用户名: 密码: 验证码:
基于全基因组关联研究技术筛选鸡产肉和肉品质性状相关候选基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产肉和肉品质性状是鸡重要经济性状,受饲粮营养和遗传因子的协同作用。随着分子营养研究的逐步深入,探明影响目标性状的关键调控基因及分子机制至关重要。随着鸡高密度SNP分型芯片的出现以及统计分析方法的日臻成熟,应用全基因组关联研究(GWAS)挖掘和鉴定鸡产肉和肉品性状的功能基因成为可能。
     试验选用北京油鸡公鸡和科宝公司的快大型白羽肉鸡母鸡杂交构建了中国农业科学院(CAAS)鸡F2资源群体。选取资源群体中6个半同胞家系,共计400只鸡,包括亲本14只,F1代19只,F2代公鸡184只、母鸡183只。在93日龄时进行屠宰,测定11个产肉和16个肉品质性状。使用鸡60K SNP分型芯片对个体gDNA进行基因分型。分型结果经过质量控制后,剩余328只F2代个体和42585个SNPs.使用广义的线性模型(GLM)和压缩的混合线性模型(MLM)对鸡产肉和肉品质性状进行全基因组关联研究。模型中以群体结构中的第一主成分为协变量,批次、性别为固定效应。在MLM中,亲缘全系矩阵为随机效应。结果以MLM分析为主,同时兼顾GLM模型。同时,选取GWAS中鉴定的基因在高性状值组和低性状值组中进行表达验证。结果表明:
     (1)本研究鉴定出11个产肉性状的64个SNPs效应位点,达到全基因组显著或潜在关联水平(P<2.98x10-6或5.96×10-5)。其中有22个SNPs效应位点在GLM模型中达到全基因组显著水平(P<2.98×10-6)。其中4号染色体78.11-84.94Mb(6.83Mb)区间内7个SNPs与多个产肉性状关联,区间内涉及到4个基因,包括SLIT2、QDPR、AFAP1和LRPAP1,它们的功能与产肉性状密切相关。此外,WNT信号通路中翅膀重的候选基因RUVBL1,腿肌重候选基因WNT4;其它染色体上影响多个产肉性状的候选基因包括SYT1、WAPAL、 MAPK和EFNA5。
     (2)本研究发现33个SNPs与10个肉品质性状关联(P<4×10-4),这些性状包括胸肌干物质含量、腿肌干物质含量、胸肌肌内脂肪含量、肉色L*和b*、皮肤颜色L*、a*和b*,腹脂重和腹脂率。其中8个重要候选基因的功能与肉品质性状密切相关,包括胸肌肌内脂肪含量的候选基因TYRO3和MGST1,胸肌肉色的获选基因COL1A2,皮肤颜色的候选基因SPINK5,腹脂重和/或腹脂率的候选基因RET、NPPB、SREBFl和LOC431251。
     (3)4个胸肌重的候选基因RAB2A、QDPR、EFNA5和OTUD6B在高胸肌重组中显著下调表达(P<0.01)。肉品质性状的17个候选基因中,14个在胸肌或腹脂组织高低性状值组中显著差异表达(P<0.05或0.01)。
     本研究通过GWAS鉴定产肉和肉品质性状的候选区域和基因的功能需要进一步的研究,也为探索产肉和肉品质性状的分子机制提供了新的线索。
Meat production and quality are important economic traits in chickens, which were synergisticly influenced by feed nutrition and genetic factor. With the development of molecular nutrition research, it is important to understand the key regulatory gene and molecule mechanism underlying the target traits. The developments of high-throughput genotyping platforms and relevant statistical methods have enabled genome-wide association study (GWAS) for meat production and quality traits in chickens.
     To identify loci and genes associated with meat production and quality traits, we conducted the GWAS of F2populations derived from a local Chinese breed (Beijing-You chickens) and a commercial fast-growing broiler line (Cobb-Vantress). In this study,400chickens including14parents,19F1chickens, and367F2chickens (184male and183female)from five batches at two-week intervals were genotyped and used. At the day of93, a total of11meat production and16quality traits of chickens from the F2generation were measured.
     Genotyping was performed with50ng/μL gDNA using the Illumina60K Chicken SNP Beadchip. After quality control steps,42,585SNPs and328chickens were used for the GWAS. The GWAS analysis for meat prodution and quality traits used the compressed MLM and the results from GLM model are also indicated. Both models were performed with the first MDS component as covariates, with batch and sex as fixed effects. In the compressed MLM, relative kinship matrix was a random effect. For AbFW, the eviscerated weight (EW) was a covariate in both models. The mRNA expression patterns of candidate genes from GWAS results were measured using real-time quantity PCR (Q-PCR) from the extremes tratis groups.
     The results showed that:
     (1) In this study,64SNP effects involving44SNPs were detected for11meat production traits with genome-wide significance or suggestive (P<5.96×10-5) from compressed mixed linear model (MLM). Twenty-two of44these SNPs were genome-wide significance associated with the traits from general linear moldel (GLM)(P<2.98×10-6). The6.83Mb (78.11-84.94Mb) region on GGA4involving seven SNPs and four genes (SLIT2, QDPR, AFAP1, LRPAP1) were influenced most of these triats. The candidate gene RUVBL1for WW and WNT4for ThW were in WNT signaling pathway. In other chromosomes, some candidate genes, e.g. SYT1, WAPAL, MAPK and EFNA5, influenced most of meat production triats.
     (2) In the present study,33association signals were detected from the compressed mixed linear model (MLM) for ten meat quality traits:DMBr, DMTh, IMFBr, meat colour L*and b*values, skin colour L*, a*and b*values, AbFW and AbFP. The mRNA expressions of candidate genes identified near significant signals were compared between High and Low phenotype groups. A total of14genes associated with IMFBr, meat colour L*, AbFW, and AbFP, exhibited differential expression levels between the High and Low phenotype groups. These genes were important candidate genes for meat quality traits, such as the protein tyrosine kinase TYRO3and microsomal glutathione S-transferase1(MGST1) for IMFBr, collagen, type I, alpha2(COL1A2) for meat colour L*, the RET proto-oncogene (RET), natriuretic peptide B (NPPB) and sterol regulatory element binding transcription factor1(SREBF1) for abdominal fat (AbF) traits.
     (3) A total of21candidate genes were selected to validate the accuracy of GWAS method.18including four genes for BrW and14for meat quality traits were significant differentially expressed in the High and Low groups (P<0.05or0.01). The Q-PCR showed that the efficiency of the GWAS was about85%.
     The results provided new clues for deciphering the molecular mechanisms underlying meat prodution and quality traits in chicken. The exploring of causal variants in these regions and functional characterization of these genes will be required.
引文
[1]李文娟.鸡肉品质相关脂肪代谢功能基因的筛选及营养调控研究[D].北京:中国农业科学院,2008.
    [2]Gao Y, Zhang R, Hu X, Li N. Application of genomic technologies to the improvement of meat quality of farm animals[J]. Meat Science,2007,77(1):36-45.
    [3]赵桂苹,陈继兰,文杰,郑麦青,李小华.北京油鸡品种资源特性描述[J].中国家禽,2006,27(23):49-50.
    [4]黄进,陈宏生,高玉时,童海兵.改善鸡肉品质的途径[J].中国家禽,2010,(2):42-44.
    [5]Ye M, Chen J, Zhao G, Zheng M, Wen J. Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken[J]. Animal Biotechnology,2009, 21(1):14-24.
    [6]崔焕先.肉鸡肌内脂肪形成的分子调控网络及相关基因研究[D].北京:中国农业科学院,2011.
    [7]李德发.营养调控肉品质量的研究现状及发展趋势[J].动物营养研究进展论文集,2004:7-14.
    [8]Li W, Zhao G, Chen J, Zheng M, Wen J. Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken[J]. British Poultry Science,2009,50(2):188-198.
    [9]蒋瑞瑞.烟酸对鸡脂肪代谢和肉品质的影响及作用机理[D].北京:中国农业科学院,2010.
    [10]李岩,孙超.日粮添加DHA对肉仔鸡生长及脂肪代谢基因转录的后效作用[J].中国农业科学,2009,42(11):4042-4050.
    [11]张广民.共轭亚油酸对肉鸡肉品质的影响及其作用机制的研究[D].北京:中国农业科学院,2006.
    [12]齐珂珂.日粮co-6/ω-3比例对肉鸡脂肪酸组成及肉品质的影响[D].北京:中国农业科学院,2009.
    [13]Sato K, Cho Y, Tachibana S, Chiba T, Schneider W J, Akiba Y. Impairment of VLDL secretion by medium-chain fatty acids in chicken primary hepatocytes is affected by the chain length[J]. The Journal of Nutrition,2005,135(7):1636-1641.
    [14]倪红玉,鲁菲,温超,吴大伟,周岩民.饲粮不同油脂来源对肉鸡脂类代谢及相关基因表达的影响[J].动物营养学报,2011,23(10):1677-1683.
    [15]吕林,计成,罗绪刚,刘彬,余顺祥.不同锰源对肉鸡胴体性能和肌肉品质的影响[J].中国农业科学,2007,40(7):1504-1514.
    [16]董金格,邹晓庭,胡家澄,乔云芳,孙科.日粮中添加谷氨酰胺对肉仔鸡肉品质和抗氧化指标的影响[J].动物营养学报,2009,21(2):245-250.
    [17]孟德连,孙超,姚军虎,杨公社,方骏.谷氨酰胺和天冬胺酰胺对肉鸡部分脂肪性状及生脂基因]mRNA表达水平的影响[J].中国农业科学,2009,42(7):2513-2522.
    [18]Grisel J E. Quantitative trait locus analysis[J]. Alcohol Research & Health,2000, 24(3):169-174.
    [19]Risch N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science-AAAS-Weekly Paper Edition,1996,273(5281):1516-1517.
    [20]吴常信.动物遗传学[M].北京,高等教育出版社,2009.
    [21]罗艳茹.猪血常规和溶酶菌性状的全基因组关联分析[D].北京:中国农业大学,2010.
    [22]Hu Z-L, Park C A, Fritz E R, Reecy J M. QTLdb:A comprehensive database tool building bridges between genotypes and phenotypes. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production:1-6 August 2010, Leipzig:2010.
    [23]Hu Z-L, Park C A, Wu X L, Reecy J M. Animal QTLdb:an improved database tool for livestock animal QTL/association data dissemination in the post-genome era [J]. Nucleic Acids Research,2013,41(1):871-879.
    [24]Van Kaam J B, Groenen M A, Bovenhuis H, Veenendaal A, Vereijken A L, Van Arendonk J A. Whole genome scan in chickens for quantitative trait loci affecting carcass traits[J]. Poultry Science,1999,78(8):1091-1099.
    [25]McElroy J P, Kim J J, Harry D E, Brown S R, Dekkers J C, Lamont S J. Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens[J]. Poultry Science,2006,85(4).-593-605.
    [26]Wright D, Kerje S, Lundstrom K, Babol J, Schutz K, Jensen P, Andersson L. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl x White Leghorn cross[J]. Animal Genetics,2006,37(6):529-534.
    [27]Ankra-Badu G A, Shriner D, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, Beaumont C, Duclos M J, Simon J, Porter T E, Vignal A, Cogburn L A, Allison D B, Yi N J, Aggrey S E. Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate[J]. BMC Genomics,2010,11:107.
    [28]Lagarrigue S, Pitel F, Carre W, Abasht B, Le Roy P, Neau A, Amigues Y, Sourdioux M, Simon J, Cogburn L, Aggrey S, Leclercq B, Vignal A, Douaire M. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness[J]. Genetics Selection Evolution,2006,38(1):85-97.
    [29]Zhou H, Deeb N, Evock-Clover C M, Ashwell C M, Lamont S J. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. Ⅱ. Body composition[J]. Poultry Science,2006,85(10):1712-1721.
    [30]Abasht B, Dekkers J C M, Lamont S J. Review of quantitative trait loci identified in the chicken[J]. Poultry Science,2006,85(12):2079-2096.
    [31]Nadaf J, Gilbert H, Pitel F, Berri C M, Feve K, Beaumont C, Duclos M J, Vignal A, Porter T E, Simon J, Aggrey S E, Cogburn L A, Le Bihan-Duval E. Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate[J]. BMC Genomics,2007,8.
    [32]Rabie T, Crooijmans R, Bovenhuis H, Vereijken A, Veenendaal T, Poel J, Van Arendonk J, Pakdel A, Groenen M. Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome[J]. Animal Genetics,2005, 36(6):468-476.
    [33]Wright D, Kerje S, Lundstrom K, Babol J, Schutz K, Jensen P, Andersson L. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl× White Leghorn cross[J]. Animal Genetics,2006,37(6):529-534.
    [34]Jia X, Nie Q, Lamont S J, Zhang X. Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens[J]. International Journal of Obesity,2012,36(8):1054-1061.
    [35]Bai Y, Sun G, Kang X, Han R, Tian Y, Li H, Wei Y, Zhu S. Polymorphisms of the pro-opiomelanocortin and agouti-related protein genes and their association with chicken production traits[J]. Molecular Biology Reports,2012,39(7):7533-7539.
    [36]Jennen D G, Vereijken A L, Bovenhuis H, Crooijmans R M, van der Poel J J, Groenen M A. Confirmation of quantitative trait loci affecting fatness in chickens[J]. Genetics Selection Evolution,2005,37(2):215-228.
    [37]Hirwa CdA, Yan W, Wallace P, Nie Q, Luo C, Li H, Shen X, Sun L, Tang J, Li W. Effects of the thyroid hormone responsive spot 14a gene on chicken growth and fat traits[J]. Poultry Science,2010,89(9):1981-1991.
    [38]Ye M, Chen J, Zhao G, Zheng M, Wen J. Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken[J]. Animal Biotechnology,2009, 21(1):14-24.
    [39]Nassar M, Goraga Z, Brockmann G. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines:III. Fat deposition and intramuscular fat content[J]. Animal Genetics,2012,43 (2):183-189.
    [40]Han R, Wei Y, Kang X, Chen H, Sun G, Li G, Bai Y, Tian Y, Huang Y. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens[J]. Molecular Biology Reports,2012,39(3):3153-3160.
    [41]Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping[J]. Genetica,2009, 136(2):371-386.
    [42]Pearson T A, Manolio T A. How to interpret a genome-wide association study[J]. JAMA:the journal of the American Medical Association,2008,299(11):1335-1344.
    [43Visscher P M, Brown M A, McCarthy M I, Yang J. Five years of GWAS disco very [J]. American Journal of Human Genetics,2012,90(1):7-24.
    [44]Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies[J], Nature Genetics,2006,38(8):904-909.
    [45]Price A L, Zaitlen N A, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies[J]. Nature Reviews Genetic,2010, 11(7):459-463.
    [46]Klein R J. Power analysis for genome-wide association studies[J]. BMC Genetics,2007, 8:58.
    [47]McCarthy M I, Abecasis G R, Cardon L R, Goldstein D B, Little J, Ioannidis J P, Hirschhorn J N. Genome-wide association studies for complex traits:consensus, uncertainty and challenges[J]. Nature Reviews Genetics,2008,9(5):356-369.
    [48]Gao X, Edwards T L, van Bokhoven H, Fang B, McEachin R C, Cavalcoli J D, Gu D, Xie J. Genome-wide association studies:where we are heading[J]. World Journal of Medical Genetics,2011,1(1):23-35.
    [49]Spencer C C, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip[J]. PLoS Genetics,2009, 5(5):e1000477.
    [50]William B. The effect of measurement error of phenotypes on genome wide association studies[J]. BMC Genomics,2011,12:232.
    [51]Useche F J, Gao G, Hanafey M, Rafalski A, Hanafey M. High-throughput identification, database storage and analysis of SNPs in EST sequences [J]. Genome Informatics Series, 2001:194-203.
    [52]Burt D W. Origin and evolution of avian microchromosomes[J]. Cytogenetic and Genome Research,2002,96(1-4):97-112.
    [53]Burt D W. The chicken genome and the developmental biologist[J]. Mechanisms of development,2004,121(9):1129-1135.
    [54]Wong GK-S, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms [J]. Nature,2004,432(7018):717-722.
    [55]Kranis A, Gheyas A A, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P. Development of a high density 600K SNP genotyping array for chicken[J]. BMC Genomics,2013,14(1):59.
    [56]Groenen M A, Megens H-J, Zare Y, Warren W C, Hillier L W, Crooijmans R P, Vereijken A, Okimoto R, Muir W M, Cheng H H. The development and characterization of a 60K SNP chip for chicken[J]. BMC Genomics,2011,12(1):274.
    [57]Abasht B, Lamont S. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population[J]. Animal Genetics,2007, 38(5):491-498.
    [58]Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, Li H, Chen K, Ye S, Ge C. Genome-wide association study of body weight in chicken F2 resource population[J]. PLoS One,2011, 6(7):e21872.
    [59]吴丹,刘冉冉,赵桂苹,郑麦青,张磊,胡耀东,文杰.鸡体质量性状基因的全基因组关联研究[J].畜牧兽医学报,2012,43(12):1887-1896.
    [60]Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, Ma L, Hu X, Li N, Da Y. Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits[J]. PLoS One,2012,7(2):e30910.
    [61]张磊,郑麦青,刘冉冉,文杰,吴丹,胡耀东,孙艳发,李鹏,刘丽,赵桂苹.鸡胸腺重和脾脏重性状的全基因组关联[J].中国农业科学,2012,45(15):3165-3175.
    [62]Li D, Lian L, Qu L, Chen Y, Liu W, Chen S, Zheng J, Xu G, Yang N. A genome-wide SNP scan reveals two loci associated with the chicken resistance to Marek's disease[J]. Animal Genetics,2012.
    [63]Liu W, Li D, Liu J, Chen S, Qu L, Zheng J, Xu G, Yang N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers[J]. PLoS One,2011,6(12):e28600.
    [64]Shen X, Zeng H, Xie L, He J, Li J, Xie X, Luo C, Xu H, Zhou M, Nie Q. The GTPase Activating Rap/RanGAP Domain-Like 1 Gene Is Associated with Chicken Reproductive Traits[J]. PLoS One,2012,7(4):e33851.
    [65]Wang Y, Gao Y, Imsland F, Gu X, Feng C, Liu R, Song C, Tixier-Boichard M, Gourichon D, Li Q. The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin[J]. PLoS One,2012,7(4):e34012.
    [66]Imsland F, Feng C, Boije H, Bed'hom B, Fillon V, Dorshorst B, Rubin C-J, Liu R, Gao Y, Gu X. The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility[J]. PLoS Genetics,2012, 8(6):e1002775.
    [67]孙艳发,刘冉冉,赵桂苹,郑麦青,张磊,胡耀东,文杰.鸡胫长和胫围的全基因组关联分析[J].畜牧兽医学报,2013,44(3):358-365.
    [68]刘丽,缪小平,林东昕.后全基因组关联研究时代的机遇与挑战[J].中华预防医学杂志,2012,46(3):198-201.
    [69]Freedman M L, Monteiro A N, Gayther S A, Coetzee G A, Risch A, Plass C, Casey G, De Biasi M, Carlson C, Duggan D. Principles for the post-GWAS functional characterization of cancer risk loci[J]. Nature Genetics,2011,43(6):513-518.
    [70]Ziegler A, Sun Y V. Study designs and methods post genome-wide association studies[J]. Human Genetics,2012,131(10):1525-1531.
    [71]Wang H M, Chang T H, Lin F M, Chao T H, Huang W C, Liang C, Chu C F, Chiu C M, Wu W Y, Chen M C, Weng C T, Weng S L, Chiang F F, Huang H D. A new method for post Genome-Wide Association Study (GWAS) analysis of colorectal cancer in Taiwan[J]. Gene, 2013,518(1):107-113.
    [72]Sun Y V. Integration of biological networks and pathways with genetic association studies[J]. Human Genetics,2012,131(10):1677-1686.
    [73]Califano A, Butte A J, Friend S, Ideker T, Schadt E. Leveraging models of cell regulation and GWAS data in integrative network-based association studies[J]. Nature Genetics,2012, 44(8):841-847.
    [74]Handel A E, Williamson A J, Ramagopalan S V. Concealed effects of gene-environment interactions in genome-wide association[J]. Multiple Sclerosis and Related Disorders,2012, 1(1):39-42.
    [75]Sille F C M, Thomas R, Smith M T, Conde L, Skibola C F. Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia[J]. PLoS One,2012,7(1):e29632.
    [76]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J. PLINK:a tool set for whole-genome association and population-based linkage analyses[J]. The American Journal of Human Genetics,2007, 81(3):559-575.
    [77]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL software for association mapping of complex traits in diverse samples[J]. Bio informatics, 2007,23(19):2633-2635.
    [78]Zhang Z, Ersoz E, Lai C-Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics,2010,42(4):355-360.
    [79]Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies[J]. BMC Genomics,2008,9:512.
    [80]Barrett J C, Fry B, Maller J, Daly M J. Haploview:analysis and visualization of LD and haplotype maps[J]. Bioinformatics,2005,21(2):263-265.
    [81]Zhao J H. gap:Genetic analysis package[J]. Journal of Statistical Software,2007,23(8).
    [82]Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-AACT Method[J]. Methods,2001,25(4):402-408.
    [83]De Koning D, Haley C, Windsor D, Hocking P, Griffin H, Morris A, Vincent J, Burt D. Segregation of QTL for production traits in commercial meat-type chickens[J]. Genetical Research,2004,83(3):211-220.
    [84]王存芳.藏鸡资源群体的建立及其低氧适应性的分子机制研究[D].北京:中国农业大学,2005.
    [85]程笃学.猪肉质性状的全基因组关联研究[D].北京:中国农业科学院,2012.
    [86]Su Z, Li X H, Hao Z F, Xie C X, Li M S, Weng J F, Zhang D G, Liang X L, Wang Z G, Gao J L, Zhang S H. Association Analysis of the nced and rab28 Genes with Phenotypic Traits Under Water Stress in Maize[J]. Plant Molecular Biology Reporter,2011,29(3):714-722.
    [87]吴丹.北京油鸡体重和屠体性状的全基因组关联研究[D].北京:中国农业科学院,2013.
    [88]Longhi S, Hamblin M T, Trainotti L, Peace C P, Velasco R, Costa F. A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus x domestica Borkh)[J]. BMC Plant Biology,2013,13(1):37.
    [89]Zhou H, Deeb N, Evock-Clover C M, Ashwell C M, Lamont S J. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. Ⅱ. Body composition[J]. Poultry Science,2006,85(10):1712-1721.
    [90]Atzmon G, Blum S, Feldman M, Cahaner A, Lavi U, Hillel J. QTLs detected in a multigenerational resource chicken population[J]. Journal of Heredity,2008,99(5):528-538.
    [91]Park H-B, Jacobsson L, Wahlberg P, Siegel P B, Andersson L. QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth[J]. Physiological Genomics,2006,25(2):216-223.
    [92]Nadaf J, Gilbert H, Pitel F, Berri C M, Feve K, Beaumont C, Duclos M J, Vignal A, Porter T E, Simon J, Aggrey S E, Cogburn L A, Le Bihan-Duval E. Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate[J]. BMC Genomics,2007,8.
    [93]Nassar M, Goraga Z, Brockmann G. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines:Ⅲ. Fat deposition and intramuscular fat content[J]. Animal Genetics,2012,44(1):62-68.
    [94]Ba-Charvet K T N, Brose K, Marillat V, Kidd T, Goodman C S, Tessier-Lavigne M, Sotelo C, Chedotal A. Slit2-mediated chemorepulsion and collapse of developing forebrain axons[J]. Neuron,1999,22(3):463-473.
    [95]Thony B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions[J]. Biochemical Journal,2000,347 (Pt 1):1-16.
    [96]Lee K O. Association between I/D Polymorphism of Human LRPAP1 Gene and Body Mass Index in Korean General Population[J]. Journal of Toxicology and Public Health,2003, 19(3):205-210.
    [97]Nalaila S, Stothard P, Moore S, Wang Z, Li C. Whole genome fine mapping of quantitative trait loci for ultrasound and carcass merit traits in beef cattle[J]. Canadian Journal of Animal Science,2011,91(1):61-73.
    [98]Kim H, Ha C M, Choi J, Choi E J, Jeon J, Kim C, Park S K, Kang S S, Kim K, Lee B J. Ontogeny and the possible function of a novel epidermal growth factor-like repeat domain-containing protein, NELL2, in the rat brain[J]. Journal of Neurochemistry,2002, 83(6):1389-1400.
    [99]Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J. Aberrant microRNA expression in the brains of neurodegenerative diseases:miR-29a decreased in Alzheimer disease brains targets neurone navigator 3[J]. Neuropathology and Applied Neurobiology,2010,36(4):320-330.
    [100]Maddika S, Chen J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase[J]. Nature Cell Biology,2009, 11(4):409-419.
    [101]孙威.斑马鱼肌肉发育相关基因克隆,表达与功能分析[D].北京:中国科学院研究生院,2008.
    [102]Trueb B, Zhuang L, Taeschler S, Wiedemann M. Characterization of FGFRL1, a novel fibroblast growth factor (FGF) receptor preferentially expressed in skeletal tissues[J]. Journal of Biological Chemistry,2003,278(36):33857-33865.
    [103]Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers B C, Green P J, Markis M, Isaacs G, Huang E. Deep sequencing of chicken microRNAs[J]. BMC Genomics,2008, 9(1):185.
    [104]Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X. A deep investigation into the adipogenesis mechanism:Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway[J]. BMC Genomics,2010, 11(1):320.
    [105]Houghton F J, Bellingham S A, Hill A F, Bourges D, Ang D K Y, Gemetzis T, Gasnereau I, Gleeson P A. Ar15b is a Golgi-localised small G protein involved in the regulation of retrograde transport[J]. Experimental Cell Research,2012,318(5):464-477.
    [106]Jiang Z, Michal J J, Chen J, Daniels T F, Kunej T, Garcia M D, Gaskins C T, Busboom J R, Alexander L J, Wright Jr R W. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle [J]. International Journal of Biological Sciences, 2009,5(6):528.
    [107]Slotman J A, van Kerkhof P, Hassink G, Kuiken H J, Strous G J. Identification of Ubiquitin System Factors in Growth Hormone Receptor Transport, Molecular Regulation of Endocytosis [M]. Dr. Brian Ceresa (Ed.),2012, ISBN:978-953-51-0662-3, InTech.
    [108]Yu S, Chung H, Sang B, Park C, Lee J, Yoon D, Lee S, Choi K. Identification of differentially expressed genes in distinct skeletal muscles in cattle using cDNA microarray[J]. Animal Biotechnology,2007,18(4):275-285.
    [109]Hamill RM, McBryan J, McGee C, Mullen A M, Sweeney T, Talbot A, Cairns M T, Davey G C. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork[J]. Meat Science,2012,92:400-450.
    [110]Wanic K, Placha G, Dunn J, Smiles A, Warram J H, Krolewski A S. Exclusion of polymorphisms in carnosinase genes (CNDP1 and CNDP2) as a cause of diabetic nephropathy in type 1 diabetes results of large case-control and follow-up studies[J]. Diabetes,2008,57(9):2547-2551.
    [111]Ahluwalia T, Lindholm E, Groop L. Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes[J]. Diabetologia,2011,54(9):2295-2302.
    [112]Rooney C, White G, Nazgiewicz A, Woodcock S A, Anderson K I, Ballestrem C, Malliri A. The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly [J]. EMBO Reports,2010, 11(4):292-298.
    [113]Yao P J, O'Herron T M, Coleman P D. Immunohistochemical characterization of clathrin assembly protein AP180 and synaptophysin in human brain[J]. Neurobiology of Aging,2003, 24(1):173-178.
    [114]张占薪.WAPAL基因与其靶micro RNA在宫颈癌中的研究[D].郑州:郑州大学,2010.
    [115]Noureddine M A, Qin X-J, Oliveira SA, Skelly T J, van der Walt J, Hauser M A, Pericak-Vance M A, Vance J M, Li Y-J. Association between the neuron-specific RNA-binding protein ELAVL4 and Parkinson disease[J]. Human genetics,2005, 117(1):27-33.
    [116]Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X, Chen F. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis[J]. Toxicological Sciences,2011,123(2):411-420.
    [117]Logan C Y, Nusse R. The Wnt signaling pathway in development and disease[J]. Annual Review of Cell and Developmental Biology.2004, (20):781-810.
    [118]Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AM. Wnt signalling regulates myogenic differentiation in the developing avian wing[J]. Development,2003,130 (15):3503-3514.
    [119]Takata H, Terada K, Oka H, Sunada Y, Moriguchi T, Nohno T. Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle[J]. Developmental Dynamics,2007,236(10):2800-2807.
    [120]Seger R, Krebs E. The MAPK signaling cascade[J]. The FASEB Journal,1995, 9(9):726-735.
    [121]Vasyutina E, Birchmeier C. The development of migrating muscle precursor cells[J]. Anatomy and Embryology-Berlin,2006,211(Suppll):37-41.
    [122]Nones K, Ledur M C, Zanella E L, Klein C, Pinto L F B, Moura A S A M T, Ruy D C, Baron E E, Ambo M, Campos R L R, Boschiero C, Burt D W, Coutinho L L. Quantitative trait loci associated with chemical composition of the chicken carcass[J]. Animal Genetics, 2012,43(5):570-576.
    [123]Fishman P H, Brady R O. Biosynthesis and function of gangliosides[J]. Science,1976, 194(4268):906-915.
    [124]Mannherz O, Mertens D, Hahn M, Lichter P. Functional screening for proapoptotic genes by reverse transfection cell array technology[J]. Genomics,2006,87(5):665-672.
    [125]刘小磊,杨松柏,樊斌.利用紧缩线性模型和贝叶斯模型对猪总产仔数和产活仔数性状的全基因组关联研究[J].遗传,2012,34(10):1261-1270.
    [126]Li W, Zhao G, Chen J, Zheng M, Wen J. Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken[J]. British Poultry Science,2009,50(2):188-198.
    [127]Rizkalla S W, Prifti E, Cotillard A, Pelloux V, Rouault C, Allouche R, Laromiguiere M, Kong L, Darakhshan F, Massiera F. Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals:a randomized controlled trial[J]. The American Journal of Clinical Nutrition,2012,95(1):49-63.
    [128]Gao Y, Zhang Y H, Jiang H, Xiao S Q, Wang S, Ma Q, Sun G J, Li F J, Deng Q, Dai L S, Zhao Z H, Cui X S, Zhang S M, Liu D F, Zhang J B. Detection of differentially expressed genes in the Iongissimus dorsi of Northeastern Indigenous and Large White pigs[J]. Genetics and Molecular Research,2011,10(2):779-791.
    [129]Ganem N J, Compton D A. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK[J]. Journal of Cell Biology,2004, 166(4):473-478.
    [130]Uusitalo A, Tenhunen K, Tenhunen J, Matikainen S, Peltonen L, Jalanko A. Expression and regulation of the human and mouse aspartylglucosaminidase gene[J]. Journal of Biological Chemistry,1997,272(14):9524-9530.
    [131]Gardiner E J, Cairns M J, Liu B, Beveridge N J, Carr V, Kelly B, Scott R J, Tooney P A. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells[J]. Journal of Psychiatric Research,2013, 47(4):425-437.
    [132]Allen C D, Russell S M, Fletcher D L. The relationship of broiler breast meat color and pH to shelf-life and odor development[J]. Poultry Science,1997,76(7):1042-1046.
    [133]Qiao M, Fletcher D L, Smith D P, Northcutt J K. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity[J]. Poultry Science,2001, 80(5):676-680.
    [134]Le Bihan-Duval E, Nadaf J, Berri C, Pitel F, Graulet B, Godet E, Leroux S Y, Demeure O, Lagarrigue S, Duby C, Cogburn L A, Beaumont C M, Duclos M J. Detection of a Cis eQTL Controlling BMCO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color[J]. PLoS One,2011,6(7):e14825.
    [135]Li Y, Xu Z Y, Li H Y, Xiong Y Z, Zuo B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs[J]. International Journal of Biological Sciences,2010,6(4):350-360.
    [136]杨小林,李俊英,邓学梅.鸡黄胫基因BCD02的多态性分析[J].中国家禽,2012,34(8):7-11.
    [137]Eriksson J, Larson G, Gunnarsson U, Bed'hom B, Tixier-Boichard M, Stromstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L. Identification of the Yellow skin gene reveals a hybrid origin of the domestic chicken[J]. PLoS Genetics,2008, 4(2):e 1000010.
    [138]Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, Elias P, Barrandon Y, Zambruno G, Sonnenberg A. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity[J]. Nature Genetics,2004,37(1):56-65.
    [139]Chen J L, Zhao G P, Zheng M Q, Wen J, Yang N. Estimation of genetic parameters for contents of intramuscular fat and inosine-5'-monophosphate and carcass traits in Chinese Beijing-You chickens[J]. Poultry Science,2008,87(6):1098-1104.
    [140]Sun Y, Liu R, Lu X, Hu Y, Zhao G, Zheng M, Chen J, Wang H, Wen J. Associations of Polymorphisms in Four Candidate Genes with Carcass and/or Meat-Quality Traits in Two Meat-Type Chicken Lines[J]. Animal Biotechnology,2013,24(l):53-65.
    [141]Sohle J, Machuy N, Smailbegovic E, Holtzmann U, Gronniger E, Wenck H, Stab F, Winnefeld M. Identification of New Genes Involved in Human Adipogenesis and Fat Storage[J]. PLoS One,2012,7(2):e31193.
    [142]Purcell N H, Tang G L, Yu C F, Mercurio F, DiDonato J A, Lin A N. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(12):6668-6673.
    [143]Newton-Cheh C, Larson M G, Vasan R S, Levy D, Bloch K D, Surti A, Guiducci C, Kathiresan S, Benjamin E J, Struck J, Morgenthaler N G, Bergmann A, Blankenberg S, Kee F, Nilsson P, Yin X, Peltonen L, Vartiainen E, Salomaa V, Hirschhorn J N, Melander O, Wang T J. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure[J]. Nature Genetics,2009,41(3):348-353.
    [144]Khan A M, Cheng S, Magnusson M, Larson M G, Newton-Cheh C, McCabe E L, Coviello A D, Florez J C, Fox C S, Levy D, Robins S J, Arora P, Bhasin S, Lam C S, Vasan R S, Melander O, Wang T J. Cardiac natriuretic peptides, obesity, and insulin resistance:evidence from two community-based studies[J]. The Journal of Clinical Endocrinology and Metabolism,2011,96(10):3242-3249.
    [145]Jiang J, Xu Z, Han X, Wang F, Wang L. The pattern of development for gene expression of sterol regulatory element binding transcription factor 1 in pigs[J]. Czech Journal of Animal Science,2006,51(6):248-252.
    [146]邱莫寒.鸡SREBF1, SREBF2基因的克隆,表达及其与屠体性状的关联分析[D].雅安:四川农业大学,2011.
    [147]Oberkofler H, Fukushima N, Esterbauer H, Krempler F, Patsch W. Sterol regulatory element binding proteins:relationship of adipose tissue gene expression with obesity in humans[J]. Biochimica et Biophysica Acta,2002,1575(1-3):75-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700