用户名: 密码: 验证码:
催化裂解多产丙烯催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯是一种重要的石油化工基本原料。两段提升管催化裂解多产丙烯(TMP)技术的配套催化剂LTB-2以ZSM-5为活性组分,水热稳定性和重油转化能力欠佳。本论文分别从分子筛和基质两方面进行了研究,以稀土-磷改性提高ZSM-5的水热稳定性,以添加介孔酸性材料提高催化剂的重油转化能力。
     研究发现ZSM-5分子筛稀土-磷改性的最优方案为:使用浸渍法,先向ZSM-5中引入铈,再于pH=6.0条件下引入磷。铈改性、磷改性和铈磷改性对分子筛骨架结构几乎没有影响。铈改性ZSM-5表面存在细微颗粒导致铈改性ZSM-5结晶度降低、酸量增幅最小;磷改性ZSM-5有少量晶体团聚、酸量增幅最大,磷元素还可以抑制分子筛水热老化过程中的晶相转变;铈-磷联合改性ZSM-5表面未见明显变化、酸量增幅适中。与未改性ZSM-5相比,改性ZSM-5结晶度随老化时间延长而下降的趋势变缓。实验室与工业试验结果共同证明:以铈磷改性ZSM-5为活性组分制备的催化剂,不仅水热稳定性有了大幅提高,催化裂解活性也得到增强。
     天然蛭石改性后具有较大的比表面积、合适的孔容及孔径,酸改性蛭石出现少量B酸,层柱化改性蛭石出现大量B酸和少量L酸。层柱化的蛭石水热稳定性差,酸改性蛭石的水热稳定性稍强,在催化剂中添加少量酸改性蛭石有利于提高重油转化能力。但若酸改性蛭石添加量过高,其中溶出的镁会与分子筛的酸性位起中和作用,导致丙烯和液化气收率降低,故不适宜作为催化裂解增产丙烯催化剂的活性载体。
     镁铝尖晶石材料的最佳制备条件为:使用盐酸酸化拟薄水铝石制备铝凝胶,原料中镁铝原子比为MgAl2O4的化学计量比,混合浆液干燥后于800oC焙烧。浸渍法制备的改性镁铝尖晶石材料仅有弱L酸。水热合成法制备的改性镁铝尖晶石材料具有很强的B酸和少量中强L酸,且在老化后依然具有较好的重油转化能力,可部分取代高岭土,来改善重油催化裂解催化剂的性能。
Propylene is an important basic feedstock of petrochemical industry. ZSM-5 is the active component of LTB-2, which is supporting catalyst of two-stage riser catalytic cracking pyrolysis for maximizing propylene yield (TMP) technology and which hydrothermal stability and heavy oil conversion need to be improved. In this paper, we have modified the zeolite and carrier respectively, carried out two studies: one is modifing ZSM-5 with rare earth and phosphorus to improve the hydrothermal stability of zeolite; the other is adding mesoporous acidic material to the catalyst to improve heavy oil conversion.
     We found that the optimal case for rare earth-phosphorus modifition is impregnating Ce in ZSM-5 and then impregnating phosphorus under the conditions of pH = 6.0. Impregnating Ce, P or Ce-P have little effect on the zeolite framework structure. There are some particles on the surface of Ce-Modified ZSM-5, which lead to crystallinity reduced and the amount of acid have the smallest increase. A small amount of P-modified ZSM-5 crystal gathered, and which acid amount have the biggest increase. Phosphorus can also inhibit the change of crystalline phase during the hydrothermal treatment. The surface of Ce-P modified ZSM-5 has no significant change and which acid amount increased medium. For modified ZSM-5, the downtrend of crystallinity was slower than that of base ZSM-5 with the aging time extending. Laboratory and industrial test results have proved: the catalysts which active component is Ce-P modified ZSM-5 has a substantial increase in hydrothermal stability, and its catalytic cracking activity has also been enhanced.
     Modified vermiculites have larger specific surface area, suitable pore volume and poresize. Acid-modified vermiculite has a tiny amount B acid; layer-pillared vermiculite has large quantities of B acid and a small amount of L acid. Pillared-layer can not be used in harsh reaction conditions of catalytic cracking process due to its poor structure stability. Acid-modified vermiculite was more stable, it can be used in catalytic cracking catalysts for improving the conversion of heavy oil. With the increasing of acid-modified vermiculite added, magnesium dissolution from acid-modified vermiculite neutralized the acid sites of ZSM-5, propylene and LPG yield were reduced. Acid-modified vermiculites were unsuitable to acting as activity carrier of catalytic cracking catalyst for maximizing propylene yield.
     The best preparation conditions of Mg-Al spinel materials are: preparing aluminum gel with hydrochloric acid; Mg-Al atomic ratio in the raw materials is equal to stoichiometric ratio of MgAl2O4; roasting mixed slurry at 800oC after dried. Modified spinel materials prepared by impregnation only have weak L acid, but modified spinel materials prepared by hydrothermal synthesis have a strong B acid and a small amount of strong L acid. After hydrothermal treatment, modified spinel materials prepared by hydrothermal synthesis showed better catalytic activity for cracking heavy oil. It could partially substitute for kaolin to improve the performance of catalysts for heavy oil catalytic cracking.
引文
[1]张建国,宋昭峥,丁宏霞,等.增产丙烯的技术进展与我国发展对策[J].现代化工, 2006, 26(2): 5-9.
    [2]李春义,袁起民,陈小博,等.两段提升管催化裂解多产丙烯研究[J].中国石油大学学报(自然科学版), 2007, 31(1): 118-121.
    [3] Chunyi Li, Chaohe Yang, Honghong Shan. Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil[J]. Ind. Eng. Chem. Res. 2007, 46: 4914-4920.
    [4] M. A. den Hollander, M. Wissink, M. Makkee, et al. Gasoline conversion: reactivity towards craking with equilibrated FCC and ZSM-5 catalysts [J]. Applied Catalysis A: General, 2002, 223: 85-102.
    [5]黄风林,王立功.非骨架元素对分子筛裂化催化剂性能的调变作用[J].炼油技术与工程, 2006, 32(12): 43-46.
    [6]刘鸿洲,汪夑卿. ZSM-5分子筛中引入过渡金属对催化热裂解反应的影响[J].石油炼制与化工, 2001, 32(2): 48-51.
    [7] Takashi Tsunoda, Mitsuhiro Sekigychi. Method for producing ethylene and propylene[P]. US: 6307117, 1999.
    [8] Jiangyin Lu, Zhen Zhao, Chunming Xu. FeHZSM-5 molecular sieves–Highly active catalysts for catalytic cracking of isobutene to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199-203.
    [9]张建军,周钰明,杨抗震,等. W-ZSM-5催化剂C4烯烃裂解制丙烯催化性能研究[J],分子催化, 2008, 22(3): 236-239.
    [10]刘爱松,张昕,钟进,等. SiO2改性HZSM-5催化剂催化C4烯烃裂解生产丙烯[J].石油化工, 2006, 35(8): 735-739.
    [11] David L Johnson, Khushrav E Nariman, Robert A Ware. Catalytic production of light olefins rich in propylene[P]. US: 6222087, 1999.
    [12] Dath Jean Pierre, Vermeiren Walter, Herebout Koen. Production of olefins[P]. WO: 078894, 2000.
    [13] Lim. John, Stamires, Dennis, et al. Balanced alumina matrix in zeolite containing catalyst[P]. US: 4206085, 1980.
    [14] Lim. John, Humphries, Adrian P, et al. Use of additional alumina for extra zeolite stability in FCC catalyst[P]. US: 4325847, 1982.
    [15] Alfonse Maglio, Charles F. Keweshan, Rostam J. Madon, et al. Advanced FCC catalyst matrix technology for reduced coke and slurry yields[J]. NPRA-AM-94-59.
    [16]吕玉康,李才英,顾文娟.一种裂化催化剂及其制备方法[P]. CN: 93109101, 1997.
    [17]郑淑琴,庞新梅,孙书红,等.拟薄水铝石作为催化裂化催化剂活性组分的研究[J].炼油设计, 2002, 32(3): 7-10.
    [18]李强,马智.活性氧化铝在FCC催化剂中的应用研究[J].工业催化, 2006, 14(1): 64-67.
    [19]王宁生,闫伟建,孙书红.高岭土改性及其在FCC催化剂中的应用[J].工业催化, 2007, 15(4): 14-16.
    [20]邱中红,李才英,陈祖庇.渣油裂化催化剂的共性与特性[J].炼油设计, 1999, 29(9): 23-27.
    [21]吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J].催化学报, 2002, 23(5): 421-424.
    [22]胡颖,舒兴田. ZSM-5沸石中非骨架铝对沸石裂化性能影响的初步探讨[J].石油学报(石油加工), 1998, 14(3): 85-88.
    [23]张悝,项寿鹤,刘上垣,等.直接法ZSM-5沸石分子筛骨架铝的迁脱规律[J].催化学报, 1996, 17(4): 340-342.
    [24]吴治国,张玉兰,韩崇家,等.一种FCC催化剂水热稳定性的研究[J].华东理工大学学报, 1999, 25(4): 353-356.
    [25]何农跃,施其宏,张信,等.超稳Y沸石酸性和活性研究[J].石油化工, 1994, 23(8): 497-501.
    [26] Gao Zi, Tang Yi. Influence of Si/Al ratio on the properties of faujasites enriched in silicon[J]. Zeolites, 1988, 8(3): 232-237.
    [27]赵国良,滕加伟,谢在库,等.氟硅酸铵改性的HZSM-5催化剂的表征及其碳四烯烃裂解催化性能[J].催化学报, 2005, 26(12):1083-1087.
    [28] Kurt A. Becker, Stanistaw Kowalak. Zeolite catalysts modified with fluorine[J]. Studies in Surface Science and Catalysis, 1989, 52: 123-132.
    [29] Lercher J A, Rumplmyr G. Controlled decrease of acid strength by orthophosphoricacid on ZSM-5[J]. Applied Catalysis, 1986, 25: 215-222.
    [30]龙立华,万焱波,伏再辉.磷改性ZSM-5沸石的催化裂化性能[J].工业催化, 2004, 12(5): 11-15.
    [31]谢有畅,唐有祺.氧化物和盐类在分子筛内外表面及空穴中的自发分散及其应用[J].北京大学学报(自然科学版), 1998, 34(2-3): 302-308.
    [32]柯明,汪夑卿,张凤美.磷改性ZSM-5分子筛催化裂解制乙烯性能的研究[J].石油学报(石油加工), 2003, 19(4): 28-35.
    [33] Warren W. Kaeding, Stephen A. Butter. Production of chemicals from methanol: I. Low molecular weight olefins[J]. Journal of Catalysis, 1980, 61(1): 155-164.
    [34] W. W. Kaeding, C. Chu, L. B. Young, et al. Selective alkylation of toluene with methanol to produce para-Xylene[J]. Journal of Catalysis, 1981, 67(1): 159-174.
    [35] Nianhua Xue, Xiangke Chen, Lei Nie, et al. Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/ZSM-5[J]. Journal of Catalysis, 2007, 248(1):20-28.
    [36] T. Sano, H. Ikeya, T. Kasuno, et al. Influence of crystallinity of HZSM-5 zeolite on its dealumination rate[J]. Zeolites, 1997, 19(1): 80-86.
    [37]金文清,滕加伟,赵国良,等. PZSM-5分子筛催化剂用于烯烃催化裂解的研究[J].工业催化, 2004, 12(10): 5-7.
    [38]杨小明,罗京娥.磷氧化物改性对ZSM-5沸石物化性质及择形催化性能的影响[J].石油炼制与化工, 2001, 32(11): 48-51.
    [39]佟惠娟,李工.含铁和钒的ZSM-5型分子筛的合成、表征和催化性能[J].石油化工高等学校学报, 2002, 15(2): 33-36.
    [40]龙军.中孔择形沸石与烃类催化裂化[J].石油炼制与化工, 1997, 28(7): 24-28.
    [41]张进,肖国民. ZSM-5型分子筛的表面酸性与催化活性[J].分子催化, 2002, 16(4): 307-311.
    [42]徐虹,张加富,贾修伟,等.综合改性对HZSM-5沸石催化性能影响研究[J].郑州大学学报(自然科学版), 2000, 32(3): 78-81.
    [43]李明慧,杨毅,王井.碱土和稀土金属化合物对H-ZSM-5沸石催化剂改性的反应性能[J].大连轻工业学院学报, 2004, 23(1): 11-14.
    [44]郭耘,卢冠忠.稀土催化材料的应用及研究进展[J].中国稀土学报, 2007, 25(1):1-15.
    [45]王晓宁,周新宇,姜桂元,等.稀土改性HZSM-5分子筛催化裂解混合C4烃制低碳烯烃性能的研究[J].稀土, 2008, 29(5): 30-35.
    [46]葛晓萍,牛淑妍,王世权.水热处理前后不同改性ZSM-5催化剂性能的研究[J].齐鲁石油化工, 1997, 25(1): 22-27.
    [47]朱玉霞,汪夑卿.镧、磷复合添加组分对催化裂化催化剂物化性能的影响[J].石油学报(石油加工), 2003, 19(4): 8-14.
    [48]刘从华,邓友全,高雄厚,等.稀土和磷改性对裂化催化剂反应性能的影响[J].分子催化, 2004, 18(2): 115-120.
    [49]葛星品,施至诚,张淑琴,等.一种生产低碳烯烃的裂解催化剂[P]. ZL:88108669.
    [50]余本德,施至诚,许友好. CRP-1裂解催化剂工业应用及15万t/a催化裂解装置开工运转[J].石油炼制与化工, 1995, 26(5): 7-13.
    [51]陆友宝,邱中红,唐立文,等.多产低碳烯烃高堆比催化剂RAG-7的开发[J].炼油设计, 2001, 31(6): 23-26.
    [52]吴青,周通,何鸣元.催化裂化装置多产丙烯助剂Olefins Max的应用试验[J].炼油设计与工程, 2004, 34(5): 42-46.
    [53]魏小波,刘丹禾,郝代军,等.催化裂化多产丙烯助剂LPI-1的工业应用[J].炼油技术与工程, 2004, 34(9): 38-41.
    [54]赵金立.增产丙烯的技术及其进展[J].炼油技术与工程, 2004, 34(4): 1-4.
    [55] Degnan T F, Chitnis G K, Schipper P H. History of ZSM-5 fluidized-bed cracking catalysts development at Mobil[J]. Microporous and Mesoporous Materials, 2000, 35: 245-252.
    [56] Den Hollander M A, Widdink M, Makkee M, et al. Synergy effects of ZSM-5 addition in fluid catalytic cracking of hydrotreated flashed distillate[J]. Applied Catalysis A: General, 2002, 223(1): 103-119.
    [57]陈洪林,申宝剑,潘惠芳.水热脱铝ZSM-5/Y复合分子筛的表征和催化裂化性能[J].物理化学学报, 2004, 20(8): 854-859.
    [58]申宝剑,陈洪林,潘惠芳. ZSM-5/Y复合分子筛在烃类催化裂化催化剂中的应用研究[J].燃料化学学报, 2004, 32(6): 745-749.
    [59]陈洪林,申宝剑,潘惠芳. ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能[J].催化学报, 2004, 25(9):715-720.
    [60]徐春明,高金森,申宝剑,等.催化裂解生产低碳烯烃技术相关基础研究和应用[R].中国石油催化裂解生产低碳烯烃技术研讨会, 2005, 71-103.
    [61]王斌,田辉平,唐立文.系列新型重油催化裂化催化剂的工业开发与应用[J].石油炼制与化工, 2002, 33(8): 30-33.
    [62]刘从华,邓友全,高雄厚,等.酸改性高岭土基质FCC催化剂的反应性能[J].工业催化, 2003, 11(4): 49-52.
    [63]刘从华,刘育.改性高岭土性能研究: I.酸性和催化活性[J].石油炼制与化工, 1999, 30(4): 32-37.
    [64] Lussier R J. Acid-reacted metakaolin catalyst and catalyst support compositions[P]. US: 4843052, 1989.
    [65]沈志虹,付玉梅,李淑云.活性基质在降烯烃渣油裂化催化剂中的应用[J].燃料化学学报, 2003.31(3): 259-262.
    [66] Lussier R J. A novel clay-based catalytic material preparation and properties[J]. Journal of Catalysis, 1991, 129(1): 225-237.
    [67]刘从华,邓友全,庞新梅,等.含碱改性高岭土裂化催化剂的表征和反应性能[J].工业催化, 2003, 11(7): 41-44.
    [68]秦素亚,高伟,张瑛,等.研磨-焙烧-碱处理偏高岭土制备大孔催化剂基质[J].石油化工, 2008, 37(1): 17-21.
    [69]刘娟娟,苏怡,张忠东,等.泾阳土用于催化裂化催化剂性能的研究[J].甘肃科技, 2009, 25(8): 31-33.
    [70] Tian-Jun Rong, Jin-kai Xiao. The catalytic cracking activity of the kaolin-group minerals[J]. Materials Letters, 2002, 57: 297-301.
    [71] Avelino Corma, Cristina Mart?nez, Laurent Sauvanaud. New materials as FCC active matrix components for maximizing diesel(light cycle oil, LCO) and minimizing its aromatic content[J]. Catalysis Today, 2007, 127: 3-16.
    [72]钱东,黄小红,郑淑琴,等.海泡石的酸改性及其作为FCC催化剂基质的初步研究[J].石油炼制与化工, 2008, 39(2): 6-11.
    [73]刘福生,彭同江,张建洪,等.蛭石改性处理研究现状评述[J].矿产综合利用, 2002, 2: 24-27.
    [74]吴平宵,黄淑敏. Al3+交换蛭石层间铝的赋存状态研究[J].矿物岩石, 2004, 24(4): 1-2.
    [75]杜彦召,陈朝阳,范艳伟,等.高膨胀率蛭石制备新工艺研究[J].矿产保护与利用, 2008, 3: 13-17.
    [76]李雪梅,廖立兵,曾青云,等.蛭石的有机改性研究进展[J].矿物岩石地球化学通报, 2007, 26(14): 410-418.
    [77] Ana M. Campos, Sonia Moreno, Rafael Molina. Relationship between hydrothermal treatment parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior[J]. Catalysis Today, 2008, 133-135: 351-356.
    [78] A. Campos, B. Gagea, S. Moreno, et al. Decane hydroconversion with Al–Zr, Al–Hf, Al–Ce-pillared vermiculites[J]. Applied Catalysis A: General, 2008, 345(1): 112-118.
    [79] F. Gonzalez, C. Pesquera, I. Benito, et al. Pillared clays: catalytic evaluation in heavy oil cracking using a microactivity test[J]. Applied Catalysis A: General, 1999, 181(1): 71-76.
    [80] M. C. Jimenez De Haro, J. M. Mart?nez Blanes, J. Poyato, et al. Effects of mechanical treatment and exchanged cation on the micro porosity of vermiculite[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 435-439.
    [81] N. Maes, I. Heylen, P. Cool, et al. The relation between the synthesis of pillared clays and their resulting porosity[J].Applied Clay Science,1997,12(1-2):43-60.
    [82] A. Aitani, T. Yoshikawa, T. Ino. Maximization of FCC light olefins by high severity operation and ZSM-5 addition[J]. Catalysis Today, 2000, 60(1-2):111-117.
    [83]庞新梅,孙书红,赵连鸿,等.一种催化裂化催化剂及其制备方法[P]. CN: 1436835, 2006.
    [84]龙军,严加松,田辉平,等.一种含分子筛烃类裂化催化剂的制备方法[P]. CN: 1690168, 2005.
    [85]陈辉,田辉平,许明德,等.提高渣油掺练率催化裂化催化剂的开发[J].炼油技术与工程, 2004, 34(1): 40-42.
    [86]刘环昌. Orbit-3600抗钒重油裂化催化剂的开发与应用[J].石油炼制与化工, 2001, 32(5): 1-5.
    [87]吕玉康,李才英,顾文娟.一种裂化催化剂及其制备方法[P]. CN: 1098130., 1995.
    [88]许明德,范中碧,陆友宝,等.催化裂化重油裂化助剂及其制备方法[P]. CN: 1293225, 2001.
    [89]许明德,田辉平,陈辉,等.一种石油烃裂化催化剂的制备方法[P]. CN:1388213, 2003.
    [90]许明德,田辉平,达志坚,等.一种石油烃裂化催化剂及其制备方法[P]. CN: 1727442, 2006.
    [91]邱中红,张万虹,王振波,等.一种流化裂化催化剂的制备方法[P]. CN: 1388214, 2003.
    [92]黄道培,万焱波,甘俊,等.一种催化裂化催化剂及其制备方法[P]. CN:1552801, 2004.
    [93]严加松,龙军,田辉平,等.一种含分子筛烃类裂化催化剂的制备方法[P]. CN: 1690170, 2005.
    [94]陈振宇,龙军,达志坚,等.一种裂化催化剂及其应用[P]. CN: 1727443, 2006.
    [95]祈彦平,董鹏,陈胜利.新型孔结构重油催化裂化催化剂的制备与评价[J].石油化工, 2001, 34(增刊): 485-486.
    [96] Ernst Booij, J. Theo Kloprogge, J. A. Rob van Veen. Large pore REE/Al pillared bentonites: Preparation, structural aspects and catalytic properties[J]. Applied Clay Science, 1996, 11(2-4): 155-162.
    [97] Roger J. Lussier. A novel clay-based catalytic material-preparation and properties[J]. Journal of Catalysis, 1991, 129(1): 225-237.
    [98]李晓波,胡津仙,王锋,等.含锆ZSM-5分子筛上丙烯齐聚反应的研究[J].燃料化学学报,2004,33(4):498-503.
    [99]杨静,孙淮.磷改性ZSM-5沸石水热稳定性提高的理论研究[J].中国科学B辑:化学,2008,30(10):881-887.
    [100]张钺伟,沈美庆,吴晓东,等.稀土对SAPO-11分子筛结构与性能的影响[J].物理化学学报, 2006, 22(12): 1495-1500.
    [101]曲虹霞,钟秦,邓选英. Ce3+(La3+)改性Cu-ZSM-5催化剂分解NO活性的研究[J].中国环境科学, 2006, 26(4): 395-399.
    [102]喻顺祥,李光岩,李桂民,等.稀土浸渍处理对β沸石结构、酸性和催化性能的影响[J].石油学报(石油加工),1998,14(4):30-34.
    [103]王军威,靳国强,张志新,等. La/HZSM-5催化剂上丙烷的芳构化研究[J].中国稀土学报, 2001, 19(2): 103-106.
    [104]徐如人,庞文琴.沸石分子筛与多孔材料化学[M],科学出版社,2004:1.
    [105]任彦瑾,施力.铈、铌改性镁铝尖晶石作为催化降烯烃助剂的研究[J].中国稀土学报, 2008, 26(1): 1-5.
    [106]王跃利,于慧征,罗立文,等. Ce改性HZSM-5分子筛催化剂的表征及活性[J].石油与天然气化工, 2007, 36(3): 201-205.
    [107] Ramesh Rachapudi, Prashant S. Chintawar, Howard L. Greene. Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs[J]. Journal of catalysis, 1999, 185(1): 58-72.
    [108] Ramesh Rachapudi, Prashant S. Chintawar, Howard L. Greene. Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs[J]. Journal of catalysis, 1999, 185(1): 58-72.
    [109]柯明,汪夑卿,张凤美.高温水热处理后磷改性HZSM-5分子筛的结构变化[J].石油化工,2005,34(3):226-232.
    [110]陈俊武,曹汉昌.催化裂化工艺与工程[M].北京:中国石化出版社.1995.
    [111]黄风林.催化裂化催化剂酸性控制的研究[J],石油与天然气加工,2001,30(6):287-290.
    [112] Carvajal R, Chu P J, LunsfordJ H. The role of polyvalent cations in developing strong acidity: a study of lanthanum-exchanged zeolites[J]. J Catal, 1990, 125: 123-131.
    [113]杨刚,王妍,周丹红,等.La/ZSM-5分子筛热稳定性及镧存在形态研究[J].物理化学学报,2004,20(1):60-64.
    [114] A. Stanislaus, M. Absi-Halabi, K. Al-Doloma. Effect of phosphorus on the acidity ofγ-alumina and on the thermal stability ofγ-alumina supported nickel-molybdenum hydrotreating catalysts[J]. Applied Catalysis, 1988, 39(16): 239-253.
    [115] A. C. Leiras Gomes, E. Falabella S-Aguiar, S. Cabral Menezes, et al. Influence of combined acid treatment on physic-chemical characteristics of ultrastable zeolite Y and on its catalytic properties in the disproportionation of ethybenzene[J]. Applied Catalysis A: General, 1997, 148(2): 373-385.
    [116]陈清,沈本贤,谈晨刚.改性USY型催化裂化催化剂提高氢转移性能的研究[J].华东理工大学学报(自然科学版), 2005, 31(4), 438-442.
    [117] T. Blasco, A, Croma, J. Martinez-Triguero. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277.
    [118] Ning Zhu, Yang Wang, Dang-guo Cheng, et al. Experimental evidence for the enhanced cracking activity of n-heptane over steamed ZSM-5/mordenite composite zeolites[J]. Applied Catalysis A: General, 2009, 362(1): 26-33.
    [119]龙军,魏晓丽.催化裂化生成干气的反应机理研究[J].石油学报(石油加工),2007,23(1):1-7.
    [120] S. Kotrel, H. Knozinger, B.C. Gates. The Haag-Dessau mechanism of protolytic cracking of alkanes[J]. Microporus and Mesoporous Materials, 2000, 35-36: 11-20.
    [121] A. Corma, A.V. Orchilles. Current views on the mechanism of catalytic cracking[J]. Microporus and Mesoporous Materials, 2000, 35-36: 21-30.
    [122]张剑秋,田辉平,达志坚,等.磷改性Y型分子筛的氢转移性能考察[J].石油学报(石油加工), 2002, 18(3): 70-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700