用户名: 密码: 验证码:
基于氧微电极的生物膜内反应动力学参数的原位测定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物膜模型的应用与研究过程中,如何准确地获得生物膜的反应动力学参数和传质动力学参数是至关重要的,其准确性在很大程度上决定了生物膜模型的预测能力。由于生物膜内部结构和反应过程很复杂,要准确获得生物膜动力学参数比较困难。本文提出了两种获得生物膜动力学参数的原位测定方法:“扩散-反应模型法”和“呼吸速率测量法”。在完成分离式氧微电极结构优化并构建起生物膜动力学参数原位测定系统的基础上,用“扩散-反应模型法”和“呼吸速率测量法”对生物膜动力学参数进行原位测定研究。
     “扩散-反应模型法”是在生物膜处于内源呼吸阶段及生长阶段用氧微电极检测生物膜内的溶解氧分布曲线,并结合稳态条件下的扩散-反应方程对生物膜动力学参数进行估值。用该方法检测得到的生物膜内源呼吸速率、衰减系数及氧半饱和常数分别为8.52mgO_2/(gVSS·h)、0.0035h~(-1)、1.00mg/L。与活性污泥系统相比,用该方法获得的内源呼吸速率和衰减系数较小,对氧的半饱和常数较大。
     “呼吸速率测量法”是在没有破坏生物膜结构的基础上,用微型加样管在生物膜内某一深度注射微量基质溶液,同时氧微电极在该加样点检测微生物的呼吸速率曲线,并结合Monod方程计算该点的动力学参数。在得到生物膜内不同深度微观点的动力学参数后用算术平均值法对生物膜表观动力学参数进行估值。用该方法获得的生物膜产率系数、最大比增长速率和基质半饱和常数的平均值分别为0.44、4.00d~(-1)、41.06mg/L。与破坏生物膜结构后用呼吸速率测量法检测的结果相比,原位测定方法获得的生物膜产率系数与之相近,最大比增长速率较小,对基质的半饱和常数较大。同时研究结果表明生物膜内各深度微生物的产率系数变化不大,在0.40-0.45范围内波动;最大比增长速率沿着生物膜深度方向逐渐降低,从表层的5.74 d~(-1)降到深层的2.45 d~(-1);对基质的半饱和常数沿生物膜深度方向逐渐增大,从表层的36.63mg/L升高到深层的48.04mg/L。
The methods to obtain the kinetic parameters of biofilm accurately are very important when the biofilm models are used in research, and the forecasting ability of the biofilm models depends on the accuracy of the kinetic parameters. As the complexity of the inner structure and the reaction processes of biofilm, it is very difficult to obtain the kinetic parameters of biofilm exactly. In this study, two kinds of in situ methods to detect the biofilm kinetic parameters were established: the“diffusion-reaction model mothod”and the“oxygen uptake rate method”. After optimizing the configuration of separated oxygen microelectrode and establishing the in-situ detecting system, the two in-situ methods were used to detect the biofilm kinetic parameters.
     The“diffusion-reaction model method”could be used to estimate the biofilm kinetic parameters by detecting the oxygen distribution profiles in the biofilm in the endogenous phase and growing phase with an oxygen microelectrode. After obtaining the oxygen distribution profiles, the biofilm kinetic parameters could be calculated based on the diffusion-reaction equations under the stabilized conditions. The average values of the OURin (endogenous respiratory rate), Kd (endogenous decay rate) and the Ko (Monod half saturation coefficient to the oxygen) in the biofilm which were estimated by this in-situ method were 8.52 mg O2/ (gVSS·h), 0.0035h-1 and 1.0mg/L respectively. Compared with the activated sludge system, the endogenous respiratory rate and the endogenous decay rate were smaller; the Monod half saturation coefficient was higher.
     The“oxygen uptake rate method”could be used to estimate the biofilm kinetic parameters by combining the Monod equation and the respiration rate profiles which were detected with an oxygen microelectrode after injecting minim of substrate solution to some depth of the biofilm. After acquiring the kinetic parameters of the microcosmic detected points in the different depths of the biofilm, the apparent values of the biofilm kinetic parameters could be attained by averaging the microcosmic parameters. The apparent values of the Y (yield coefficient),μmax(maximum growing rate)and the Ks (Monod half saturation coefficient to the glucose) were 0.44, 4.00d-1, 41.06mg/L respectively by the in situ method of“oxygen uptake rate”. Compared with the values after destroying the biofilm structure, the Y,μmaxand the Ks which were detected using the in situ method were approximate, smaller and higher respectively. Further more, the in situ method of“oxygen uptake rate”could study the kinetic parameters of the microorganisms in the different depths of the biofilm. The results showed that the Y in the different depths of the biofilm which varied from 0.40 to 0.45 didn’t have much diversification; theμmaxdecreased gradually with the depth increasing, which changed from 5.74 d-1 on the surface of biofilm to 2.45 d-1 at the bottom of biofilm; the Ks increased gradually with the depth increasing, which changed from 36.63mg/L on the surface of biofilm to 48.04mg/L at the bottom of biofilm.
引文
[1]许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社, 2001.
    [2] Cristian P, Mark C M, Joseph J H. Effect of diffusive and convective substrate transport on biofilm structure formation: A Two-dimensional modeling study. Biotechnology and Bioengineering, 2000, 69(5): 504-515.
    [3]张金莲,吴振斌.水环境中生物膜的研究进展.环境科学与技术, 2007, 30(11): 10-107.
    [4]杨朵,张正.细菌生物膜及其相关研究进展.中国实验诊断学, 2007, 11(10): 1416-1422.
    [5] Bishop P L. Biofilm structure and kinetics. Water Science and Technology, 1997, 36(1): 287-294.
    [6] Kapellos G E, Alexiou T S, Payatakes A C. Hierarchical simulator of biofilm growth and dynamics in granular porous materials. Advances in Water Resources, 2006, 30: 1648-1667.
    [7] Nicolella C, Pavasant P, Livingston A G. Substrate counterdiffusion and reaction in membrane-attached biofilms: mathematical analysis of rate limiting mechanisms. Chemical Engineering Science, 2000, 55: 1385-1398.
    [8] Kermanshahi A, Karamanev D, Margaritis A. Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor. Biochemical Engineering Journal, 2006, 27: 204-211.
    [9] Bernet N, Sanchez O, Cesbron D. Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochemical Engineering Journal, 2005, 24: 173-183.
    [10]唐受印.废水处理工程.北京:化学工业出版社, 1998.
    [11]顾夏声.废水生物处理数学模式.北京:清华大学出版社, 1982年.
    [12] Rittmann B E, McCarty P L. Model of steady-state-biofilm kinetics. Biotechnology and Bioengineering, 1980, 22: 2343-2357.
    [13] Wanner O, Gujer W. A multispecies biofilm model. Biotechnology and Bioengineering, 1986, 28: 314-328.
    [14] Hermanowicz S W. Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Science and Technology, 39(7): 107-114.
    [15] Picioreanu C, Kreft J U. Particle-based multidimensional multispecies biofilm model. Applied and Enviromental Microbiology, 2004, 70(5): 3024-3040.
    [16] Eberl H J, Picioreanu C, Heijnen M C. A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic condition, and mass transfer and conversion in biofilms. Chemical Engineering Science, 2000, 55: 6209-6222.
    [17] Noguera D R, Pizarro G, Stahl D A. Simulation of multispecies biofilm development in three dimensions. Water Science and Technology, 1999, 39(7): 123-130.
    [18] Kreft J U, Picioreanu C. Individual-based modeling of biofilms. Microbiology, 2001, 147: 2897-2912.
    [19] Livingston A G. Biodegradation of 3, 4-Dichloroaniline in a fluidezed bed bioreactor and a steady-state biofilm kinetic model. Biotechnology and Bioengineering, 1991, 38: 260-272.
    [20] Williamson K J, McCarty P L. Rapid measurement of Monod half-velocity coefficient for bacterial. Biotechnology and Bioengineering, 1975, 14: 915-924.
    [21] Rittmann B E, McCarty P L. Evalution of steady-state biofilm kinetics. Biotechnology and Bioengineering, 1980, 22: 2359-2373.
    [22] Watts J, Garber W. On line respirometry: a powerful tool for activated sludge plant operation and design. Water Science and Technology, 1993, 28(11-12): 389-399.
    [23] Kappeler J, Gujer W. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modeling. Water Science and Technology, 1992, 25(6): 125-139.
    [24] Lokkegaard B H. Experimental procedures characterizing transformations of wastewater organic matter in the Emscher river. Water Science and Technology, 1995, 31(7): 201-212.
    [25] Drtil M. Kinetic constants of nitrification. Water Research, 1993, 27(1): 35-39.
    [26] Eker S, Kargi F. Kinetic modeling and parameter estimation in biological treatment of 2, 4-dichlorophenol containing wastewater using rotating perforated tubes biofilm reactor. Enzyme and Microbial Technology, 2006, 38: 860-866.
    [27] Samb F M, Deront M, Adler N. Wastewater treatment with biofilms: estimation of biokinetic parameters using a segmented column. Journal of Chemical Technology and Biotechnology, 1998, 71: 84-88.
    [28] Jih C G, Huang J S. Effect of biofilm thickness distribution on substrate-inhibited kinetics. Water Research, 1994, 28(4): 967-973.
    [29] Cao Y S, Alaerts G J. Influence of reactor type and shear stress on aerobic biofilm morphology, population, and kinetics. Water Research, 1995, 29(1):107-118.
    [30] Loosdrecht M C M, Wijdieks A M S. Population distribution in aerobic biofilms on small suspended particles. Water Science and Technology, 1995, 31(1): 163-171.
    [31] Rittmann B E, Crawford L. In situ determination of kinetic parameters for biofilms: isolation and characterization of oligotrophic biofilm. Biotechnology and Bioengineering, 1986, 28: 1753-1760.
    [32] Atkinson B, Davies I J. The overall rate of substrate uptake by microbial films. Transfer Institution Chemical Engineering, 1974, 52: 248-258.
    [33] Zeng H, Zhang T C. Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrication biofilm process. Water Research, 2005, 39: 4941-4952.
    [34] Riefler R G, Smets B F. Comparison of a type curve and a least-squared errors methed to estimate biofilm kinetic parameters. Water Reasearch, 2003, 37: 3279-3285.
    [35] Zhang S, Huck P M. Parameter estimation for biofilm process in biological water treatment. Water Research, 1996, 30: 456-464.
    [36] Rittmann B E, McCarty P L. Model of steady state biofilm kinetic. Biotechnology and Bioengineering, 1980, 22: 2343-2357.
    [37] Riefler R G, Ahlfeld D P. Respirometric assay for biofilm kinetics estimation: Parameter identifiability and retrievability. Biotechnology and Bioengineering, 1998, 57(1): 1232-1239.
    [38] Tsuneda S, Auresenia J. Simplified modeling of simultaneous reaction kinetics of carbon oxidation and nitrification in biofilm processes. Engineering in Life Sciences, 2004, 4(3): 239-246.
    [39] Plattes M, Fiorelli D. Modelling and dynamic simulation of a moving bed bioreactor using respirometry for the estimation of kinetic parameters. Biochemical Engineering Journal, 2006, 33: 253-259.
    [40] Brockmann D, Morgenroth E. Estimation of kinetic paramenters of a model for deammonification in biofilms and evaluation of the model. Water Science and Technology, 2007, 55: 291-299.
    [41] Plattes M, Fiorelli D. Modelling and dynamic simulation of a pilot-scale moving bed bioreactor for treatment of municipal wastewater: model concepts and the use of respirometry for the estimation of kinetic parameters. Water Science and Technology, 2007, 55(8-9):309-316.
    [42] de Beer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 1994, 43: 1131-1138.
    [43] Zhang T C, Bishop P L. Structure, activity and composion of biofilms. Water Science and Technology, 1994, 29(7): 335-344.
    [44] Zhang T C, Bishop P L. Density, porosity and pore structure of biofilm. Water Research, 1994, 28: 2267-2277.
    [45] Masuda S, Watanabe Y, Ishiguro M. Biofilm properties and simulataneous nitrification and denitrification in aerobic rotating biological contactors. Water Science and Technology, 1991, 23: 1355-1363.
    [46] Yu T, de la Rosa C, Lu R. Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions. Water Science and Technology, 2004, 49(11-12): 353-358.
    [47] Zhang T C, Bishop P L. Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface. Water Science and Technology, 1994, 30(11): 47-58.
    [48] Lewandowski Z, Stoodley P, Altobelli S, Fukushima E. Hydrodynamics and kinetics in biofilm systems-recent advances and new problems. Water Science and Technology, 1994, 29: 223-229.
    [49] Heineman W R. Voltammetry: Basic concepts and hydrodynamic techniques. New York: Chemical instrumentation, 1989.
    [50] Hitchman M L. Calibration and cccuracy of polarographic oxygen sensors. Berlin: Aquatic and physiological applications, 1983.
    [51] Richard L, Yu T. Fabrication and evaluation of an oxygen microelectrode applicable to environmental engineering and science. Environmental Engineering and Science, 2002, 1: 225-235.
    [52] Brito P S D, Sequeira C A C. Cathodic oxygen reduction on noble metal and carbon electrodes. Power Sources, 1994, 52:1-16.
    [53] Dowben R M, Rose J E. A metal-filled microelectrode. Science, 1953, 118: 22-24.
    [54] Whalen W J, Riley J, Nair P. A microelectrode for measuring intracellular PO2. Journal of Applied Physiology, 1967, 23(5): 798-801.
    [55] Linsenmeier R A, Yancy C M. Improved fabrication of double-barreled recessed cathodeO2 microelectrodes. American Physiology Sociaty, 1987, 63(6): 2254-2257.
    [56] Fu Y C. Characterizing oxygen profiles and determine oxygen diffusivity in biofilm during biodegradation of azo dyes[Ph.D. dissertation]. America: University of Cincinnati, 1993.
    [57] Yu T. Stratification of microbial processes and redox potential changes in biofilm[Ph.D. dissertation]. America: University of Cincinnati, 2000.
    [58] Zhang T C. Influence of biofilm structure on transport and transformation processes in biofilm[Ph.D. dissertation]. America: University of Cincinnati, 1994.
    [59] Clark L C, Wolf R, Granger D. Continuousrecording of blood oxygen tension by polarography. Journal of Applied Physiology, 1953, 6: 189-193.
    [60] Baumg?rtl H, Lübbbers D W. Platinum needle electrode for polarographic measurement of oxygen and hydrogen. In Oxygen supply: Theoretical and practical aspects of oxygen supply and microcirculation of tissue. University Park Press, Baltimore, Md.1973, 130-137.
    [61] Baumg?rtl H, Lübbers D W. Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue: Its construction and properties. In Polarographic oxygen sensors: Aquatic and physiological applications. NewYork, N.Y. 1983: 37-65.
    [62] Revsbech N P, J?rgensen B B, Blackburn T H. Oxygen in the sea bottom measured with a microelectrode. Science, 1980, 207: 1355-1356.
    [63] Revsbech N P, J?rgensen B B. Microelectrodes: their use in microbial ecology. Advanced Microbe Ecology, 1986, 9: 293-352.
    [64] Revsbech N P. An oxygen microsensor with a guard cathode. Limnol Oceanogr, 1989, 34(2): 474-478.
    [65] Rasmussen K, Lewandowski Z. Microelectrode measurements of local mass transfer rates in heterogeneous biofilms. Biotechnology and Bioengineering, 1998, 59(3): 302-309.
    [66] Santegoeds C M, Muyzer G, de Beer D. Biofilm dynamics studied with microsensors and molecular techniques. Water Sciebce and Technology, 1998, 37(4-5): 125-129.
    [67] de Beer D, Schramm A. Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Science and Technology, 1999, 39(7): 173-178.
    [68]周小红,施汉昌,蔡强.基于微电极的生物膜分析技术的研究进展.环境监测管理与技术, 2006, 18(1): 32-35.
    [69] Horn H, Hempel D C. Modeling mass transfer and substrate utilization in the boundary layer of biofilm systems. Water Science and Technology, 1998, 37(4-5): 139-147.
    [70] Horn H, Hempel D C. Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Science and Technology, 1995, 32(8): 199-204.
    [71] Bungay H R, Whalen W J, Sanders W M. Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotechnology and Bioengineering, 1969, 11: 765-772.
    [72] de Beer D, Stoodley P. Relation between the structure of an aerobic biofilm and transport phenomena. Water Science and Technology, 1995, 32(8): 11-18.
    [73] W?sche S, Horn H. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Research, 2002, 36: 4775-4784.
    [74] Nishidome K, Kusuda T, Watanab Y, Yamauchi M. Determination of oxygen transfer rate to a rotating biological contactor by microelectrode measurement. Water Science and Technology, 1994, 29(10-11): 471-477.
    [75] W?sche S, Horn H, Hempel D C. Mass transfer phenomena in biofilm systems. Water Science and Technology, 2000, 41(4-5): 357-360.
    [76] Fu Y C, Zhang T C, Bishop P L. Determination of effective oxygen diffusivity in biofilms growth in a completely mixed biodrum reactor. Water Science and Technology, 1994, 29(10-11): 455-462.
    [77] Zhou Q, Bishop P L. Determination of oxygen profiles and diffusivity in encapsulated biomass kcarrageenan gel beads. Water Science and Technology, 1997, 36(1): 271-277.
    [78] Beyenal H, Lewandowski Z. Combined Effect of Substrate Concentration and Flow Velocity on Effective Diffusivity in Biofilms. Water Research, 2000, 34(2): 528-538.
    [79] Kazuaki H, Jun N, Satoshi T. Simple prediction of oxygen penetration depth in biofilms foe wastewater treatment. Biochamical Engineering Journal, 2004, 19(1): 61-68.
    [80] Cunningham A B, Visser E, Lewandowski Z. Evaluation of a coupled mass transport-biofilm process model using dissolved oxygen microsensors. Water Science and Technology, 1995, 32(8): 107-114.
    [81] Akihiko T, Kazuaki H, Jun N, Satoshi T. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. Journal of Bioscience and Bioengineering, 2003, 95(2): 170-178.
    [82] Erin W, Rose F, Amandine B. Stratified growth in Pseudomonas aeruginosa biofilm. Applied and Environmental Microbiology, 2004, 70(10): 188-196.
    [83] Khassehkhan H, Eberl H J. Interface tracking for a non-linear, degenerated diffusion-reaction equation describing formation of bacterial biofilms. Dymanics of continuous Discrete Impulsive Systems-series A-mathematical Analysis, 2006, 13: 131-144.
    [84] Vieira M J, Melo L F. Intrinsic kinetics of biofilms formed under turbulent flow and low substrate concentrations. Bioprocess Engineering, 1999, 20(4): 369-375.
    [85] Leon B E, Maya Y R. Modelling of biofilm reactors for degradation of water pollutants. International Journal of Chemical Reactor Engineering, 2007, 5: 44-52.
    [86]张元兴.生物反应器工程.上海:华东理工大学出版社, 2001.
    [87] Rittmann B E. Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnology and Bioengineering, 1992, 39: 914-922.
    [88] Evans M, Wang Y T. Modeling hexavalent chromium removal in a bacillus sp. fixed-film bioreactor. Wiley InterScience, 2004, 19: 874-883.
    [89] Palma L D, Merli C, Paris M, Petrucci E. A steady-state model for the evaluation of disk rotational speed influence on RBC kinetic: model presentation. Bioresource Technology, 2003, 86: 193-200.
    [90]李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社, 2005.
    [91]张伟.快速生物活性测定仪的研制与开发[硕士学位论文].北京:清华大学, 2000.
    [92] Orupld K, Masirin A, TEmmo T. Estimation of biodegration parameters of phenole compounds on activated sludge by respirometry. Chemosphere, 2001, 44: 1273-1280.
    [93] Giuseppe B, Sabrina G, Andrea T. A new approach to the evaluation of biological treatability of industrial wastewater for the implementation of the“Waste Design”concept. Water Science and Technology, 1997, 36(2-3): 81-90.
    [94] Ekama G A, Dold P L, Marais G R. Procedures for determining influent COD fractions and the masimμm specific growth rate of heterotrophs in activated sludge systems. Water Science and Technology, 1986, 18(6): 91-114.
    [95] Sollfrank U, Gujer W. Characterization of domestic wastewater for mathematical modeling of the activated sludge process. Water Science and Technology, 1991, 23(4-6): 1057-1066.
    [96] Yoong T, Lant P A. In situ respirometry in an SBR treating wastewater with high phenol concentrations. Water Research, 2000, 34(1): 239-245.
    [97] Spanjers H. Respirometry in activated sludge[Ph.D. dissertation]. Netherland: University of Wageningen, 1993.
    [98]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社, 1989.
    [99] J?rgensen P E, Eriksen T, Jensen B K. Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FOD hydrolysis. Water Research, 1992, 26(11): 1495-1501.
    [100] Zhang T C, Fu Y C, Bishop P L. Competition for substrate and space in biofilm. Water Environmental Research, 1995, 67: 992-1003.
    [101]周小红.基于微电极的悬浮球填料内部特性测试和脱氮过程研究[博士学位论文].北京:清华大学, 2007.
    [102] Unisense Company. Oxygen Sensor Manual: http://www.unisense.com/Default.aspx?ID- =107.
    [103]朱文涛.物理化学(上册).北京:清华大学出版社, 1995.
    [104] Jensen K, Revsbech N P, Mielsen L P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Applied and environmental microbiology, 1993, 59(10): 3287-3296.
    [105] Purves.微电极方法-用于细胞内记录及离子电泳.北京:北京大学出版社, 1985.
    [106]王建龙,吴立波,齐星.用氧吸收速率OUR表征活性污泥硝化活性的研究.环境科学学报, 1999, 19(3): 225-229.
    [107] Ekama G A, Doid P L, Marais G V R. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water science and technology, 1986, 18(6): 91-114.
    [108] Philip S, Stewart. A Review of Experimental Measurements of Effective Diffusive Permeabilities and Effective Diffusion Coefficients in Biofilm. Biotechnology and Bioengineering, 1998, 59(3): 261-272.
    [109] Lori A L. The influence of substrate and temperature on biological nitrogen removal in wastewater treatment systems. Waterloo: University of Waterloo, 1997.
    [110]国际水协废水生物处理设计与运行数学模型课题组著,张亚雷,李咏梅译.活性污泥数学模型.上海:同济大学出版社, 2002.
    [111] Avcioglu E, Orhon D, Sozen S. A new method for the assessment of heterotrophic endogenous respiration rate under aerobic and anoxic conditions. Water Science and Technology, 1998, 38(8-9): 95-103.
    [112] Larsen T A, Harremoes P. Combined reactor and microelectrode measurements in laboratory grown biofilm. Water Research, 1994, 28(6): 1435-1441.
    [113] J?rgensen P E, Eriksen T, Jensen B K. Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FOD hydrolysis. Water Research, 1992, 26(11): 1495-1501.
    [114] Chu K H, van Veldhuizen H M, Loosdrecht M C M. Respirometric measurement of kinetic parameters: effect of activated sludge floc size. Water Science and Technology, 2003, 48(8): 61-68.
    [115] Yurt N, Beyenal H, John S. Quantifying seleted growth parameters of Leptothrix discophora SP-6 in biofilms from oxygen concentration profiles. Chemical Engineering Science, 2003, 58: 4557-4566.
    [116] Chudoba P, Capdeville B. Explanation of biological meaning of the S0/X0 ration in batch cultivation. Water Science and Technology, 1992, 26(3-4): 743-751.
    [117] Cech J S, Chudoba J, Grau P. Determination of kinetics constants of activated sludge microorganisms. Water Science and Technology, 1984, 17(2-3): 259-272.
    [118] Zhang L S H, Wu W Z H, Wang J L. Immobilization of activated sludge using improved polyvinyl alcohol(PVA)gel. Journal of Enviromental Science, 2007, 19: 1293-1297.
    [119] Zhang T C, Fu Y C, Bishop P L. Competition for substrate and space in biofilm. Water Environmental Research, 1995, 67: 992-1003.
    [120] Holden P A, Hunt J R, Firestione M K. Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilm. Biotechnology and Bioengineering, 1997, 56(6): 656-670.
    [121]张自杰.排水工程(下册).北京:中国建筑工业出版社, 2002.
    [122] Goel R, Mino T, Satoh H, Matsuo T. Intracellular storage compounds, oxygen uptake rates and biomass yield with readily and slowly degradable substrates. Water Science and Technology, 1998, 38(8-9): 85-93.
    [123] Perez J, Picioreanu M C M, van Loosdrecht. Modelling biofilm and floc diffusion processes based on analytical solutions of reacrion-diffusion equations. Water Research, 2005, 39: 1311-1323.
    [124] Horn H, Hempel D C. Growth and decay in an auto-heterotrophic biofilm. Water Research, 1997, 31(9): 2243-2252.
    [125] Beyenal H, Tanyola? A. A mathematical model for hollow fiber biofilm reactors. Chemical Engineering Journal, 1994, 56: 53-59.
    [126] Hirata A, Takemoto T, Ogawa K, Auresenia J. Evaluation of kinetic parameters of biochemical reaction in three-phase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 2000, 5: 165-171.
    [127] Tsuneda S, Auresenia J, Inoue Y, Hashimoto Y. Kinetic model for dynamic response of three-phase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 2002, 10: 31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700