N C,Roman L S,Schreiner W H.Superhydrophobic electrosprayed PTFE.Surf.Coat.Technol.,2007,202(1):194-198.
    [136].Burkarter E,Saul C K,Thomazi F,Cruz N C,Zanata S M,Roman L S,Schreiner W H.Electrosprayed superhydrophobic PTFE:a non-contaminating surface.J.Phys.D.Appl.Phys.,2007,40(24):7778-7781.
    [137].Acatay K,Simsek E,Ow-Yang C,Menceloglu Y Z.Tunable,superhydrophobically stable polymeric surfaces by electrospinning.Angew.Chem.Int.Ed.,2004,43(39):5210-5213.
    [138].Allcock H R,Steely L B,Singh A.Hydrophobic and superhydrophobic surfaces from polyphosphazenes.Polym.Int.,2006,55(6):621-625.
    [139].Allcock H R,Steely L,Singh A,Hindenlang M.Hydrophobic and superhydrophobic polyphosphazenes.J.Adhes.Sci.Technol.,2009,23(3):435-445.
    [140].Singh A,Steely L,Allcock H R.Poly[bis(2,2,2-trifluoroethoxy)phosphazene]superhydrophobic nanofibers.Langmuir,2005,21(25):11604-11607.
    [141].Gu Z Z,Wei H M,Zhang R Q,Han G Z,Pan C,Zhang H,Tian X J,Chen Z M. Artificial silver ragwort surface. Appl. Phys. Lett., 2005, 86(20): 201915-1-3.
    [142]. Li X H, Ding B, Lin J Y, Yu J Y, Sun G. Enhanced Mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J. Phys. Chem. C, 2009, 113(47): 20452-20457.
    [143]. Zhu M F, Zuo W W, Yu H, Yang W, Chen Y M. Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J. Mater. Sci., 2006, 41(12): 3793-3797.
    [144]. Herminghaus S. Roughness-induced non-wetting. Europhys. Lett., 2000, 52(2): 165-170.
    [145]. Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 2007, 23(6): 3157-3161.
    [146]. Wu W L, Zhu Q Z, Qing F L, Han C C. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect. Langmuir, 2009, 25(1): 17-20.
    [147]. Ma M L, Mao Y, Gupta M, Gleason K K, Rutledge G C. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 2005, 38(23): 9742-9748.
    [148]. Shang H M, Wang Y, Takahashi K, Cao G Z, Li D, Xia Y N. Nanostructured superhydrophobic surfaces. J. Mater. Sci., 2005, 40(13): 3587-3591.
    [149]. Tang H Z, Wang H, He J H. Superhydrophobic titania membranes of different adhesive forces fabricated by electrospinning. J. Phys. Chem. C, 2009, 113(32): 14220-14224.
    [150]. Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater., 2002, 14(24): 1857-1860.
    [151]. Ma M, Hill R M, Rutledge G C. A review of recent results on superhydrophobic materials based on micro-and nanofibers.J.Adhes.Sci.Technol.,2008,22(15):1799-1817.
    [152].Wu H,Zhang R,Sun Y,Lin D D,Sun Z Q,Pan W,Downs P.Biomimetic nanofiber patterns with controlled wettability.Soft.Matter.,2008,4(12):2429-2433.
    [153].Mizukoshi T,Matsumoto H,Minagawa M,Tanioka A.Control over wettability of textured surfaces by electrospray deposition.J.Appl.Polym.Sci.,2007,103(6):3811-3817.
    [154].Wang L F,Zhao Y,Jiang L,Wang F S.Superhydrophobic TiO_2 nanofabric mesh fabricated by electrospinning.Chem.J.Chin.Univ.,2009,30(4):731-734.
    [155].Zhu Y,Zhang J C,Zhai J,Zheng Y M,Feng L,Jiang L.Multifunctional carbon nanofibers with conductive,magnetic and superhydrophobic properties.ChemPhysChem 2006,7(2):336-341.
    [156].Zhu Y,Zhang J C,Zheng Y M,Huang Z B,Feng L,Jiang L.Stable,superhydrophobic,and conductive polyaniline/polystyrene films for corrosive enviromnents.Adv.Funct.Mater.,2006,16(4):568-574.
    [157].胡晓萍.γ-十八烷酯-L-谷氨酸N-羧基内酸酐开环聚合合成聚肽的研究:[博士论文].杭州:浙江大学,2000.
    [158].石伟民.meso-四芳基卟啉芳环的定位硝化及其衍生物合成研究[博士论文].杭州:浙江大学,2005.
    [159].张洪亮,二芳醚键联卟啉二聚体的合成研究[硕士论文].杭州:浙江大学,2006.
    [160].蒋旭亮.新型卟啉的合成及其性能研究[博士论文].杭州:浙江大学,2006.
    [161].Bergstrand A,Rahmani-Monfared G,Ostlund A,Nyden M,Holmberg K.Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention of protein fouling.J.Biomed.Mater.Res.A,2009,88A(3):608-615.
    [162].Stenberg E,Persson B,Roos H,Urbaniczky C.Quantitative-determination of surface concentration of protein with surface-plasmon resonance using radiolabeled proteins.J. Colloid Interf. Sci., 1991, 143(2): 513-526.
    [163]. Bamford C H, Elliott A, Hanby W E. Synthetic Polypeptides. New York: Academic Press, 1956. 1-101.
    [164]. Kricheldorf H R. α-Amino Acid N-carboxyanhydrides and Related Materials. Berlin: Springer-Verlag, 1987. 59-157.
    [165]. Bhaw-Luximon A, Jhurry D, Belleney J, Goury V. Polymerization of γ-methylglutamate N-carboxyanhydride using Al-Schiffs base complexes as initiators. Macromolecules, 2003, 36(4): 977-982.
    [166]. Wieringa R H, Siesling E A, Geurts P F M, Werkman P J, Vorenkamp E J, Erb V, Stamm M, Schouten A J. Surface grafting of poly (L-glutamates). 1. Synthesis and characterization. Langmuir, 2001,17(21): 6477-6484.
    [167]. Watanabe J, Ono H, Uematsu I, Abe A. Thermotropic polypeptides. 2. Molecular packing and thermotropic behavior of poly(L-Glutamates) with long normal-alkyl side-chains. Macromolecules, 1985, 18(11): 2141-2148.
    [168]. Wassermann D G J, Meigs F M. α-Monoalkyl ester of glutamic acid and aspartic and process for producing same. US Patent: No. 3 285 953, 1966.
    [169]. Daly W H, Poche D. Synthesis and properties of poly(γ-stearyl-L-glutamate). Abstr. Pap. Am. Chem. Soc, 1989, 197: 14-Poly.
    [170]. Ivin K J, Saegusa T. Ring-opening polymerization. London&New York: Elsevier Applied Pubilsers, 1984, P523-602.
    [171]. Zhu G Q, Chen T, Lin H P, Dong X B. The effect of polypeptide chain conformation on the self-assembly behavior of its block copolymer. Acta Polym. Sin., 2006, (5): 732-735.
    [172]. Jeon S, Choo J, Sohn D, Lee S N. Hydrogen bonding effects on the conformational changes of polyglutamates containing long flexible side chains Polymer, 2001, 42, 9915-9920.
    [173]. Zhang L F, Hsieh Y L. Ultrafine cellulose acetate fibers with nanoscale structural features. J. Nanosci. Nanotechnol., 2008, 8(9): 4461-4469.
    [174]. McKee M G, Hunley M T, Layman J M, Long T E. Solution rheological behavior and electrospinning of cationic poly electrolytes. Macromolecules, 2006, 39(2): 575-583.
    [175]. Berg J M, Claesson P M. Forces between durfaces voated with a polymerizable surfactant before and after polymerization. J. Colloid Interf. Sci., 1994, 163(2): 289-298.
    [176]. Sigal G B, Mrksich M, Whitesides G M. Effect of surface wettability on the adsorption of proteins and detergents. J. Amer. Chem. Soc, 1998, 120(14): 3464-3473.
    [177]. Bajpai A K. Blood protein adsorption onto macroporous semi-interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (PHEMA) and assessment of in vitro blood compatibility. Polym. Int., 2007, 56(2): 231-244.
    [178]. Rodrigues S N, Goncalves I C, Martins M C L, Barbosa M A, Ratner B D. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27(31): 5357-5367.
    [179]. Welle A, Grunze M, Tur D. Plasma protein adsorption and platelet adhesion on poly[bis(trifluoroethoxy)phosphazene] and reference material surfaces. J. Colloid Interf. Sci., 1998, 197(2): 263-274.
    [180]. Nagahama K, Nishimura Y, Ohya Y, Ouchi T. Impacts of stereoregularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)-poly(lactide) block copolymer films. Polymer, 2007, 48(9): 2649-2658.
    [181]. Tzoneva R, Groth T, Altankov G, Paul D. Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability. J. Mater. Sci. Mater. Med., 2002, 13(12): 1235-1244.
    [182]. Bayramoglu G, Yilmaz M, Senel A U, Arica M Y. Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption. Biochem. Eng. J., 2008, 40(2): 262-274.
    [183]. Spector A A. Fatty acid binding to plasma albumin. J. lipid res., 1975, 16: 165-179.
    [184]. Grasel T G, Pierce J A, Cooper S L. Effects of alkyl grafting on surface-properties and blood compatibility of polyurethane block copolymers. J. Biomed. Mater. Res., 1987, 21(7): 815-842.
    [185]. Zhao G W, Chen Y S, Wang X L. Surface modification of polyethylene film by acrylamide graft and alcoholysis for improvement of antithrombogenicity. Appl. Surf. Sci., 2007, 253(10): 4709-4714.
    [186]. Ji J, Feng L X, Shen J C, Barbosa M A. Preparation of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation. J. Biomed. Mater. Res., 2002, 61(2): 252-259.
    [187]. Ko T M, Lin J C, Cooper S L. Surface characterization and platelet-adhesion studies of plasma-sulfonated polyethylene. Biomaterials, 1993,14(9): 657-664.
    [188]. Ye S H, Johnson C A, Woolley J R, Oh H I, Gamble L J, Ishihara K, Wagner W R. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloid Surf. B, 2009, 74(1): 96-102.
    [189]. Li X, Liu K L, Wang M, Wong S Y, Tjiu W C, Bin H C, Goh S H, Li J. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater., 2009, 5(6): 2002-2012.
    [190]. Mao C, Liang C X, Mao Y Q, Li L, Hou X M, Shen J. Modification of polyethylene with Pluronics F127 for improvement of blood compatibility. Colloid Surf. B, 2009, 74(1): 362-365.
    [191]. McGuigan A P, Sefton M V. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials, 2007, 28(16): 2547-2571.
    [192]. Dee K C, Puleo D A, Bizios R. An introduction to tissue-biomaterial interactions. New York: John Wiley&Sons, Inc., 2002, 37-126.
    [193]. Ko T M, Lin J C, Cooper S L. Surface characterization and platelet-adhesion studies of plasma-carboxylated polyethylene. J. Colloid Interf. Sci., 1993, 156(1): 207-217.
    [194]. Vroman L, Adams A L. Rapid identification of proteins on flat surfaces, Using antibody-coated metal-oxide suspensions. J. Immunol. Methods, 1986, 93(2): 213-216.
    [195]. Wojciechowski P, Tenhove P, Brash J L. Phenomenology and mechanism of the transient adsorption of fibrinogen from plasma (Vroman Effect). J. Colloid Interf. Sci., 1986, 111(2): 455-465.
    [196]. Tsunoda N, Kokubo K, Sakai K, Fukuda M, Miyazaki M, Hiyoshi T. Surface roughness of cellulose hollow fiber dialysis membranes and platelet adhesion. Asaio J., 1999, 45(5): 418-423.
    [197]. Zhou M, Zheng A R, Yang H H. Superhydrophobic surfaces fabricated by replica molding and its applications. Acta Phys. Chim. Sin., 2007, 23(8): 1296-1300.
    [198]. Shi J, Alves N M, Mano J F. Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspir. Biomim., 2008, 3(3): 1-6.
    [199]. Sun T L, Tan H, Han D, Fu Q, Jiang L. No platelet can adhere: largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small, 2005, 1(10): 959-963.
    [200]. Yang Y D, Zhou Y G, Chuo H M, Wang S Y, Yu J G. Blood compatibility and mechanical properties of oxidized-chitosan films. J. Appl. Polym. Sci., 2007, 106(1): 372-377.
    [201]. Kim J H, Kim S C. Controlling the morphology of polyurethane/polystyrene interpenetrating polymer networks for enhanced blood compatibility. J. Appl. Polym. Sci., 2002, 84(2): 379-387.
    [202].Yang Y D,Yu J G,Zhou Y G,Li P G.Preparation and blood compatibility of oxidized-chitosan films.Chinese Chem.Lett.,2005,16(7):991-994.
    [203].Stevens M M,George J H.Exploring and engineering the cell surface interface.Science,2005,310(5751):1135-1138.
    [204].万灵书,基于丙烯腈共聚物的膜制备及其表面性能研究[博士论文],杭州:浙江大学,2007.
    [205].Qu A L,Wen X F,Pi P H,Cheng J,Yang Z R.Morphologies and superhydrophobicity of hybrid film surfaces based on silica and fluoropolymer.J.Mater.Sci.Technol.,2008,24(5):693-699.
    [206].Gao S Y,Li Z D,Yang S X,Jiang K,Li Y,Zeng H B,Li L,Wang H Q.Transferrable superhydrophobic surface constructed by a hexagonal CuI powder without modification by low-free-energy materials.Acs Appl.Mater.Interf.,2009,1(9):2080-2085.
    [207].Khorasani M T,Mirzadeh H,Kermani Z.Wettability of porous polydimethylsiloxane surface:morphology study.Appl.Surf.Sci.,2005,242:339-345.
    [208].Sun T L,Feng L,Gao X F,Jiang L.Bioinspired surfaces with special wettability.Accounts Chem.Res.2005,38(8):644-652.
    [209].Jiang L,Zhao Y,Zhai J.A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics.Angew.Chem.Int.Ed.,2004,43(33):4338-4341.
    [210].Xi J M,Jiang L.Biomimic superhydrophobic surface with high adhesive forces.Ind.Eng.Chem.Res.2008,47(17):6354-6357.
    [211].Yao J,Lim L K,Xie J W,Hua J S,Wang C H.Characterization of electrospraying process for polymeric particle fabrication.J.Aerosol Sci.,2008,39(11):987-1002.
    [212].Dolphin D E.The porphyrins,New York:Academic Press,1978.1-165.
    [213].Meunier B.Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage.Chem.Rev.,1992,92(6):1411-1456.
    [214].Zheng J Y,Konishi K,Aida T.Guest-selective binding of Z amino acids by a strapped metalloporphyrin receptor with a hydrogen-bonding capability.Tetrahedron 1997,53(27):9115-9122.
    [215].Calvete M,Yang G Y,Hanack M.Porphyrins and phthalocyanines as materials for optical limiting.Synth.Met.,2004,141(3):231-243.
    [216].Amao Y.Probes and polymers for optical sensing of oxygen.Microchim.Acta,2003,143(1):1-12.
    [217].马卡迪,基于金属卟啉的印迹聚合物研究[硕士论文],杭州:浙江大学,2004.
    [218].Hu X P,Wu J,Xu Z K,Feng L X.Polymerization of γ-stearyl-α,L-glutamate N-carboxyanhydride using rare earth coordination catalysts.Chinese J.Polym.Sci.,2000,18(4):369-372.
    [219].Hu X P,Wu J,Xu Z K,Feng L X.Synthesis and characterization of poly(γ-stearyl-L-glutamate)s with porphyrin.Acta Polym.Sin.,2000,(3):368-371.
    [220].Wu J,Hu X P.Polymerization of γ-stearyl L-glutamate N-carboxyanhydride with multifunctional porphyrin initiator.Polym.Adv.Technol.,2002,13(3-4):201-204.
    [221].Zaleski J.Experiments on the mesoporhytine.Physiol.Chem.,1902,37(1):54-74.
    [222].Rothemund P,Menotti A R.Porphyrin Studies.5.The metal complex salts of α,β,γ,δ-tetraphenylporphine.J.Am.Chem.Soc.,1948,70(5):1808-1812.
    [223].Dorough G D,Miller J R,Huennekens F M.Spectra of the metallo-derivatives of α,β,γ,ω-tetraphenylporphine.J.Am.Chem.Soc.,1951,73(9):4315-4320.
    [224].Dorough G D,Huennekens F M.The Spectra of α,β,γ,δ-tetraphenylchlorin and its metallo-derivatives.J.Am.Chem.Soc.,1952,74(16):3974-3976.
    [225].Inhoffen H H,Buchler J W.Further knowledge of chlorophyll and hemin.18.Octaethylporphinatoaluminum hydroxide.Tetrahedron Lett.,1968,(17):2057-2060.
    [226].Adler A D,Longo F R,Kampas F,Kim J.On preparation of metalloporphyrins.J.Inorg.Nucl.Chem.,1970,32(7):2443-2445.
    [227]. Yu H Z, Baskin J S, Steiger B, Wan C Z, Anson F C, Zewail A H. Femtosecond dynamics of metalloporphyrins: electron transfer and energy redistribution. Chem. Phys. Lett., 1998, 293: 1-8.
    [228].Guo X M, Guo B, Shi T S. The photochemical and electrochemical properties of chiral porphyrin dimmer and self-aggregate nanorods of cobalt(II) porphyrin dimer. Inorg. Chim. Acta, 2010, 363: 317-323.
    [229]. Itagaki Y, Deki K, Nakashima S, Sadaoka Y. Toxic gas detection using porphyrin dispersed polymer composites. Sens. Actuators B, 2005, 108(1-2): 393-397.
    [230]. Itagaki Y, Deki, K, Nakashima S I, Sadaoka Y. Development of porphyrin dispersed sol-gel films as HCl sensitive optochemical gas sensor. Sens. Actuators B, 2006, 117(1): 302-307.
    [231]. Kalimuthu P, John S A. Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate. Anal. Chim. Acta, 2008, 627(2): 247-253.
    [232]. Nakagawa K, Kumon K, Tsutsumi C, Tabuchi K, Kitagawa T, Sadaoka Y. HCl gas sensing properties of TPPH2 dispersed in various copolymers. Sens. Actuators B, 2000, 65(1-3): 138-140.
    [233]. Nakagawa K, Sadaoka Y, Supriyatno H, Kubo A, Tsutsumi C, Tabuchi K. Optochemical HCl gas detection using alkoxy substituted tetraphenylporphyrin-polymer composite films - Effects of alkoxy chain length on sensing characteristics. Sens. Actuators B, 2001, 76(1-3): 42-46.
    [234]. Supriyatno H, Nakagawa K, Sadaoka Y. Optochemical sensor for HCl gas based on tetraalkoxyphenylporphyrin dispersed in an acrylate polymer matrix. Sens. Mater., 2001, 13(6): 359-371.
    [235]. Takulapalli B R, Laws G M, Liddell P A, Andreasson J, Erno Z, Gust D, Thornton T J. Electrical detection of amine ligation to a metalloporphyrin via a hybrid SOI-MOSFET. J. Am. Chem. Soc, 2008, 130(7): 2226-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700