用户名: 密码: 验证码:
冬油菜施肥效果及土壤养分丰缺指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国主要油料作物、饲用蛋白源作物和养地作物,也是理想的生物能源作物。长江流域是我国油菜主要产区,也是世界上规模最大、最具开发潜力的冬油菜生产区域,其播种面积约占全国油菜面积的80%、全球的20%。过去的50年间,长江流域油菜籽单产水平增加了3倍以上,施肥对油菜籽产量增加起着不可忽视的作用。明确油菜施肥产量、品质及经济效应对于保障科学施肥技术的推广应用和油菜产业的健康发展具有重要的意义。
     随着测土配方施肥项目的开展,大量的农田土壤被送进化验室测试分析,可根据土壤养分的测试结果来进行测土施肥,而土壤养分丰缺指标的确定是测土施肥技术的核心。由于作物产量水平的提高及土壤测试方法的改进,当前迫切需要通过多年多点的试验解决的问题是:建立和更新土壤养分丰缺指标。
     本研究通过多年多点的田间试验,从产量、品质和经济效益3个方面全面揭示了氮磷钾硼肥施用对长江流域冬油菜的影响;分析评价了肥料利用率及土壤养分平衡现状;初步建立和更新了油菜养分需求规律及土壤养分丰缺指标的数据库。主要研究结果如下:
     (1)分别用常规法、ASI法及M3法测定长江流域10个油菜主产省(市)的272个土壤样品,分析比较了不同方法测试值之间的关系,并结合相应的土壤养分分级指标对土壤养分丰缺状况进行了评价。结果表明,长江流域油菜种植土壤养分不平衡,不同区域养分含量的变异较大。对3种方法土壤养分测定值的两两比较分析结果显示,pH、有效P、K、Ca、Mg、S、Fe、Mn、Cu、Zn的常规法测定值与ASI法测定值达到极显著正相关;有效P、K、Ca、Mg、S和Fe的常规法与M3法测定值呈极显著正相关关系;有效P、K、Ca、Mg、S、Fe、Cu和Zn的ASI法与M3法测定值呈极显著正相关关系;综合常规法、ASI法及M3法的测定结果及相应分级指标,表明长江流域油菜种植区土壤有机质、N、P、K及B含量大部分处于缺乏或中等水平,而Ca、Mg、Fe、Mn、Cu含量则相对丰富,S和Zn可能成为油菜生产中土壤养分潜在缺乏因子。
     (2)长江流域冬油菜施用氮磷钾硼肥增产增收效果明显。氮磷钾硼肥配合处理(NPKB)平均产量为2654 kg/hm2,与PKB (-N)、NKB (-P)、NPB (-K)及NPK (-B)处理相比,平均每公顷增收油菜籽1133、568、307和324 kg;施用磷、钾及硼肥的增产幅度随土壤有效磷、钾及硼含量的升高呈现下降趋势;扣除肥料成本后,施用NPKB效益达到7439元/hm2,与—N、—P、—K和—B处理相比,每公顷经济效益分别增加3067、1589、620和1028元,其中施用氮、磷、钾肥产投比>2.0的试验点分别占总数的89%、78%和57%,结果表明氮磷钾硼配合施用技术可以进行大面积推广应用。
     (3)合理施肥能改善油菜籽品质。氮、磷、钾和硼肥施用对油菜籽的品质效应在不同试验点表现不尽相同,其总体趋势是:施用氮肥提高籽粒蛋白质含量而降低油分含量;施磷、钾或硼肥有提高油菜籽含油量而降低蛋白质含量的趋势;施肥对油菜籽硫甙含量和脂肪酸组成的影响不明显。油菜籽含油量与收获指数、千粒重显著正相关,与蛋白质含量呈负相关。研究结果显示在施氮的基础上配合施用磷、钾和硼肥能减少因施氮引起的油分损失。
     (4)油菜地上部N、K、Ca、Mg、Fe、Mn、Cu和Zn养分含量随生育期推进总体呈现降低趋势,P、S和B含量呈“M”型变化趋势;籽粒是N、P2O5、MgO、Mn、Cu和Zn的累积中心,而茎秆和角壳则是K2O、CaO、S、Fe及B的累积中心。籽粒中养分含量受施肥的影响相对较小,而茎秆和角壳养分含量受施肥的影响较大;当油菜植株缺乏某一营养元素时,相应养分优先分配于籽粒中;冬油菜养分吸收和产量关系的土壤肥力评价模型QUEFTS的系数aN=13.3,dN=28.5,aP=30.7,dP=85.1,aK=8.7,dK=28.3。每生产100kg油菜籽养分的需求量平均为N 4.7~5.5 kg、P2O51.9~2.7 kg、K2O6.8~8.7kg、CaO 6.2~6.4 kg、MgO 1.4~2.0 kg、S1.8~1.9 kg, Fe31.8~47.0 g、Mn 7.2~8.3g、Cu 0.9~1.0g、Zn 6.4~7.7g和B 4.4~5.4g,N:P205:K20=1:0.5~0.6:1.6~1.8。不同品种、不同施肥措施、不同产量水平时百千克籽粒氮磷钾需求量有差异,优质高产油菜对磷、钾的吸收量较大。
     (5)试验条件下,油菜氮磷钾肥农学效率分别为6.2 kg/kg N、6.3 kg/kg P2O5和2.6kg/kg K2O,表观利用率为N 34.2%、P2O517.2%和K2O36.9%,生理利用率为18.5kg/kg N、35.5 kg/kg P2O5和9.2 kg/kg K2O,氮磷钾肥对油菜籽产量的贡献率分别为41.8%、21.0%和11.4%。与氮磷钾硼配施处理相比,农民习惯施肥处理油菜籽产量及肥料利用率明显偏低,氮素农学效率、表观利用率和生理利用率分别为4.1kg/kg、23.1%和17.6%,说明氮磷钾硼配合施用技术能同时提高油菜籽产量和肥料利用率。
     (6)长江流域油菜田养分收支平衡的整体状况是,氮、磷盈余,钾亏缺。当肥料用量分别为180kgN/hm2,90kgP2O5/hm2,120kgK2O/hm2和7.5 kg/hm2硼砂时,施肥处理土壤养分平衡状况表现为氮、磷素有不同程度的盈余,氮、磷、钾及硼配合施用有利于降低氮、磷过量带来的环境风险;钾素处于亏缺状态,需通过增加无机、有机钾源来调节土壤钾素平衡,以实现油菜优质、高产和稳产。
     (7)根据土壤有效养分含量与相应不施肥区相对产量的关系,建立基于常规法、ASI法及M3的土壤养分丰缺指标。以相对产量<60%,60~75%,75~90%,90-95%和>95%为标准,分别将土壤有效磷、钾和硼分成“严重缺乏”、“缺乏”、“轻度缺乏”、“适宜”和“丰富”5级。土壤有效磷的5级指标分别为,常规法:<6.0、6.0~12.0、12.0~25.0、25.0~30.0和>30.0mg P/kg; ASI法:<5.5、5.5~12.5、12.5~28.5、28.5~38.0和>38.0mg P/L;M3法:<8.0、8.0~23.5、23.5~70.0、70.0~100.0和>100.0mgP/kg。土壤有效钾“缺乏”、“轻度缺乏”、“适宜”和“丰富”的指标分别为,常规法:<60、60~135、135~180和>180mg K/kg; ASI法:<30、30~75、75~100和>100 mg K/L;M3法:<50、50~135、135~185和>185mgk/kg.土壤有效硼“缺乏”、“轻度缺乏”、“适宜”和“丰富”的指标分别为,常规法:<0.2、0.2~0.6、0.6~0.8和>0.8 mg B/kg;ASI法:<0.25、0.25~1.0、1.0~1.5和>1.5 mg B/L。本研究结果显示—N处理籽粒相对产量与土壤氮素测定值关系不明显,而—P、—K和—B处理相对产量与土壤有效磷、有效钾和有效硼含量呈显著正相关关系,据此建立的基于常规法、ASI法和M3法的土壤有效磷、钾及硼丰缺指标可以用来指导长江流域油菜的测土配方施肥工作。
Besides its use as an important edible oil and feed crop, rapeseed is also a promising bio-diesel crop. China has been the largest producer of rapeseed with an annual production of more than 10 million tons since 1999. Yangtze River Basin (YRB) is the major rapeseed-growing area in China, and is also the most potential development area of winter rapeseed production in the world. This area contains nearly 6 million hectares of winter rapeseed area, accounting for about 80% of the total areas in China and 20% in the world. Rapeseed yield per unit area in YRB in 2000s increased more than three times compared to that in 1960s. The yield increase during the last decades is not only due to breeding of high-potential cultivars but also to higher nutrient supply. It has an important significance that finds out the yield, quality and economic return of fertilization on rapeseed to popularize and applied the technique of balanced fertilization and ensure a healthy rapeseed industry.
     With implementation of Soil Testing and Fertilizer Recommendations Action, more and more soil samples were analyzed in laboratories. Fertilizer recommendation can be carried out according to results of soil analyses. Establishment of the critical soil levels was a necessary precondition for fertilizer recommendations from a soil test result. Due to increasing in crop yield levels and soil test laboratory methodology, it is widely recognized that information about soil test critical levels and fertilization recommendation requires updating and revaluation.
     In this study,74 field experiments were carried out in ten major winter rapeseed-growing provinces of YRB from 2005 to 2007. The aims were:1) to find out the yield, quality and economic return of N, P, K and B fertilization on winter rapeseed; 2) to get to know the situation of nutrient efficiencies and nutrient balance in the agroecosystem of rapeseed production regions; 3) to establish and improve the soil nutrient abundant & deficient indices (based on General test, ASI and M3 methods) and nutrient required characteristic for high-efficient rapeseed production. The main results are summarized below.
     (1) In this research the soil nutrients content of 272 samples, which were collected from ten main rapeseed planting provinces in Yangtze River Basin, were measured by general test method (GT), a systematic approach (ASI) and Mehlich 3 (M3). The purpose of the study was to find out soil nutrients status and main limiting factors in main rapeseed planting regions. The results showed that soil nutrient for rapeseed-growing in YRB was out of balance, and the great difference existed in soil nutrient content among sample sites. The results of correlation analysis showed that pH and available P, K, Ca, Mg, S, Fe, Mn, Cu and Zn by GT method had significantly positive correlation with those by ASI method at P<0.01 level, while available N and B by GT had no any relationship with those by ASI. Soil avaialbe P, K, Ca, Mg, S and Fe by M3 had significantly positive correlation with those by GT method and avaialbe P, K, Ca, Mg, S, Fe, Cu and Zn by ASI had significantly positive correlation with those by M3 method at P<0.01 level, respectively. The determination results of GT, ASI and M3 method showed that available N, P, K and B concentration of most of soil samples were at deficient or middle level, available S and Zn were at middle level, and available Ca, Mg, Fe, Mn and Cu were at rich level.The results indicated that soil N, P, K and B were the main limiting factors in Yangtze River Basin for rapeseed planting.
     (2) The combination of N, P, K and B fertilizers significantly increased both rapeseed yield and profits in YRB. The average yield of NPKB treatment was 2654 kg/hm2. Compared with—N,—P,—K and—B, the yield of NPKB was higher by 1133,568,307 and 324 kg/hm2,respectively. The seed yield increment reduced in treatments of P, K, and B application when there were more available P, K, and B in soil. The average profit of NPKB treatment was 7439 RMB Yuan per hectare, which were higher than—N,—P,—K, and—B treatments by 3067,1589,620, and 1028 RMB Yuan per hectare. The effects of N, P, K, and B fertilizer on yield and profit of rapeseed were not identical in all experiments. Based on current facts in agricultural production in China, significant profit was regarded as value to cost ratio (VCR) above 2.0. Among the 74 experiments,89%,78%, and 57% showed significant profit from inputs of N, P, and K fertilizers, respectively. Thus, the technique of combination of N, P, K, and B fertilizers can be popularized and applied in winter rapeseed production in YRB.
     (3) Balanced fertilization could improve the quality of rapeseed. The effect of N, P, K and B fertilizer on quality of rapeseed were not the same in different experimental sites. N fertilizer had significant influence on oil and protein content, which decreased the content of oil and increased the content of protein in seed. In comparison with N fertilizer, the seed oil content was enhanced due to the application of P, K and B fertilizer. The glucosinolate content and fatty acid composition also had influence on fertilization, but the effect was not significant. The results also indicated that oil content was positively correlated with harvest index and 1000-seed weight, negatively with seed protein content. It was concluded that the combination of P, K and B fertilizer with N could reduced the loss of oil content caused by N fertilizer application.
     (4) The results of study on nutrient uptake showed that N, K, Ca, Mg, Fe, Mn, Cu and Zn content in the above-ground were decreased gradually with growing time. And the dynamic changes of P, S and B concentration showed an "M" curve. Seed was the distribution center of N, P2O5, MgO, Mn, Cu and Zn, and stem and pod were the distribution center of K2O, CaO, S, Fe and B. The effect of fertilization on N, P, K and B content in pod and stem was stronger than those in seed. The parameters for the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model in winter rapeseed were aN=13.3, dN=28.5, aP=30.7, dP=85.1, aK=8.7 and dK=28.3. Nutrients required for producing every 100 kg seeds were N 4.7~5.5 kg, P2O51.9~2.7 kg, K2O 6.8~8.7 kg, CaO 6.2~6.4 kg, MgO 1.4-2.0 kg, S 1.8-1.9 kg, Fe 31.8~47.0 g, Mn 7.2~8.3g, Cu 0.9~1.0 g, Zn 6.4~7.7 g and B 4.4~5.4g, and the ratio of N:P2O5:K2O was 1: 0.5~0.6:1.6~1.8. Nutrient requirement of rapeseed was influenced by rapeseed varieties, yield level and nutrient supply. More P and K was required by rapeseed at high yielding level.
     (5) The results of study on nutrient efficiencies indicated that the average agronomic efficiency (AE) was 6.2 kg/kg N,6.3 kg/kg P2O5 and 2.6 kg/kg K2O, under the experiment condition. Partial factor productivity (PFP) was 14.7 kg/kg N,29.5 kg/kg P2O5 and 22.1 kg/kg K2O. Recovery efficiency (RE) of N, P and K fertilizer were 34.2%, 17.2% and 36.9%, respectively. Physiological efficiency was 20.4 kg/kg N,35.5 kg/kg P2O5 and 9.2 kg/kg K2O. The contribution of N, P and K fertilizer to rapeseed yield were 41.8%,21.0% and 11.4%, respectively. Compared with NPKB, rapeseed yield and fertilizer efficiencies in FFP (farmers'fertilization practice) were lower. AE, RE and PE of N in FFP were 4.1 kg/kg,23.1% and 17.6%, respectively. It was concluded that the combination of N, P, K and B fertilizers significantly increased both rapeseed yield and fertilizer efficiencies.
     (6) The results of field experiment also indicated N balances in the plots received N fertilizer (NPKB, NKB, NPB and NPK) and P balances in the plots received P fertilizer (NPKB, PKB, NKB and NPK) were both positive when 180 kg N/hm2,90 kg P2O5/hm2,120 kg K2O/hm2 and 7.5 kgborax/hm2 were applied. The combination of N, P, K and B was benefit to reduce N losses and the environmental risk of the pollution. K balances were always negative except in PKB plots, and it is necessary to improve soil K balance by increasing application of inorganic and organic K fertilizer resources.
     (7) The abundance and deficiency indices for general test method (GT), a systematic approach (ASI) and Mehlich 3 (M3) were determined based on the relationship between crop relative yield and corresponding available soil nutrient values. Compared to the complete treatment, the relative yields of 60%,75%,90% and 95% obtained from the -P,-K and -B treatments were selected to establish the abundance and deficiency indices of soil available P, K and B for winter rapeseed. The extremely deficiency, deficiency, slight deficiency, optimum and abundance indices for soil available P were<6.0,6.0~12.0,12.0~25.0,25.0~30.0 and>30.0 mg P/kg for GT; <5.5,5.5-12.5,12.5~28.5,28.5~38.0 and>38.0 mg P/L for ASI;<8.0,8.0~23.5, 23.5~70.0,70.0~100.0 and>100.0 mg P/kg for M3, respectively. The deficiency, slight deficiency, optimum and abundance indices for soil available K were<60,60~135, 135~180 and>180 mg K/kg for GT;<30,30~75,75~100 and>100 mg K/L for ASI; <50,50~135,135~185 and>185 mg K/kg for M3, respectively. The deficiency, slight deficiency, optimum and abundance indices for soil available B were<0.2,0.2~0.6, 0.6~0.8 and>0.8 mg B/kg for GT; 0.25,0.25~1.0,1.0~1.5 and>1.5 mg B/L for ASI, respectively. The results also showed that the relationship between relative yield in—N plot and soil N test values was not clear. However, the relative yields in—P,—K and—B plots had significantly positive with soil available P, K and B contents. It was concluded that the soil available P, K and B critical indices established using GT, ASI and M3 methods and field experiments can be used as guidance for soil testing and fertilizer recommendation for winter rapeseed production in YRB.
引文
1.白由路,杨俐苹.我国农业中的测土配方施肥.土壤肥料,2006(2):3-7
    2.鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000,30-107,127
    3.曹宁,陈新平,张福锁,曲东.从土壤肥力变化预测中国未来磷肥需求.土壤学报,2007,44(3):536-543
    4.陈钢,年夫照,徐芳森,王运华.硼、钼营养对甘蓝型油菜产量和品质影响的研究.植物营养与肥料学报,2005,11(2):243-247
    5.陈同斌,曾希柏,胡清秀.中国化肥利用率的区域分异.地理学报,2002,57(5):531-538
    6.陈新平,周金池,王兴仁,张福锁,宝德俊,贾晓红.小麦—玉米轮作制中氮肥效应模型的选择—经济和环境效益分析.土壤学报,2000,37(3):346-354
    7.陈新平,张福锁.通过“3414”试验建立测土配方施肥技术指标体系.中国农技推广,2006(4):36-39
    8.崔建宇,宋建兰,薛会英,江荣风Mechlich 3方法测定土壤有效养分的相关性研究.全国测土配方施肥技术研讨会论文集,2006,116-120
    9.戴国俊,王金玉,杨建生,李尚民,袁新廷.应用统计软件SPSS拟合生长曲线方程.畜牧与兽医,2006,38(9):28-30
    10.代勇,胡松,姚民英,刘业海,陈泽美,程红.养分平衡法在黔东南州油菜测土推荐施肥中的应用研究.土壤通报,2008,39(3):712-714
    11.傅廷栋.中国油菜生产与品种改良.华中农业大学学报,1999,18(6):501-504
    12.傅廷栋.油菜品种改良的现状与展望.华中农业大学学报,2004,34(增刊):1-6
    13.甘莉,孙秀丽,金良,王高全,徐久伟,魏泽兰,傅廷栋. NIRS定量分析油菜种子含油量、蛋白质含量数学模型的创建.中国农业科学,2003,36(12):1609-1613
    14.高祥照,马常宝,杜森.测土配方施肥技术.北京:中国农业出版社,2005,1-7
    15.郭庆元,李志玉,涂学文.我国南方红黄壤地区优质油菜营养特性与施肥效应研究Ⅰ.不同油菜品种的氮磷营养特性.中国油料作物学报,2000,22(4):43-47
    16.郭熙盛,朱宏斌,叶舒娅,王文军,陈志光.低钾土壤上油菜钾素效应研究.土壤,1999,31(1):36-38
    17.何萍,金继运,李文娟,刘海龙,黄绍文,王秀芳,王立春,谢佳贵.施钾对高油玉米和普通玉米吸钾特性及子粒产量和品质的影响.植物营养与肥料学报,2005,11(5):620-626
    18.何雪银,文仁来,吴翠荣.隆玉2号玉米干物质积累与养分吸收特性研究.西南农业学报,2006,19(5):853-856
    19.何园球,黄小庆.红壤农业生态系统养分循环,平衡和调控研究.土壤学报,1998,35(4):501-509
    20.侯国佐.氮磷钾硼营养元素与油菜芥酸含量关系的研究.中国油料作物学报,1985,(1):52-55
    21.胡秋辉,徐光壁,史瑞和.硼素营养对低芥酸油菜籽品质的影响.江苏农业科学,1989(9):13-14
    22.黄绍文,金继运,杨俐苹,左余宝,程明芳.分区平衡施肥技术对氮肥利用率和土壤养分平衡的影响.土壤肥料,2002,(6):3-7
    23.黄绍文,余继运,左余宝,杨俐苹,程明芳.农田土壤养分平衡状况及其评价的试点研究.土壤肥料,2000(6):14-19
    24.冀宏杰,张认连,武淑霞,张怀志,张维理.太湖流域农田肥料投入与养分平衡状况分析.中国土壤与肥料,2008(5):70-75
    25.加拿大钾磷研究所北京办事处.土壤养分状况系研究法.北京:中国农业科技出版社,1992,54-70
    26.金继运,白由路,杨俐苹.高效土壤养分测试技术与设备.北京:中国农业出版社,2006,74-88,150-163
    27.金耀青.配方施肥的方法及其功能——对我国配方施肥工作的述评.土壤通报,1989(1):33,46-48
    28.巨晓棠,张福锁.关于氮肥利用率的思考.生态环境,2003,12(2):192-197
    29.冷锁虎,单玉华,周宝梅.氮素营养对油菜成熟期生物产量的调控.中国油料作物学报,2000,22(2):53-56
    30.李宝珍,王正银,李加纳,武杰,谌利.氮磷钾硼对甘蓝型黄籽油菜产量和品质的影响.土壤学报,2005,42(3):479-487
    31.李刚华,丁艳锋,杨文祥,吴昊.江苏省主要土壤的磷肥指数及适宜磷肥用量.土壤通报,2005,36(6):896-898
    32.李家贵.氮磷钾配施对油菜产量和效益的影响.耕作与栽培,2005(3):39-40
    33.李少峰,马荣宪,朱炫,杨昆红,杨俊青.钾肥对优质油菜性状及产量的影响.云南农业大学学报,2000,15(2):133-135
    34.李银水,鲁剑巍,邹娟,黄和平,余勇.湖北省油菜氮肥效应及推荐用量研究.中国油料作物学报,2008a,30(2):218-223
    35.李银水,鲁剑巍,邹娟,李小坤,黄和平,余勇,姚忠清,彭文勇,李彬.湖北省油菜钾肥效应及推荐用量研究.中国油料作物学报,2008b,30(4):469475
    36.李银水,鲁剑巍,邹娟,李小坤,黄和平,余勇,姚忠清,彭文勇,李彬.湖北省油菜磷肥效应及推荐用量研究.中国油料作物学报,2009,31(1):44-50
    37.李昱,王飞,林新坚.几种磷肥对油菜的肥效表现.第八届全国青年土壤暨第三届全国青年植物营养与肥料科学工作者学术讨论会论文集,2002,416-418
    38.李志玉,郭庆元,廖星,秦亚平.不同氮水平对双低油菜中双9号产量和品质的影响.中 国油料作物学报,2007,29(2):184-188
    39.李志玉,胡琼,廖星,郭庆元,秦亚平.优质油菜中油杂8号施用氮磷硼肥的产量和品质效应.中国油料作物学报,2005,27(4):59-63
    40.李志玉,廖星,涂学文,郭庆元.氮、磷、钾、硼配合对油菜品种产量、品质的影响.湖北农业科学,2003(6):33-37
    41.廖星,王江薇,金河成,刘昌智.硫氮或硫硼配合对油菜籽产量及品质的影响.土壤通报,2001,32(4):180-181
    42.廖志文.湖北省不同区域水稻土的养分状况调查与评价研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    43.林葆,李书田,周卫.土壤有效硫评价方法和临界指标的研究.植物营养与肥料学报,2000,6(4):436-445
    44.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报,1994,(1):6-18
    45.刘昌智.油菜和某些芸苔属作物的硼素营养(综述).中国油料,1985,(4):73-81
    46.刘昌智,蔡常被,陈仲西,涂运昌,李致云.氮磷钾对油菜籽量、蛋白质和含油量的影响.中国油料作物学报,1982, (3):25-29
    47.刘昌智,耿成杰,张勳利,蔡常被.湖北省水田油菜安排问题的商讨.湖北农业科学,1962,(2):21-26
    48.刘昌智,涂运昌.油菜氮磷钾肥配合施用的研究.见:中国农业科学院土壤肥料研究所主编,国际平衡施肥学术讨论会论文集.北京:农业出版社,1989,215-220.
    49.刘冬碧,陈防,鲁剑巍,万运帆,余常兵.油菜干物质积累和养分钾、磷、硫吸收特点及施钾的影响.中国油料作物学报,2001a,23(2):48-51,56
    50.刘冬碧,陈防,鲁剑巍,万运帆.施钾对油菜干物质积累和钾、钙、镁吸收的影响.土壤肥料,2001b, (4):24-28
    51.刘冬碧,余延丰,范先鹏,熊桂云,陈防,杨永成,殷辉.湖北潮土区不同轮作制度下土壤养分平衡状况与评价.土壤,2009(6):912-916
    52.刘鸿翔,王德禄,王守宇,孟凯,韩晓增,张璐,沈善敏.黑土长期施肥及养分循环再利用的作物产量及土壤肥力质量变化Ⅲ.土壤养分收支.应用生态学报,2002,13(11):1410-1412
    53.刘后利.实用油菜栽培学.上海:上海科学技术出版社,1987
    54.刘建玲,李仁岗,廖文华,张智猛,张庆江.河北粮田和菜地土壤大、中、微量元素肥力研究.土壤学报,2009(4):652-661
    55.刘明强,宇振荣,刘云慧.基于土壤肥力指标的夏玉米养分吸收和产量关系模型的修正和验证.中国农业科学,2005,38(9):1834-1840
    56.刘武定.微量元素营养与微肥施用.北京:中国农业出版社,1995,8-28
    57.刘英,王允青,况晶.农田钾素肥力状况与油菜施钾效应研究.安徽农业科学,2003,31(4):547-548
    58.刘志文,单连民,韩旭,毛玮.现代生物技术在油菜遗传改良上的应用和进展.华中农业大学学报,2007,26(6):900-906
    59.鲁剑巍,鲁剑巍,陈防,刘冬碧,万运帆,曹一平.施钾水平对油菜生长发育的影响.湖北农业科学,2000,(4):39-42
    60.鲁剑巍.油菜对钾的反应及钾肥有效施用配套技术的研究.[硕士学位论文].北京:中国农业大学图书馆,1999
    61.鲁剑巍,陈防,陈行春,宁昌会,许幼生.钾、硫肥配施对作物产量与品质的影响.土壤通报,1994,25(5):216-218
    62.鲁剑巍,陈防,刘冬碧,万运帆,曹一平.施钾水平对油菜生物量积累和子粒产量的影响.湖北农业科学,2001,(4):49-51
    63.鲁剑巍,陈防,余常兵,李剑夫,张竹青,刘冬碧,熊涛.油菜施钾效果及土壤速效钾临界值初步判断.中国油料作物学报,2003,25(4):107-112
    64.鲁剑巍,陈防,张竹青,刘冬碧,李剑夫,陈健.磷肥用量对油菜产量、养分吸收及经济效益的影响.中国油料作物学报,2005,27(1):73-76
    65.鲁明星,邹娟,鲁剑巍,王倩怡,吴礼树.湖北省油菜磷肥施用效果与土壤速效磷分级标准研究.中国油料作物学报,2006,28(4):448-452
    66.鲁如坤,蒋柏藩,牟润生.磷肥对水稻和旱作的肥效及其后效的研究.土壤学报,1965,13(2):152-159.
    67.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅰ.农田养分支出参数.土壤通报,1996a,27(4):145-151
    68.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状.土壤通报,1996b,27(5):193-196
    69.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则.土壤通报,1996c,27(5):197-199
    70.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33(2):63-67
    71.吕殿青.平衡施肥科学体系的研究进展与今后展望.见:李生秀主编,土壤-植物营养研究文集.西安:陕西科学技术出版社,1999,44-56
    72.吕晓男,陆允甫.浙中红壤油菜田供钾特性和钾肥用量研究.土壤通报,2000,31(5):228-232
    73.马常宝,刘宝喜,徐茂,邱宁宁,张毅飞,陈永昌,邹绍文,王志学.苏皖赣三省油菜 施肥现状与高产施肥技术.安徽农业科学,1998,26(3):240-241,261
    74.年夫照,石磊,徐芳森,陈刚,胡承孝,王运华.硼对不同硼效率甘蓝型油菜产量和品质的效应.中国油料作物学报,2004,26(4):63-65
    75.全国微肥科研协作组.几种主要农作物锌、硼肥施用技术规范的研究Ⅲ.棉花、油菜硼肥施用技术规范的研究.土壤肥料,1989,(6):1-4
    76.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Buresh R, Witt C.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    77.任廷波,赵继献,高志宏.施氮量对杂交油菜生物性状及产量的影响.山地农业生物学报,2006,25(3):189-193,275
    78.沈金雄,傅廷栋,涂金星,马朝芝.中国油菜生产及遗传改良潜力与油菜生物柴油发展前景.华中农业大学学报,2007,26(6):894-899
    79.沈金雄,李志玉,廖星,郭庆元.磷对甘蓝型油菜产量及矿质营养吸收与积累的影响.作物学报,2006,32(8):1231-1235
    80.单德鑫,王春宏,姜佰文,周连仁.黑土中玉米平衡施肥法的有关参数测定.东北农业大学学报,2007,38(4):464-466
    81.单玉华,冷锁虎,张文学,李殿荣.钾肥对油菜干物质积累、产量及品质的影响.土壤通报,1997,28(3):131-134
    82.宋海星,李生秀.不同水、氮供应条件下夏玉米养分累积动态研究.植物营养与肥料学报,2002,8(4):399-403
    83.宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化.中国农业科学,2003,36(1):71-76
    84.宋珍霞,高明,关博谦,许安定,代先强.硼对烤烟干物质积累和养分吸收的动态模拟.植物营养与肥料学报,2006,12(4):565-570
    85.孙家刚,左青松,石剑飞,冷锁虎,董召娣,孙统庆.油菜籽粒中钾素积累过程的初步研究.中国油料作物学报,2007,29(4):448-451
    86.孙克刚,王亚莉,鹿智江,吕爱英,王英.油菜氮磷钾元素的需肥规律和施肥研究.土壤肥料,2002,(4):35-37
    87.孙克刚,杨稚娟,王守刚,李丙奇.油菜目标产量施肥数学模型及氮磷钾肥推荐措施研究.土壤肥料,2006(1):21-23,43
    88.唐近春.全国第二次土壤普查与土壤肥料科学的发展.土壤学报,1989,26(3):234-240
    89.唐湘如,官春云.施氮对油菜几种酶活性的影响及其与产量和品质的关系.中国油料作物学报,2001a,23(4):34-37
    90.唐湘如,官春云.施钾对油菜酶活性的影响及其与产量品质的关系.中国农学通报,2001b,17(3):4-7,35
    91.唐秀美,赵庚星,路庆斌.基于GIS的县域耕地测土配方施肥技术研究.农业工程学报, 2008,24(7):34-38
    92.涂金星,张冬晓,张毅,傅廷栋.我国油菜育种目标及品种审定问题的商榷.中国油料作物学报,2007,29(3):350-352
    93.涂运昌,周平贞,谢立华,廖星,李金树.油菜的氮,磷营养及其经济施肥量.土壤学报,1996,33(4):428-432
    94.王汉中.入世后的中国油菜产业.中国油料作物学报,2002,24(2):82-86
    95.王汉中.我国油菜产需形势分析及产业发展对策.中国油料作物学报,2007,29(1):101-105
    96.汪洪.植物镁素营养诊断及镁肥施用.土壤肥料,2000,(4):4-7
    97.王利红,徐芳森,王运华.硼钼锌对双低油菜华双4号籽粒发育进程中干物质累积的影响.中国油料作物学报,2007,29(1):49-53
    98.王庆仁.双低油菜(Canola)硫营养临界期与最大效率期的研究.植物营养与肥料学报,1997,3(2):137-146
    99.王淑芬.硼对油菜生长发育及产量的影响.安徽农业科学,2003,31(2):318-319,328
    100.王兴仁,陈新平,张福锁,毛达如.施肥模型在我国推荐施肥中的应用.植物营养与肥料学报,1998,4(1):67-74
    101.王正银,胡尚钦.作物营养与品质.北京:中国农业科技出版社,1999,6-10
    102.魏其克.雄性不育杂种油菜干物质积累与养分吸收规律研究.西北植物学报,1994,14(3):203-209
    103.魏义长,白由路,杨俐苹,林昌华,姚政,罗国安,宋炜,朱春梅.测土推荐施锌对水稻产量结构及土壤有效养分的影响.中国水稻科学,2007,21(2):197-202
    104.魏义长,白由路,杨俐苹,林昌华,姚政,罗国安,徐四新,宋韦,朱春梅.基于ASI法的滨海滩涂地水稻土壤有效氮、磷、钾丰缺指标.中国农业科学,2008,41(1):138-143
    105.吴崇书,孟赐福,吕晓男,滕淳茜,赵森荣.红壤施用不同磷源对油菜产量和经济效益的影响.耕作与栽培,2002(3):4243
    106.武际,郭熙盛,李孝勇,王文军,朱宏斌.连续施用磷钾肥对油菜产量及养分吸收的影响.中国油料作物学报,2006,28(2):180-183
    107.武际,郭熙盛,张祥明,王允青,鲁剑巍.安徽省油菜施肥现状调查及其对策分析.安徽农业科学,2009(25):11935-11936
    108.武杰,李宝珍,谌利,唐章林,王正银,李加纳.不同施肥水平对甘蓝型黄籽油菜含油量的效应研究.中国油料作物学报,2004,26(4):59-62
    109.武雪梅.2006年我国磷肥、硫酸行业生产消费情况概述.磷肥与复肥,2007,22(4):1-5
    110.谢立华,涂运昌,李金树.氮肥和密度对三熟制油菜产量和氮素营养影响的数学模型.土壤通报,1996,27(4):170-171
    111.谢振翅,马朝红,胡定金,邓小玉,李家书.湖北省土壤微量元素含量分布研究.土壤学报,1990,27(4):411419
    112.谢正荣,沈小妹,叶凤山,张军民,赵金泉.不同施肥量对稻田套播油菜生长及产量的影响.作物杂志,2005,(5):28-30
    113.熊汉锋,刘武定,皮美美.油菜硼氮营养相互关系研究.中国油料,1993,(4):39-41
    114.徐光壁,高国文,卞月华.钾肥对低芥酸油菜产量和品质的影响.土壤肥料,1994,(4):28-30
    115.徐华丽,鲁剑巍,李小坤,王寅,苏伟.湖北省油菜施肥现状调查.中国油料作物学报,2010,32(3):418423
    116.徐跃定,吴金桂,胡永红.油稻轮作制中油菜过量施硼对水稻产量的影响.土壤肥料,2000,(2):27-29
    117.许幼生,龙成凤,陈防,陈行春,宁昌会.硼钾配施对油菜产量和品质的影响.湖北农业科学,1991,(1):16-18,21
    118.薛建明,杨玉爱,叶正钱.硼对不同油菜品种生长发育及产量和品质的影响.浙江农业大学学报,1995,21(1):66-70
    119.闫湘.我国化肥利用现状与养分资源高效利用研究.[博士学位论文].北京:中国农业科学院,2008
    120.闫湘,金继运,何萍,梁鸣早.提高肥料利用率技术研究进展.中国农业科学,2008,41(2):450-459
    121.杨俐苹,金继运,梁呜早,程明芳,黄绍文.ASI法测定土壤有效P、K、Zn、Cu、Mn与我国常规化学方法的相关性研究.土壤通报,2000,31(6):277-279
    122.杨美,石磊,徐芳森,王运华.不同硼水平对双低油菜华双4号产量和品质的影响.植物营养与肥料学报,2008,14(6):1118-1122
    123.杨小刚.氮磷钾肥不同配施量对油菜产量的影响.贵州农业科学,2001,29(2):27-29
    124.杨玉爱,徐和昆.硼,氮,钾营养水平对油菜吸收硼,籽粒品质及产量的影响.中国农业科学,1989,22(1):44-51
    125.杨玉华,王运华,杜昌文,吴礼树.硼对不同硼效率甘蓝型油菜品种细胞壁组成的影响.植物营养与肥料学报,2002,8(3):340-343
    126.喻永熹,郭云桃,刘世兴.湖北省黄红土地区1961年冬播作物过磷酸钙肥效试验初报.湖北农业科学,1962,(2):16-20.
    127.叶正钱,杨玉爱.微肥单施及配合施用对油菜产量品质的影响.土壤通报,23(4):168-170
    128.曾长立,王兴仁,陈新平,张福锁.冬小麦氮肥肥料效应模型的选择及其对推荐施氮效 果的影响.江汉大学学报,2000,17(3):8-12
    129.张冬晓.我国油菜生产的发展与展望.中国油料作物学报,2001,23(4):79-81
    130.张福锁.测土配方施肥技术要览.北京:中国农业大学出版社,2006a,3-10
    131.张福锁,崔振岭,王激清,李春俭,陈新平.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694
    132.张福锁,马文奇,陈新平.养分资源综合管理理论与技术概论.北京:中国农业大学出版社,2006b,82-95,232-234
    133.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-924
    134.张文学,李殿荣.高产田油菜氮磷钾施肥模式初探.土壤肥料,2000(5):36-38
    135.张秀省,沈振国,沈康.硼对油菜花器官发育和结实性的影响.土壤学报,1994,31(2):146-160
    136.张学斌,寇长林,王继印,贾改花,刘春霞.不同土壤供钾水平与油菜钾肥效应的研究.作物杂志,2002,(1):14-16
    137.赵合句,李培武,李光明,陆师国.施肥水平对优质油菜种子生化品质影响的研究.作物学报,1991,17(4):255-260
    138.赵继献,程国平,任廷波,高志宏.不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响.植物营养与肥料学报,2007,13(5):882-889
    139.赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报,2006,12(5):622-627
    140.中国农业科学院土壤肥料研究所.中国肥料.上海:上海科学技术出版社,1994,390-392
    141.中国农业科学院油料作物研究所.中国油菜栽培学.北京:农业出版社,1990
    142.中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2008
    143.中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2010
    144.周健民.农田养分平衡与管理.南京:河海大学出版社,2000,146-236
    145.周呜铮.测土施肥的科学基础.土壤通报,1984,15(4):156-161
    146.朱洪勋,李贵宝,张翔,孙春河.高产油菜营养吸收规律及施用氮磷钾对产量和品质的影响.土壤肥料,1995(5):34-37
    147.朱洪勋,张翔,孙春河,孙进明.磷肥对油菜的效应研究.河南农业科学,1994(3):19-20
    148.朱兆良.推荐氮肥适宜施用量的方法论刍议.植物营养与肥料学报,2006,12(1):1-4
    149.朱兆良.我国氮肥的使用现状、问题和对策.见:李庆逵,朱兆良,于天仁主编,中国农业持续发展中的肥料问题.南京:江苏科学技术出版社,1998,38-51
    150.朱兆良.农田生态系统中化肥的去向和氮素管理.见:朱兆良,文启孝主编,中国土 壤氮素.南京:江苏科学技术出版社,1992,228-245
    151.邹娟,鲁剑巍,廖志文,巩细民,汪航,周远桂,周宏.湖北省油菜施硼效果及土壤有效硼临界值研究.中国农业科学,2008,41(3):752-759
    152. Asare E, Scarisbrick D H. Rate of nitrogen and sulphur fertilizers on yield components and seed quality of oilseed rape(Brassica napus L.). Field Crops Res,1995,44:41-46
    153. Barlog P, Grzebisz W. Effect of time and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). I. Growth dynamics and seed yield. J Agron Crop Sci,2004,190: 305-313
    154. Bilsborrow P E, Evans E J, Zhao F J. The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn-sown oilseed rape (Brassica napus). J Agric Sci Camb,1993,120:219-224
    155. Brennan R F, Bolland M D A. Effect of fertilizer phosphorus and nitrogen on the concentrations of oil and protein in grain yield of canola (Brassica napus L.) grown in south-western Australia. Aust J Exp Agric,2007a,47:984-991
    156. Brennan R F, Bolland M D A. Influence of potassium and nitrogen fertilizer on yield, oil and protein concentration of canola (Brassica napus L.) grain harvested in south-western Australia. Aust J Exp Agric,2007b,47:976-983
    157. Brennan R F, Bolland M D A. Soil and tissue tests to predict the potassium requirements of canola in south-western Australia. Aust J Exp Agric,2006a,46(5):675-679
    158. Brennan R F, Bolland M D A. Soil and tissue tests to predict the sulfur requirements of canola in south-western Australia. Aust J Exp Agric,2006b,46:1061-1068
    159. Brennan R F, Mason M G, Walton G H. Effect of nitrogen fertilizer on the concentration of oil and protein in canola (Brassica napus) seed.J Plant Nutr,2000,23(3):339-348
    160. Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res,1998,56:7-39
    161. Cate R B, Nelson L A. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci Soc Am J,1971,35,658-660
    162. Colnenne C, Meynard J M, Reau R, Justes E, Merrien E. Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann Bot,1998,81:311-317
    163. Dahnke W C, Olson R A. Soil test correlation, calibration, and recommendation. In: Westerman R L, ed., Soil testing and plant analysis. ASA, CSSA, and SSSA, Madison, WI, 1990,45-71
    164. Damon P M, Osborne L D, Rengel Z. Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica,2007,156:387-397
    165. Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: A symposium overview. J Environ Qual,1998,27:251-257
    166. Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.):a review. Field Crops Res,2000,67:35-49
    167. Dobermann A, Sta Cruz P C, Cassman K G. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance. Nutr Cycl Agroecosyst,1996,46:1-10
    168. Dobermann A, White P F. Strategies for nutrient management in irrigated and rainfed rice systems. Nutr Cycl Agroecosyst,1999,53:1-18
    169. Dreccer M F, Schapendonk A H C M, Slafer G A, Rabbinge R. Comparative response of wheat and oilseed rape to nitrogen supply, absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil,2000,220:189-205
    170. Fageria N K, Baligar V C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr,2003,26:1315-1333
    171. FAO, FAO Statistical Yearbook 2009, http://www.fao.org/economic/ess/publications-studies/ statistical-yearbook/fao-statistical-yearbook-2009/en/
    172. Ferguson R B, Shapiro C A, Dobermann A, Wortmann C S. Fertilizer recommendations for soybeans. NebGuide G87-859-A. Cooperate Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE,2003
    173. Gammelvind L H, Schjoerring J K, Mogensen V O, Jensen C R, Bock J G H. Photosynthesis in leaves and siliques of winter oilseed rape (Brassica nupus L.). Plant Soil,1996,186: 227-236
    174. Gascho G J, Parker M B. Nitrogen, phosphorus and potassium fertilization of a coastal plain cotton-peanut rotation. Commun Soil Sci Plant Anal,2006,37:1485-1499
    175. Govahi M, Saffari M. Effect of potassium and sulphur fertilizers on yield, yield components and seed quality of spring canola(Brassica napus L.) seed. Agron J,2006,5:577-582
    176. Grant C A, Bailey L D. Fertility management in canola production. Can J Plant Sci,1993,73: 651-670
    177. Heckman J R, Jokela W, Morris T, Beegle D B, Sims J T, Coale F J, Herbert S, Griffin T, Hoskins B, Jemison J, Sullivan W M, Bhumbla D, Estes G, Reid W S. Soil test calibration for predicting corn response to phosphorus in the northeast USA. Agron J,2006,98(3-4): 280-288
    178. Hegney M A, McPharlin I R, Jeffery R C. Using soil testing and petiole analysis to determine phosphorus fertilizer requirements of potatoes (Solanum tuberosum L. cv. Delaware) in the Manjimup-Pemberton region of Western Australia. Aust J Exp Agric,2000,40(1):107-117
    179. Hocking P J, Kirkegaard J A, Angus J F, Gibson A H, Koetz E A. Comparison of canola, Indian mustard and linola in two contrasting environments. I. Effects of nitrogen fertilizer on dry matter production, seed yield and seed quality. Field Crops Res,1997a,49:107-125
    180. Hocking P J, Randall P J, DeMarco D. The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components. Field Crops Res,1997b,54:201-220
    181. Hocking P J, Stapper M. Effects of sowing time and nitrogen fertilizer on canola and wheat, and nitrogen fertilizer on Indian mustard. Ⅰ. Dry-matter production, grain yield and yield components. Aust J Agric Res,2001a,52:626-634
    182. Hocking P J, Stapper M. Effects of sowing time and nitrogen fertilizer on canola and wheat, and nitrogen fertilizer on Indian mustard. Ⅱ. Nitrogen concentrations, N accumulation, and N fertilizer use efficiency. Aust J Agric Res,2001b,52:635-644
    183. Holmes M R J. Nutrition of the oilseed rape crop. Applied science publishers LTD London, 1980
    184. Howeler R H. Potassium nutrition of cassava. In:Mansen R D, ed., Potassium in Agriculture. Madison, Wiscosin,1985:826-828
    185. Jain N K, Vyas A K, Singh A K. Yield and quality of Indian mustard (Brassica juncea) as influenced by phosphorus and sulphur fertilization. Indian J Agric Sci,1996,66(9):539-540
    186. Jackson G D. Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron J, 2000,92:644-649
    187. Jakobsen S T. Interaction between plant nutrients. Ⅲ. Antagonism between Potassium, Magnesium and Calcium. Acta Agric Scand Sect B,1993,43:1-5
    188. Janssen B H, Guiking F C T, van der Eijk D, Smaling E M A, Wolf J, van Reuler H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma,1990,46: 299-318.
    189. Jensen L S, Christensen L, Mueller T, Nielsen N E. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.). Plant Soil,1997, 190:193-202
    190. Jensen C R, Mogensen V O, Mortensen G, Fieldsend J K, Milford G F J, Andersen M N, Thage J H. Seed glucosinolate, oil and protein contents of field-grown oilseed rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Res,1996,47:93-105
    191. Kamh M, Wiesler F, Ulas A, Horst W J. Root growth and N uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J Plant Nutr Soil Sci,2005,168: 130-137
    192. Kullmann A, Ogunlela V B, Geisler G. Concentrations and distribution of some mineral elements in oilseed rape (Brassica napus L.) plants in relation to nitrogen supply. J Agron Crop Sci,1989,163:9-19
    193. Lickfett T, Mathhaus B, Velasco L, Mollers C. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply. Eur J Agron,1999,11:293-299
    194. Liu M, Yu Z, Liu Y, Konijn N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutr. Cycl. Agroecosyst.2006,74:245-258
    195. Malhi S S, Raza M, Schoenau J J, Mermut A R, Kutcher R, Johnston A M, Gill K S. Feasibility of boron fertilization for yield, seed quality and B uptake of canola in northeastern Saskatchewan. J Soil Sci,2003,83:99-108
    196. Nable R O, Banuelos G S, Paull J G. Boron toxicity. Plant Soil,1997,193:181-198
    197. Novoa R, Loomis R S. Nitrogen and plant production. Plant Soil,1981,58:177-204.
    198. Orlovius K. Oilseed rape. In: Kirbky E A, ed., Fertilizing for High Yield and Quality, Bulletin 16. IPI, Basel.2003.
    199. Orlovisu K. Results of potash, magnesium and sulphur fertilizing experiments on oil crops in Germany. In:Zbilansowane nawozenie rzepaku. Aktnalne problemy, IPI/IMPHOS, Poznan, 2000,229-239
    200. Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron,2003,19:453-463
    201. Pathak H, Aggarwal P K, Roetter R, Kalra N, Bandyopadhaya S K, Prasad S, Van Keulen H. Modelling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India. Nutr Cycl Agroecosyst,2003,65:105-113
    202. Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.):A review. Agric Ecosyst Environ,2006,117(2):80-108
    203. Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res,2005,94:103-113
    204. Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999,91:357-363
    205. Sattelmacher B, Horst W J, Becker H C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. J Plant Nutr Soil Sci,1994,157:215-224
    206. Schroder J J, Neeteson J J, Withagen J C M, Noij I G A M. Effects of N application on agronomic and environmental parameters in silage maize production on sandy soils. Field Crops Res,1998,58:55-67
    207. Scott R K, Ogunremi E A, Irvins J D, Mendham N J. The effect of fertilizers and harvest date by growth and yield of oilseed rape sown in autumn and spring. J Agric Sci Camb,1973,81: 287-293
    208. Sharpley A N, Chapra S C, Wedepohl R, Sims J T, Daniel T C, Reddy K R. Managing agricultural phosphorous for the protection of surface water:Issues and options. J Environ Qual,1994,23:437-451
    209. Sharma S R, Kolte S J. Effect of soil-applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape. Plant Soil,1994,167:313-320
    210. Sidlauskas G, Bernotas S. Some factors affecting seed yield of spring oilseed rape(Brassica napus L.). Agron Res,2003,1(2):229-243
    211. Sieling K, Schroder H, Hanus H. Mineral and slurry nitrogen effects on yield, N uptake, and apparent N-use efficiency of oilseed rape(Brassica napus). J Agric Sci Camb,1998,130: 165-172
    212. Slaton N A, Brye K R, Bacon R K, Mozaffari M. Correlation and calibration of Mehlich-3 phosphorus recommendations for winter wheat following rice in Arkansas. Commun Soil Sci Plant Anal,2005,355:993-1004
    213. Slaton N A, Golden B R, Norman R J, Wilson C E, Delong R E. Correlation and calibration of soil potassium availability with rice yield and nutritional status. Soil Sci Soc Am J,2009, 73:1192-1201
    214. Smaling E M A, Janssen B H. Calibration of QUEFTS, a model predicting nutrient uptake and yields from chemical soil fertility indices. Geoderma,1993,59:21-44
    215. Smith C J, Wright G C, Woodroofe M R. The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in south-eastern Australia. II. Nitrogen accumulation and oil yield. Irrig Sci,1988,9:15-25
    216. Soper R J. Soil tests as a means of predicting response of rape to added N, P and K. Agron J, 1971,63:564-566
    217. Taylor A J, Smith C J, Wilson I B. Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus L.). Nutr Cycl Agroecosyst,1991,29:249-260
    218. Urricariet A S, Zubillaga M S, Zubillaga M M, Lavado R S. Nitrogen, phosphorus, and potassium uptake of two rapeseed cultivars in an Argentinean soil. J Plant Nutr,1995,18(2): 305-315
    219. Velasco L, Becker H. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica,1998,101: 221-230
    220. Wang Z, Li S, Malhi S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J Sci Food Agric,2008,88:7-23
    221. Wang K, Yang Y, Bell R W, Xue J M, Ye Z Q, Wei Y Z. Low risks of toxicity from boron fertilizer in oilseed rape-rice rotations in southeast China. Nutr Cycl Agroecosyst,1999,54: 189-197
    222. Webb M J, Loneragan J F. Effect of zinc deficiency on growth, phosphorus concentration and phosphorus toxicity of wheat plants. Soil Sci Soc Am J,1988,52:1676-1680
    223. Witt C, Dobermann A, Abdulrachman S, Gines H C, Wang G H, Nagarajan R, Satawathananont S, Son T T, Tan P S, Tiem L V, Simbahan G C, Olk D C. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res,1999, 63:113-138
    224. Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassium requirement of wheat in the field. Aust J Exp Agric,2001,41(5):655-661
    225. Xu F S, Wang Y H, Ying W H, Meng J L. Inheritance of boron nutrition efficiency in Brassica napus. J Plant Nutr,2002,25(4):901-912
    226. Xue J, Lin M, Bell R W, Graham R D, Yang X, Yang Y. Differential response of oilseed rape (Brassica napus L.) cultivars to low boron supply, Plant Soil,1998,204:155-163
    227. Zaman N W, Farid A T M, Rahman A F M, Talukder M Z I, Sarker R H. Yield and fertility of Brassica napus as affected by boron deficiency in soil. Thai J Agric Sci,1998,31(1):92-97
    228. Zhao F, Evans E J, Bilsborrow P E, Syers J K. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolates oilseed rape (Brassica napus). J. Sci. Food Agric, 1993,63:29-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700