用户名: 密码: 验证码:
大豆生育期结构性状的遗传分析及相关基因的分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆的生育期性状不仅包括全生育期的长短,而且包括各发育阶段的组成,即生育期结构。本文分别以全生育期(M)一致、营养生长期(V)不同的材料作为亲本,构建分离群体,研究大豆生育期结构性状的遗传规律,定位相关基因,分析主效基因在不同环境条件下的效应;以V一致、M不同的材料作为亲本,构建分离群体,研究大豆生殖生长期的遗传规律,定位开花后不同光周期条件下大豆主要性状及其光周期反应敏感性相关基因,以期为大豆生育期结构性状的改良提供理论。
     主要内容如下:
     1.全生育期相同、营养生长期不同大豆品种生育期结构性状的遗传分析。以小黑豆和GR8836作为亲本,构建包括亲本、F_1、F_2、F_(2:3)的多世代联合分析群体,研究生育期结构性状的遗传规律。结果表明,V、M及生殖生长期(R)与营养生长期的比值(R /V)均是由1对主基因和多基因共同控制的数量性状,相应主效基因的遗传贡献率分别为77.59%、16.77%和54.68%。对于R/V比值而言,主基因表现负向加、显性效应,且效应值相近;对于V、M而言,主基因效应以正向加性为主。鉴于V和R/V的主基因遗传率较高,在育种中,可在早代进行有效选择。
     2.大豆生育期结构性状相关基因的QTL定位。应用小黑豆×GR8836组合的F_2、F_(2:3)群体定位生育期结构性状及其光温反应敏感性相关基因,检测到1个位于C2连锁群上Satt557附近的QTL,其在春、夏播条件下同时与R/V比值、V及M相关基因连锁,表现出一定的环境稳定性。但该位点可以解释同一性状的表型变异不同,加、显性效应大小也有差别,加之本研究定位到的7个微效QTL在不同播季条件下均未被重复检测到,说明QTL效应受制于环境条件。另外,在C2连锁群上Satt286附近区域定位到1个与R/V比值光温反应敏感性相关的QTL,该QTL可解释21.16%的表型变异。利用与生育期结构性状主效QTL紧密连锁的标记Satt557和Satt365分析大豆生育期近等基因系(NIL),发现该QTL与大豆生育期主基因E1/e1紧密连锁。
     3.主效QTL在不同类型大豆品种中的分布。利用Satt557和Satt365分析本研究定位的生育期结构主效QTL在生育期长短和结构均不同的中、美大豆成熟期组标准品种中的分布,发现该主效QTL在美国品种中的分布频率显著高于中国大豆品种。同时,美国品种携带的主效QTL连锁基因隐性位点的材料数占携带该主效基因材料总数的比率显著高于中国品种,且隐性位点主要分布在相对早熟的品种中,推测该基因的隐性位点在美国品种中的利用率较高。
     4.生育期结构性状主基因E1/e1的效应及与环境条件的关系。利用生育期性状不同的大豆近等基因系(NIL)材料,分析E1/e1在不同光周期、不同播季条件下的效应。结果表明,E1/e1显性位点延长V、M,缩短R,减小R/V比值。E1与其它生育期基因间存在互作;对营养生长期而言,背景基因型中其它生育期基因显性位点有增强E1基因效应的作用,且显性位点越多,增效作用越大;E1对R/V比值的效应与背景基因型无明显相关性。E1与环境间存在互作,在多数情况下,E1在长日照条件下的效应大于短日条件,在春播条件下的效应大于夏播。
     5.营养生长期相同、全生育期不同大豆品种R和R/V比值的遗传分析。以鲁豆9号和浙江四月白作为亲本,构建分离群体,研究R及R/V比值的遗传规律。结果表明,在营养生长期相同的条件下,生殖生长期长度是由1对加性主基因和加性-显性多基因控制的数量性状,F2代的主基因遗传贡献率为44.11%;R/V比值是由两对主基因和多基因共同控制的数量性状,主基因总的遗传贡献率为82.37%,且两对主基因的加性效应作用方向的相同,说明在该组合中,可早代选择R/V性状。
     6.生殖生长期处于不同光周期条件下大豆农艺性状和品质性状相关基因的QTL分析。以保褐选3×叙永红豆组合衍生的重组近交系(RIL)群体为材料,于生殖生长期进行不同光周期处理,观察农艺性状和品质性状的变化,定位大豆农艺性状、品质性状及其光周期反应敏感性的相关基因。结果表明,大豆不同性状对生殖生长期光周期反应的敏感性不同。顺序为:生殖生长期长度>株高>主茎节数>蛋白质含量、脂肪含量>百粒重>单株荚数>蛋白质和脂肪总量。利用复合区间作图法定位到21个与上述8个性状及其光周期反应敏感性相关的QTL,每个QTL可解释的表型变异范围在5.83%~27.85%之间。针对同一性状,未检测到在长、短日条件下均起作用的主效QTL,说明光周期不仅影响大豆的表型,而且调控相关基因的表达。作者提出,光周期对大豆的生长发育和产量形成有决定性影响,改良大豆品种的适应能力应从钝化其光周期反应敏感性入手。本研究的结果可为高产、稳产、广适应大豆品种的选育提供新的思路。
Growth period traits of soybean include not only the whole growth period (M), but also the growth period structure, i.e., the relative length of various developmental phases. In this study, the inheritance and QTL mapping of the growth period structure traits of soybean were analyzed based on segregation population derived from parents having similar M and different V, and the inheritance of the length of reproductive period (R) and the sensitivity of agronomic and quality traits to post-flowering photopeirod were also analyzed using the population derived from the parents with similar V and different M. The results were summarized as follows:
     1. The inheritance of growth period structure traits in the cross with parents having different V and M.
     Joint segregation analysis based on P_1, P_2, F_1, F_2, F_(2:3) generation populations derived from Xiaoheidou and GR8836 indicated that one major gene modified by poly-genes controlled the traits of V, M and R/V ratio. The major gene heritability was 77.59%, 16.77% and 54.68%, respectively. The major effect gene had positive addictive effect for V and M, and negative addictive effect for R/V. Since the major gene of R/V and V had higher heritability, then it will be effective to select the genotypes with desirable growth period structive traits.
     2. QTL mapping for growth period structure traits in soybean.
     F_2, F_(2:3) populations derived from Xiaoheidou and GR8836 were grown in spring and summer to map the relative genes of growth period structure traits and photothermal response sensitivity. One major effect QTL closed to Satt557 on C2 linkage group was detected, which associated with R/V ratio, V and M under different planting seasons. It was shown that the major effect QTL was stable in different environments. Meanwhile, the phenotypic variance explained by QTL, addictive and dominant effects were different for each trait, and seven minor effects QTL for growth period triats were could not be detected repeatedly under different planting seasons. Those indicated that genes of growth period traits were influenced by environmental factors to a certain extent. One major effect QTL for photothermal response sensitivity of R/V was mapped, which associated with the marker of Satt286 lied on C2 linkage group. To find the relationship of major effect QTL and E-series matutity genes controlling flowering and maturity time, Satt557 and Satt365 were used to assay the banding pattern of 41 NILs. The results indicated that the major effect QTL mapped in this study was tightly linked to E1/e1.
     3. Distribution of major QTL in different maturity groups soybean varieties.
     The banding patterns of 38 American varieties and 64 Chinese varieties belonging to different maturity groups were assessed using the SSR primers of Satt557 and Satt365 tightly linked to the major effect gene of growth period structure traits. The results suggested that the distribution frequency of major effect gene in American varieties was higher than that in Chinese varieties. Meanwhile, the percentage of varieties carring recessive allele to all varieties carring major QTL was higher in American maturity group varieties than that in Chinese, and the recessive allele mainly distributed in the early maturity groups, indicating that the recessive allele was more frequently used in American varieties than in Chinese varieties.
     4. Evaluation of the effects of major maturity gene E1/e1 and its dependence on photothermal environment.
     Effects of E1/e1 on growth period structure traits under different photoperiods and planting seasons were investigated by using maturity near-isolines of soybean. Dominant allele of E1 delayed V and M, hastened R and decreased R/V in most genotypes studied. Gene effect was dependent on the genetic background as well. There were interactions between E1 and other matrutiy genes since the dominant allele could strengthen the effects of other maturity genes generally. The interaction between E1 and environment was also detected, E1 effect under long day (LD) was higher than under short day (SD), and that in spring sowing was higher than in summer sowing.
     5. The inheritance of R and R/V in the cross with parents having different (M) and similar (V).
     Joint segregation analysis based on populations derived from Ludou 9 and Zhejiangsiyuebai showed that R was controlled by one major gene plus poly-genes. Heritability of the major effect gene was 44.11% in F2 generation; R/V was controlled by two major genes modified by poly-genes. Total heritability of two major genes was up to 82.37%. The addictive effects of two major genes were all positive. It was proposed that R/V ratio could be selected in early generations.
     6. QTL mapping and effect analysis of yield and quality traits in soybean under different post -flowering photoperiods.
     181 recombinant inbred lines (RIL) derived from Baohexuan 3×Xuyonghongdou were constructed to map QTL associated with the agronomic and quality traits under both LD (16 h) and SD (12 h) and their photoperiod response sensitivity. The order of the photopeiod sensitivity of the following eight traits was as below: reproductive period length (R)>plant height>node number on the main stem>protein content, oil content>100-seed weight>pod number per plant>total percentage of protein and oil. By using MCIM method, a total of 21 QTL were identified and mapped on 11 linkage groups including A1, A2, B1, B2, C1, D1a, etc. QTL detected could explain 5.83%~21.44% of observed phenotypic variation. For the given agronomic or quality traits, no major QTL were explored both under SD and LD. It could be drawn that photoperiod sensitivity is the key trait for adaptability improvement of soybean. To breed elite varieties with ideal yield potential, quality and stress tolerance, the photoperiod-insensitive genes related to various traits should be explored and pyramided with other needed genes.
引文
1. 卜慕华, 潘铁夫. 中国大豆栽培区域探讨. 大豆科学, 1982, 1: 105~120.
    2. 常汝镇. 中国大豆遗传资源的分析研究Ⅰ.不同栽培区大豆遗传资源的生育期. 作物品种资源, 1989, 28: 4~6.
    3. 常汝镇. 大豆成熟期基因作用的遗传分析. 大豆科学, 1992, 11: 127~132.
    4. 常汝镇, 李星华. 夏播条件下大豆成熟期基因作用的研究. 中国油料, 1993, (3): 15~17.
    5. 陈恒鹤. 大豆早熟高产的遗传规律及其在育种程序中的应用. 中国农业科学, 1981, (1): 29~32.
    6. 陈庆山, 张忠臣, 刘春燕, 辛大伟, 单大鹏, 邱红梅, 单彩云. 大豆主要农艺性状的QTL分析. 中国农业科学, 2007, 40: 41~47.
    7. 陈学珍, 李欣, 杨建宇, 谢皓, 韩天富. 夏播大豆品种的生育期特性与农艺性状的关系分析. 农艺科学, 2003, 19: 664~668.
    8. 陈学珍, 谢皓, 贾浩荣, 李树臣. 大豆品种(系) 农艺性状和品质性状的相关性研究. 北京农学院学报, 2004, 19: 21~23.
    9. 陈学珍, 谢皓, 李欣, 杨建宇, 韩天富. 夏播大豆生育期结构与农艺性状的相关性研究. 分子植物育种, 2004, 12: 247~252.
    10. 陈学珍, 谢皓, 田炜炜, 白宝良, 于同泉, 路苹, 徐晓洁. 不同产地大豆品种资源农艺性状的 表现与相关性分析. 北京农学院学报, 2006, 21: 9~14
    11. 程立锐. 大豆生殖生长期长度遗传分析及QTL的定位. [硕士学位论文]. 青岛: 青岛农业大学, 2006, 26.
    12. 董全中, 杨兴勇, 张勇, 薛红, 刘玲玲. 降雨量不足对大豆产量及农艺性状影响的研究. 大豆通报, 2006, 112: 5~8.
    13. 杜维广, 张桂茹, 满为群, 栾晓燕, 陈怡, 谷秀芝, 赵政文. 光周期对春夏大豆品种生育阶段的影响. 大豆科学, 1994, 13: 133~138.
    14. 樊翠芹. 有限结荚类型大豆初花期与成熟期主要性状的遗传与相关分析. 河北农业技术师范学院学报, 1996, 10: 20~24.
    15. 付艳华, 程砚喜, 项淑华, 王晶波, 刘风丽. 大豆不同生育阶段与品质育种关系的研究. 吉林农业科学, 1998, (3): 15~16.
    16. 盖钧镒, 汪越胜, 张孟臣, 王继安, 常汝镇. 中国大豆品种熟期组划分的研究. 作物学报, 2001, 27: 286~292.
    17. 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26: 385~391.
    18. 高春霞, 马永华, 单宏, 程爱华. 1999~2005 年黑龙江省通过审定的大豆品种的品质及特征特性分析. 黑龙江农业科学, 2006, (5) :78~79.
    19. 高凤兰, 王金陵. 高纬度地区早熟大豆育种问题的研究. 大豆科学, 1985, 4: 15~25.
    20. 龚强, 汪宏宇, 王盘兴. 东北夏季降水的气候及异常特征分析. 气象科技, 2006, 34: 387~393.
    21. 关荣霞, 常汝镇, 邱丽娟. 用于SSR分析的大豆DNA的快速提取. 大豆科学, 2003, 22: 73~74.
    22. 韩天富, 王金陵. 大豆开花后光周期反应的研究. 植物学报, 1995, 37: 863~869.
    23. 韩天富, 王金陵, 范彬彬, 姚文秋, 杨庆凯. 开花后光照长度对大豆农艺性状的影响. 应用生态学报, 1996a, 7: 169~173.
    24. 韩天富, 王金陵. 中国不同生态类型开花至成熟期对光周期的反应. 作物学报, 1996b, 22: 20~26.
    25. 韩天富, 王金陵, 杨庆凯, 盖钧镒. 开花后光照长度对大豆化学品质的影响. 中国农业科学, 1997, 30: 47~53.
    26. 韩天富, 盖钧镒, 陈风云, 邱家驯. 生育期结构不同的大豆品种的光周期反应和农艺性状. 作物学报, 1998, 24: 550~557.
    27. 韩天富, 盖钧镒, 邱家驯. 中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究. 大豆科学, 1998, 17: 129~134.
    28. 郝耕, 陈杏娟, 卜慕华. 中国大豆品种生育期组的划分. 作物学报, 1992, 18: 275~281.
    29. 李宁, 章建新, 麻浩. 播期对新农菜豆1 号农艺性状及品质的影响. 新疆农业科学, 2005, 42: 315~318.
    30. 李向华. 常汝镇. 中国春大豆品种主要性状相关及遗传潜力分析. 大豆科学, 1998, 17: 23~31.
    31. 刘汉中. 光、温对大豆生育发育的影响. 气象, 1979, (4): 23~25.
    32. 刘汉中. 光、温对大豆生育的影响(续). 气象, 1979, (5): 30~31.
    33. 鹿文成, 刘英华, 闫洪睿, 张雷, 梁吉利, 刘发. 播期对大豆生长发育和产量构成因子的影响. 黑龙江农业科学, 2001, (3) : 60
    34. 栾晓燕, 杜维广, 满为群, 张桂茹, 陈怡, 谷秀芝, 王彬如, 黄承运. 大豆生育阶段研究. Ⅱ 大豆鼓粒期长度遗传. 中国油料, 1993, (2): 14~17.
    35. 栾晓燕, 满为群, 杜维广, 陈怡, 刘鑫磊. 大豆光钝感种质创新与光周期育种途径的研究. 大豆科学, 2004, 23: 196~199.
    36. 满为群, 杜维广, 印文汇, 史建辉, 张凤全. 大豆北种南移分期播种对生育期结构及产量的影响. 大豆通报, 2002, (2): 6~7.
    37. 宁慧霞, 李英慧, 刘章雄, 常汝镇, 关荣霞, 罗淑萍, 邱丽娟. 大豆品种成熟期基因型推测的研究. 作物学报, 2008, 34: 382~388
    38. 任全兴, 盖钧镒, 马育华. 我国大豆生育期生态特性研究. 中国农业科学, 1987, 20: 23~28.
    39. 孙志强, 田佩占, 王继安. 东北大豆生育期结构的初步研究. 大豆科学, 1990, 9: 198~205.
    40. 汪越胜, 盖钧镒. 中国大豆品种光温综合反应与短光照反应的关系. 中国油料作物学报, 2001, 23: 40~44.
    41. 王国勋. 中国栽培大豆品种的生态分类研究. 中国农业科学, 1981, (3): 39~46.
    42. 王家伦, 杨通隆, 王照达, 赵志刚, 梁慕勤. 大豆花荚脱落的研究 Ⅱ大豆主要农艺性状与花荚脱落的相关分析. 耕作与栽培, 1992, (5): 10~14.
    43. 王建康, 盖钧镒. 数量性状主基因-多基因混合遗传的P1、P2、F1、F2和F2:3的联合分析方法. 作物学报, 1998, 24: 651~659.
    44. 王金陵. 大豆性状之演化. 农报, 1947, 12: 6~11.
    45. 王金陵, 武镛祥, 吴和礼, 孙善澄. 中国南北地区大豆光照生态类型的分析. 农业学报, 1956, 7: 169~180.
    46. 王金陵, 祝其昌. 大豆生育期遗传初步研究. 作物学报, 1963, 2: 333~336.
    47. 王茹芳, 卢思慧, 曹金峰, 高广居. 大豆育成品种品质性状和农艺性状的相关性研究. 华北农学报, 2007, 22: 131~134.
    48. 王贤智, 张晓娟, 周蓉, 沙爱华, 吴学军, 蔡淑平, 邱德珍, 周新安. 大豆重组自交系群体荚粒性状的QTL分析. 作物学报, 2007, 33: 441~448.
    49. 王永军. 大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺品质性状QTL分析中应用. 南京, 南京农业大学博士学位论文, 2001, P61.
    50. 吴晓雷, 王永军, 贺超英, 陈受宜, 盖钧镒, 王学臣. 大豆重要农艺性状的QTL分析. 遗传学报, 2001, 28: 947~955.
    51. 吴宗璞, 高凤兰, 康忠宝, 孟庆喜, 王金陵. 大豆超早熟育种问题的研究. 东北农学院学报, 1988, 19: 127~133.
    52. 徐鹏, 王慧, 李群, 盖钧镒, 喻德跃. 大豆油份含量QTL的定位. 遗传, 2007, 29: 92~96.
    53. 许忠仁, 张贤泽. 大豆生理与生理育种. 哈尔滨, 黑龙江科学技术出版社, 1980, 250~266.
    54. 杨永华, 盖钧镒, 马育华. 大豆生育期光温反应特性遗传. 作物学报, 1994, 20: 144~148.
    55. 杨志攀, 张晓娟, 蔡淑平, 邱德珍, 王国勋, 周新安. 大豆“短青春期”品种的光(温)反应研究Ⅰ.播季反应. 中国油料作物学报, 2000, 22: 35~38.
    56. 杨志攀, 张晓娟, 蔡淑平, 邱德珍, 王国勋, 周新安. 大豆“短青春期”品种的光(温)反应研究 Ⅱ. 对短日照的反应. 中国油料作物学报, 2001, 23: 35~39.
    57. 杨志攀, 张晓娟, 蔡淑平, 邱德珍, 王国勋, 周新安. 大豆“短青春期”品种的光(温)反应研究 Ⅲ. 对长日照的反应. 大豆科学, 2001, 20: 191~196.
    58. 岳国光. 播期和密度对辽豆10号大豆生长发育和产量的影响. 辽宁农业科学, 1998, 4: 41~43.
    59. 张桂茹, 杜维广, 栾晓燕, 满为群, 陈怡, 谷秀芝. 光周期对大豆杂交F2群体变异的影响及广适应性种质选育的研究. 大豆科学, 1997, 16: 252~258.
    60. 章元明, 盖钧镒. 利用P1、P2、F1、F2 和F2:3 家系五世代联合分离分析的拓展. 生物数学学报, 2002, 17: 363~368.
    61. 赵宏伟, 李秋祝, 魏永霞. 不同生育时期干旱对大豆主要生理参数及产量的影响. 大豆科学, 2006, 25: 329~332.
    62. 郑永战, 盖钧镒, 卢为国, 李卫东, 周瑞宝, 田少君. 大豆脂肪及脂肪酸组分含量的QTL定位. 作物学报, 2006, 32: 1823~1830.
    63. 周丰锁. 大豆早熟性遗传的初步分析. 遗传, 1981, 3: 12~15.
    64. 周新安, 彭玉华, 王国勋, 常汝镇. 中国栽培大豆遗传多样性和起源中心初探. 中国农业科学, 1998, 1: 1~4.
    65. 周以飞, 周德银. 春播菜用大豆生育期、农艺性状与品质性状的典范相关分析. 福建农林大学学报, 2005, 34: 11~17.
    66. Bernard R. L. Two major genes for time of flowering and maturity in soybeans. Crop Sci., 1971, 11: 242~244.
    67. Bonato E. R., Vello N. A. E6, a dominant gene conditioning early flowering and maturity in soybean. Genet. Mol. Biol., 1999, 22: 229~232.
    68. Boote K. J. Response of soybeans in different maturity groups to march planting in southern USA. Agron. J., 1981, 73: 854~859.
    69. Brummer E. C., Graef G. L., Orf J., Wilcox J. R., Shoemaker R. C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci., 1997, 37: 370~378.
    70. Buzell R. I., Voldeng H. D. Inheritance of insensitivity to long daylength. Soybean Genet. Newsl., 1980, 7: 26~29.
    71. Buzell R. I. Inheritance of soybean flowering response to fluorescent-daylength conditions. Can. J. Genet. Cytol., 1971, 13: 703~707.
    72. Buzzell R. I., Voldeng H. D. Inheritance of insensitivity to long daylengths. Soybean Genet. News, 1980, 7: 26~29.
    73. Cairo C. A., Stein J., Delgado L., Bortolotti S., Guelman S. A., Ortiz J. P. A., Morandi E. N. Tagging the juvenile locus in soybean [Glycine max (L.) Merr.] with molecular markers. Euphytica, 2002, 124: 387~395.
    74. Carpentieri-Pípolo V., Almeida L. A., Kiihl R. A. S., Rosolem C. A. Inheritance of long juvenile period under short day conditions for the BR80-6778 soybe an (Glycine max (L.) Merrill) line. Euphytica, 2000, 112: 203~209.
    75. Casanadi G., Vollmann J., Stift G., Lelly T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor. Appl. Genet., 2001, 103: 912~919.
    76. Chapman A., Pantalone V. R., Ustun A., Allen F. L., Landau-Ellis D., Trigiano R. N., Gresshoff P. M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387~393.
    77. Chung J., Babka H. L., Graef G. L., Staswick P. E., Lee D. J., Cregan P. B., Shoemaker R. C., Specht J. E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci., 2003, 43: 1053~1067.
    78. Cober E. R., Voldeng H. D. A new soybean maturity and photoperiod sensitivity locus linked to E1 and T. Crop Sci., 2001, 41: 698~701.
    79. Cober E. R., Stewart D. W., Voldeng H. D. Photoperiod and temperature responses in early – maturing near-isogenic soybean lines. Crop Sci., 2001, 41: 721~727.
    80. Cober E. R., Tanner J. W., Voldeng H. D. Soybean photoperiod sensitivity loci respond differentially to light quality. Crop Sci., 1996, 36: 606~610.
    81. Cowley C. R., Nickell C. D., Dayton A. D. Heritability and interrelationship of chemical and agronomic traits of soybean (Glycine max [L.] Merr.) in diverse environments. TKAS, 1981, 84: 1~14.
    82. Cregan P. B., Jarvik T., Bush A. L. An integrated genetic linkage map of the soybean genome. Crop Sci., 1999, 39: 1464~1490.
    83. Csanádi G., Vollmann J., Stift G., Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor. Appl. Genet., 2001, 103: 912~919.
    84. Danyard T.B., Tanner J.W., Duncan W. G. Duration of the grain filling period and its relation to grain yield in corn. Crop Sci., 1971, 11: 45~48.
    85. Diers B.W., Keim P., Fehr W. R., Shoemaker R. C. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet., 1992, 83: 608~612.
    86. Dunphy E. J., Hanway J. J., Green D. E. Soybean yield in relation to days between specific developmental stages. Agron. J., 1979, 71: 917~920.
    87. Egli D. B., Yu Z-W. Crop growth rate and seeds per unit area in soybeans. Crop Sci., 1991, 31: 439~442.
    88. Ellingson W. R. The relationship between morphological and reproductive characters and seed yield in randomly selected lines of soybeans. Ph.D. Diss. Iowa State Univ. Univ. Microfilms. Ann Arbor, Mi. Diss. Abstr. 35B 1974, (11): 5229.
    89. Ellis R. H., Collinson S. T., Hudson D., Patetield W. M. The analysis of reciprocal transfer to estimate the duration of the photoperiod-sensitive and ph otoperiod insensitive phases of plant development: an example in soyabean. Annals of Botany, 1992, 70: 87~92.
    90. Fehr W. R., Caviness C. E. Stages of Soybean Development. Agric. and Home Ecomomics Exp. Stn. Spec. Rep, 80, Iowa state Univ, Ames, IA, USA, 1977.
    91. Gai J-Y, Wang J-K. Identification and estimation of a QTL model and its effects. Theor. Appl. Genet., 1998, 97: 1162~1168.
    92. Gay S., Egli D. B., Reicosky D. A. Physiologcal aspects of yield improvement in soybeans. Agron. J., 1980, 72: 387~391.
    93. Han T, Wu C, Tong Z, Mentreddy R. S., Tan K, Gai J. Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. Environmental and Experimental Botany, 2006, 55: 120~129.
    94. Hanson W. D. Effect of calcium and phosphorus nutrition on genetic recombination in the soybean. Crop Sci., 1961, 1: 384.
    95. Hanson W. D. Modified seed maturation rates and seed yield potentials in soybean. Crop Sci., 1992, 32: 972~976.
    96. Haque M. F. Linkage between resistance to phytophthora root rot and plant and seed characters in soybeans. Indian J. Genet. Plant Breeding, 1964, 24: 99~105.
    97. Hartwig E. E., Kiihl R. A. S. Identification and utilization of a delayed flowering character in soybeans for short-day conditions. Field Crops Res., 1979, 2: 34~51.
    98. Hyten D. L., Pantalone V. R., Sams C. E., Saxton A. M., Landau-Ellis D., Stefaniak T. R. Seed quality QTL in a prominent soybean population. Theor. Appl. Genet., 2004, 109: 552~561.
    99. Jiang H., Egli D. B. Soybean seed number and crop growth rate during flowering. Agron. J., 1995, 87: 264~267.
    100. Jiang H., Egli D. B. Shade induced changes in flower and pod number and flower and fruit abscission in soybean. Agron. J., 1993, 85: 221~225.
    101. Jun T-H, Van K., Kim M. Y., Lee S-H Walker D. R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2007.online
    102. Kantolic A. G., Slafer G. A. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. of Bot., 2007, 99:925~933.
    103. Kantolic A. G., Slafer G. A. Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Research, 2005, 93: 212~222.
    104. Kantolic A.G., Slafer G. A. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res., 2001, 72: 109~118.
    105. Keim P., Diem B. W., Olson T. C., Shoemaker R. C. RFLP mapping in soybean association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735~742.
    106. Kiihl R. A. S. Inheritance studies for two characters in soybean (Glycine max (L.) Merrill): Ⅰ. Resistance to soybean mosaic virus. Ⅱ. Late flowering under short-day conditions. Mississippi State University, Starkville: Ph. D. Thesis, 1976.
    107. Kumudini S. V., Pallikonda P. K., Steele C. Photoperiod and E-genes influence the duration of the reproductive phase in soybean. Crop Sci., 2007, 47: 1510~1517.
    108. Kwon S. H., Torrie J. H. Heritanbility and interrelationships among traits of two soybean populations. Crop Sci., 1964, 4: 196~198.
    109. Lander E. S., Bostein D. Mapping mondelian factors underlying quantitative traits using RFLP maps. Genetics, 1989, 121: 185~199.
    110. Lee S. H., Bailey M. A., Mian M. A. R., Carter T. E. J., Shipe E. R., Ashley D. A., Parrott W. A., Hussey R. S., Boerma H. R. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet., 1996, 93: 649~657.
    111. Lee S. H., Bailey M. A., Mian M. A. R., Shipe E. R., Ashley D. A., Parrott W. A., Hussey R. S., Boerma H. R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci., 1996, 36: 728~735.
    112. Li H., Ye G., Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361~374.
    113. Major D. J. Photoperiod response characteristics controlling flowering of nine crop species. Can. J. Plant Sci., 1980, 60: 777~784.
    114. Malk S. S., Singh B. B. Genetic studies of flowering and maturity in interspecific crosses of soybean. Indian J. Genet., 1991, 51: 349~351.
    115. Mansur L. M., Lark K .G., Kross H., Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max (L.) Merr.) . Theor. Appl. Genet., 1993, 86: 907~913.
    116. Mansur L. M., Orf J. H., Chase K., Jarvik T., Cregan P. B., Lark K. G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci., 1996, 36: 1327~1336.
    117. Mathew J. P., Herbert S. J., Zhang S., Rautenkranz A. A. F., Litchfield G. V. Differential response of soybean yield components to the timing of light enrichment. Agron. J., 2000, 92: 1156~1161.
    118. McBlain B. A., Bernard R. L. A new gene affecting the time of flowering and maturity in soybeans. J. Hered., 1987a, 78: 160~162.
    119. McBlain B. A., Hesketh J. D., Bernard R. L. Genetic effects on reproductive phenology in soybean isolines differing in maturity genes. Can. J. Plant Sci., 1987b, 67: 105~116.
    120. Mian M. A. R., Ashley D. A., Vencill W. K., Boerma H. R. QTLs conditioning early growth in a soybean population segregating for growth habit. Theor. Appl. Genet., 1998, 97: 1210~1216.
    121. Molnar S. J., Rai S., Charette M., Cober E. R. Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome, 2003, 46: 1024~1036.
    122. Moraghan B. J. Plant characters related to yield response of unselected lines of soybeans in various row widths and plant populations. Ph.D. Diss. Iowa State Univ. Univ. Microfilms. Ann Arbor., MI. Diss. Abstr. 31B, 1970, (9): 5119.
    123. Neumaier N., James A. T. Exploiting the long Juvenile trait to improve adaptation of soybeans to the tropics. Food Legume Newsl., 1993, 18: 12~14.
    124. Nichols D. M., Glover K. D., Carlson S. R., Specht J. E., Diers B. W. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci., 2006, 46: 834~839.
    125. Orf J. H., Chase K., Jarvik T., Mansur L. M., Cregan P. B., Adler F. R., Lark K. G. Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Sci., 1999, 39: 1642~1651.
    126. Owen F. V. Inheritance studies in soybeans. Ⅱ. Glabrousness, color of pubescence, time of maturity, and linkage relations. Genetics, 1927, 12: 519~529.
    127. Panthee D. R., Pantalone V. R., West D. R., Saxton A .M., Sams C. E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci., 2005, 45: 2015~2022.
    128. Pfeiffer T. W., Suryati D., Egli D. B. Soybean plant introductions selected for seed filling period or yield performance as parents. Crop Sci., 1991, 31: 1418~1421.
    129. Ray J. D., Hinson J. K., Mankono J. B. B., Malo M. F. Genetic control of a long-juvenile trait in soybean. Crop Sci., 1995, 35: 1001~1006.
    130. Raymer P. L., Bernard R. L. Effects of some qualitative genes on soybean performance in late-planted environments. Crop Sci., 1988, 28: 765~769.
    131. Reicosky D. A., Orf J. H., Poneleit C. Soybean germplasm evaluation for length of the seed filling period . Crop Sci., 1982, 22: 319~322.
    132. Reicosky D. A., Orf J. H., Poneleit C. Soybean germplasm evaluation for length of the seed filling period. Crop Sci., 1982, 22: 319~322.
    133. Saindon G., Voldeng H. D., Beversdorf W. D., Buzzell R. I. Genetic control of long daylength response in soybean. Crop Sci.,1989, 29: 1436~1439
    134. Salado-Navarro L. R., Hinson K., Sinclair T. R. Nitrogen partitioning and dry matter allocation in soybeans with different seed protein concentration. Crop Sci., 1985, 25: 451~455.
    135. Salado-Navarro L. R., Sinclair T. R., Hinson K. Yield and reproductive growth of simulated and field-grown soybean. Ⅰ. Seed-filling duration. Crop Sci., 1986, 26: 966~970.
    136. Sarwar G. Impact of Grain filling period and other morphological traits in soybean. Soybean Genet. Newsl., 1996, 23: 112~116.
    137. Sebolt A. M., Shoemaker R. C., Diers B. W. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean. Crop Sci., 2000, 40: 1438~1444.
    138. Sinclair T. R., Neumaier N., Farias J. R. B., Nepomuceno A. L. Comparison of vegetative development in soybean cultivars for low-latitude environments. Field Crops Res., 2005, 92: 53~59.
    139. Smith J. R., Nelson R. L. Predicting yield from early generation estimates of reproductive growth periods in soybean. Crop Sci., 1987, 27: 471~474.
    140. Smith J. R., Nelson R. L. Relationship between seed-filling period and yield among soybean breeding lines. Crop Sci., 1986, 26: 469~472.
    141. Song Q. J., Marek L. F., Shoemaker R. C., Lark K. G., Concibido V. C., Delannay X., Specht J. E., Cregan P. B. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet., 2004, 109: 122~128.
    142. Sourdille P., Snape J. W., Cadalen T., Charmet G., Nakata N., Bernard S., Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled haploid population. Genome, 2000, 43: 487~494.
    143. Stewart D. W., Cober E. R., Bernard R. L. Modeling genetic effects on the photothermal response of soybean phenological development. Agron. J., 2003, 95: 65~70.
    144. Stewart D. W., Cober E. R., Bernard R. L. Modeling genetic effects on the photothermal response of soybean phenological development. Agron. J., 2003, 95: 65~70.
    145. Summerfield R. J., Asumadu H., Ellis R. H., Qi A. Characterization of thephotoperiodic response of post-fowering development in maturity isolines of soyabean [Glycine max (L.) Merrill] ‘Clark’. Annals of Botany, 1998, 82: 765~771.
    146. Sun D., Li W., Zhang Z., Chen Q., Ning H., Qiu L., Sun G. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor. Appl. Genet., 2006, 112: 665~673.
    147. Tasma I. M., Lorenzen L. L., Green D. E., Shoemaker R. C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol. Breed., 2001, 8: 25~35.
    148. Tisselli J. R. O. Inheritance study of the long-juvenile characteristic in soybeans under long and short-day conditions. Misissippi State University, Starkville: Ph. D. thesis, 1981.
    149. Tomkins J. P., Shipe E. R. Environmental adaptation of long-juvenile soybean cultivars and elite strains. Agron J., 1997, 89: 257~262.
    150. Tomkins J. P. Growth responses of long-juvenile soybean near-isoline pairs to different spectral balances of reflected light. Soybean Genet. Newsl., 1996, 23: 220~224.
    151. Valéria C. P., Almeida L. A., Kiihl R. A. S. Inheritance of long juvenile period under short day conditions in soybean. Genet. Mol. Biol., 2002, 25: 4463~4469.
    152. Valéria C. P., Almeida L. A., Kiihl R. A. S., Rosolem C. A. Inheritance of long juvenile period under short day conditions for the BR80-6778 soybean (Glycine max (L.) Merr.) line. Euphytica, 2000, 112: 203~209.
    153. Van Schaik P. H., Probst A. H. The inheritance of inflorescence type, peduncle length, flowers per node and percent flower shedding in soybeans. Agron. J., 1958, 59: 98~102.
    154. Villarroel D. A., Kilen T. C. Effect of a long-juvenile trait upon flowering in soybeans grown inshort and long photoperiods [EB/OL]. (2002, 09, 24) [2006, 03, 15] http://msucares.com/pubs /techbulletins/tb210.htm.
    155. Wang D., Graef G. L., Procopiuk A. M., Diers B. W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet., 2004, 108: 458~467.
    156. Wang D. L., Zhu J., Li Z. K., Paterson A. H. Mapping QTLs with epistastic effects and QTL environment interactions by mixed linear model approaches. Theor. Appl. Genet., 1999, 99: 1255~1264.
    157. Weiss M. G. Genetic linkage in soybeans: linkage groupⅠ. Crop Sci., 1970, 10: 69~72.
    158. Woodworth C. M. Genetics and breeding in the improvement of the soybean. Illinois Agr. Exp. Sta. Bull, 1932, 384: 297~404.
    159. Woodworth C. M. Inheritance of growth habit, pod color, and flower color in soybeans. Amer. Soc. Agron., 1923, 15: 481~495.
    160. Wu C, Ma Q, Yam K. M., Cheung M. Y., Xu Y, Han T, Lam H. M., Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 2006, 223: 725~735.
    161. Yamanaka N., Ninomiya S., Hoshi M., Tsubokuta Y., Yano M., Nagamura Y., Sasaki T., Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Research, 2001, 8: 61~72.
    162. Yamanaka N., Watanabe S., Toda K., Hayashi M., Fuchigami H., Takahashi R., Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor. Appl. Genet., 2005, 110: 634~639.
    163. Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y., Nagamura Y., Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12: 2473~2483.
    164. Yuan J., Njiti V. N., Meksem K., Iqbal M. J., Triwitayakorn K., Kassem M. A., Davis G. T., Schmidt M. E., Lighhfoot D. A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci., 2002, 42: 271~277.
    165. Zhang L., Wang R., Hesketh J. D. Effects of photoperiod on growth and development of soybean floral bud in different maturity. Agron. J. 2001, 93: 944~948.
    166. Zhang WK., Wang YJ., Luo GZ., Zhang JS., He CY., Wu XL., Gai JY., Chen SY. QTL mapping of ten agronomic traits on the soybean (Glycine max (L.) Merr.) map and their association with EST markers. Theor. Appl. Genet, 2004, 108: 1131~1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700